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Chapter

Roles of Lipids in Cancer
Jin Yan Lim and Hiu Yee Kwan

Abstract

The term ‘lipids’ refers to a class of biological molecules primarily composed 
of hydrocarbons such as fatty acids, glycerolipids, sphingolipids and sterol lipids. 
Lipids take part in a variety of physiological functions and have specific roles 
depending on their chemical structure and localisation within or outside cells. For 
example, glycerolipids (e.g. triglycerides) are often used as energy stores, sterol 
lipids (e.g. cholesterol) and glycerophospholipids as structural components of cell 
membranes (e.g. the lipid bilayer), and sphingolipids as part of a signalling cascade. 
Since lipids are a source of energy and basic building block of all living cells, it is 
not surprising that development of cancer (i.e. uncontrolled proliferation of cells) 
is closely tied to the metabolism of lipids. This notion is supported by studies into 
the reprogrammed metabolic machinery in cancer cells, and also cell and animal 
model experiments showing that cancer growth and metastasis can be induced or 
inhibited by the exogenous addition of lipids. Here, we review how cancer cells can 
alter their lipid metabolism to meet their metabolic requirements, and the potential 
tumorigenic and tumour-suppressive mechanisms in which lipids are involved.

Keywords: lipids, cancer, metabolic reprogramming, signalling, autophagy, 
tumour development, cancer progression

1. Lipids in cancer

1.1 Lipid metabolism in tumours

Tumours can be simplistically described as masses of uncontrolled abnormal 
cellular growth. As they rapidly divide and proliferate, tumours require a steady 
source of energy and nutrients to accumulate biomass, and compete with healthy 
cells over a limited supply of essential cellular building blocks. Many cancers have 
adapted to their harsh environments by changing their metabolic profiles (the 
term ‘reprogramming’ is commonly used to describe this) to support growth and 
improve their chances of survival [1], among which the most well described is 
arguably their preference to perform glycolysis under aerobic conditions, an obser-
vation known as the Warburg effect [2]. In normal cells, glucose is hydrolysed via 
glycolysis, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation to 
extract the maximum amount of energy in the form of adenosine triphosphate 
(ATP). This process utilises oxygen as the terminal electron acceptor during 
oxidative phosphorylation. In the absence of oxygen, glucose is still broken down 
to pyruvate via glycolysis, but is subsequently converted to lactate instead of being 
passed through the TCA cycle and oxidative phosphorylation. Metabolising glu-
cose through glycolysis and fermentation into lactate results in smaller amounts of 
ATP compared to oxidative phosphorylation, however, tumour cells tend to prefer 
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this path even in the presence of oxygen (i.e. the Warburg effect). A hypothesis to 
explain this preference suggests that instead of completely exhausting the carbon 
molecules in glucose through aerobic respiration (oxidative phosphorylation), 
highly proliferating cells need to conserve their carbon sources for the purpose of 
accumulating biomass [2, 3]. Vander Heiden and colleagues calculated the num-
ber of ATP and reduced nicotinamide adenine dinucleotide (NADH) molecules 
produced by glucose and compared these to the amount required for synthesis 
of macromolecules such as fatty acids, and concluded that proliferating tumours 
cannot utilise all their glucose stores for ATP production alone. The preference for 
glycolysis therefore could serve to increase availability of carbon-based precursors 
of biomolecules such as lipids, amino acids and nucleic acids that would otherwise 
be converted to carbon dioxide (CO2) through respiration via the TCA cycle and 
oxidative phosphorylation.

By reducing the loss of carbon through respiration, tumour cells can utilise this 
saved pool for synthesising basic cellular building blocks necessary for sustain-
ing their proliferation. One such example is the synthesis of fatty acids and other 
lipid molecules derived from the modification of fatty acids. Fatty acids and their 
derivatives have indispensable roles in cell biology; a few key functions include 
formation of the basic structure of the cell membrane, as an energy storage pool 
and as mediators in cellular signalling cascades. Lipids are typically obtained from 
dietary sources or synthesised in living cells beginning from the precursor mol-
ecule acetyl-coA. In most eukaryotic cells, pyruvate is produced from the break-
down of glucose via glycolysis. It is then funnelled into the mitochondria in which 
the enzyme pyruvate dehydrogenase converts pyruvate to acetyl-coA. Acetyl-coA 
is subsequently converted into citrate by citrate synthase (first step in the TCA 
cycle), a step necessary to transport acetyl-coA in the form of citrate from the 
mitochondria into the cytosol which is the site of fatty acid synthesis. Citrate is 
transported out of the mitochondria and converted back into acetyl-coA by ATP 
citrate lyase (ACLY) in the cytosol. Next, acetyl-coA is carboxylated by acetyl-coA 
carboxylase (ACC) to form malonyl-coA, and both precursors are then attached 
to an acyl carrier protein and repeatedly elongated with units of carbons from 
additional malonyl-coA molecules. This elongation is performed by fatty acid 
synthase (FASN) to produce a 16-carbon molecule termed palmitic acid. Palmitic 
acid can be further desaturated and/or elongated to produce unsaturated fatty acid 
derivatives which serve as building blocks for the synthesis of other lipids such 
as phosphoglycerides, phosphoinositides, eicosanoids and sphingolipids (sum-
marised in Figure 1, reviewed in [4]. Separately, acetyl-coA is also used for the 
synthesis of cholesterol through the mevalonate pathway. This process involves 
first converting acetyl-coA into lanosterol (via intermediates including 3-hydroxy-
3-methylglutaryl coA, mevalonate, isopentenyl pyrophosphate, farnesyl pyro-
phosphate and squalene), which is then transformed into cholesterol through a 
multi-step enzymatic process.

Studies have indicated that the biosynthesis of basic cellular building blocks 
including proteins, fatty acids and nucleic acids is modified and/or upregulated in 
[5, 6], indicating that the metabolism in highly proliferating cancer cells is likely 
altered to support their abnormal growth. Lipids and fatty acids in particular are 
required for the biosynthesis and modification of the lipid bilayer membrane in 
newly formed cells [7], and also for other roles related to cell signalling and tumour 
survival. Consistent with the fatty acid biosynthesis pathway, tumours primarily 
obtain carbon acyl fatty acid precursors from glucose [8, 9]. To increase the produc-
tion of fatty acids and other lipids, tumour cells hijack the fatty acid biosynthesis 
pathway to their advantage. Component enzymes in the pathway (ACLY, ACC and 
FASN) are commonly upregulated in tumours [10–13], and inhibition or silencing 
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of these enzymes has been demonstrated to restrict growth of cancerous cells 
[14–16]. The upregulation of these fatty acid synthesis-related enzymes is achieved 
through signalling by the mammalian target of rapamycin (mTOR) complex 1 and 
transcription factors called sterol regulatory element-binding proteins (SREBPs). 
SREBPs exert transcriptional control over various fatty acid, cholesterol, triglycer-
ides and phospholipid synthesis and uptake genes [17] and are regulated by mTOR 
complex 1, a nutrient and growth factor responsive kinase [18]. Previous studies 

Figure 1. 
Lipid biosynthesis. Schematic representation of the pathways involved in the synthesis of fatty acids, 
cholesterols, phosphoglycerides, eicosanoids, and sphingolipids. Enzymes involved in catalysing the process are 
labelled in red. (a) Citrate derived from the tricarboxylic acid (TCA) cycle is first converted to acetyl-CoA 
by ATP citrate lyase (ACYL). (b) For fatty acid synthesis, acetyl-CoA carboxylase (ACC) adds a carboxyl 
group to convert acetyl-CoA to malonyl-CoA. Repeated condensation of acetyl-CoA and malonyl-CoA 
catalysed by fatty acid synthase (FASN) results in a 16-carbon fatty acid chain. After which, the 16-carbon 
fatty acid chain is cleaved by thioesterase to generate long chain fatty acids such as palmitic acid, stearic acid, 
and oleic acid. The addition of a double bond by stearoyl-CoA desaturase (SCD) yields monounsaturated 
fatty acids. (c) Subsequent elongation and desaturation, catalysed by enzymes fatty acid elongase (ELOVL) 
and fatty acid desaturase (FADS) produces a pool of fatty acids with different saturation levels. Essential 
fatty acids can also be obtained from dietary intake. (d–g) Subsequent modification generates different types 
of lipids. (d and e) In glycerolipid biosynthesis, saturated and unsaturated fatty acids combine with glycerol-
3-phosphate, a reaction highly dependent on glycerol-3-phosphate acyltransferase (GPAT) to generate (d) 
phosphoinositides and (e) phosphoglycerides. (f) Eicosanoids are signalling molecules made by oxidation 
of polyunsaturated fatty acids such as arachidonic acid. Downstream, multiple families of eicosanoids such 
as prostaglandins and leukotrienes can be generated. (g) Sphingolipids contains acyl chains and polar head 
groups derived from serine, phosphocholine, and phosphoethanolamine. Ceramide, sphingomyelin, and 
sphingosine are common intermediates of the sphingolipid metabolic pathway (h) cholesterol synthesis is 
regulated by a series of conversion and addition of acyl groups by enzymes 3-hydroxy-3-methylglutarate-CoA 
synthase (HMGCS) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Subsequent modifications 
yield farnesyl-pyrophosphate, an important intermediate for protein prenylation. Cholesterol also forms the 
structural backbone of hormone synthesis in the cell. Abbreviations used in the figure: coenzyme A (-CoA), 
prostaglandin-endoperoxide synthase (COX1/2), diacylglycerol O-acyltransferase (DGAT), 3-hydroxyl-
3-methyl-glutaryl-coenzyme A reductase (HMG-CoA), arachidonic acid 5-hydroperoxide (HPETE), and 
phosphatidic acid phosphatase (PPAP).
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conducted in various cancers have implicated deregulation of mTOR signalling in 
mediating proliferation of cancer cells (reviewed in [19, 20]). More specifically, 
mTOR and SREBPs have been shown to increase lipid biosynthesis through Akt 
signalling thereby promoting proliferation in cancer cells [21]. The signalling by 
mTOR complex 1 also leads to upregulated fatty acid biosynthesis in cancer cells 
either by activating SREBPs via S6 kinase [22] or phosphorylating (downregulat-
ing) the SREBP inhibitor Lipin 1 [18]. In addition to lipids, mTOR complex 1 
signalling is also implicated in promoting biosynthesis of proteins and nucleotides 
[23–25]. Taken together, these findings indicate that the deregulation of mTOR 
complex 1 plays a central metabolic role in promoting growth and proliferation of 
cancer cells by allowing them to ‘reprogram’ their metabolism. Indeed, there are 
studies into the potential use of mTOR inhibitors as cancer therapy drugs given its 
importance in the development of cancer.

1.2 Lipids as promoters of cancer

Early experiments have established that the lipid composition of tumour tis-
sues is distinct from normal healthy cells [26–29]. Their lipid composition differs 
depending on the type of tumour tissue and possibly also correlates with tumour 
stage and malignancy characteristics, as recently demonstrated in a comparison 
of membrane lipid composition between six human breast cancer cell lines and 
healthy mammary epithelia [30]. These and other similar studies led to the notion 
that lipids could play an active role in cancers in addition to their basic function of 
maintaining structural integrity of the lipid bilayer membrane. One such example is 
a class of lipids termed sphingolipids. Sphingolipids are lipid molecules that contain 
an amino alcohol group in their backbones, and depending on additional substitu-
tions with fatty acid residues or phosphocholine, form sphingolipid derivatives such 
as ceramides and sphingomyelins. The basic role of sphingolipids is to augment flu-
idity and barrier function of the lipid bilayer cell membrane in which they normally 
reside in the outer leaflet. Sphingolipids, in particular sphingosine-1-phosphate 
(S1P), have been demonstrated to promote cell survival during tumorigenesis 
as inhibition of either upstream fatty acid or specifically sphingolipid synthesis 
restricts tumour growth [31]. Sphingosine can be synthesised from condensation of 
palmitic acid with the amino acid serine, or from the cleaving of fatty acid residues 
from ceramides by ceramidase. The resulting sphingosine is phosphorylation by 
sphingosine kinase, producing S1P. S1P signalling interacts with histone deacetylase 
1, 2 (HDAC1 and HDAC2) and telomerase to control many key cellular process 
involving cellular growth, proliferation, migration and invasion (reviewed by [32, 33];  
see section below on lipids as signalling mediators in cancer), thus its metabolism 
and related enzymes are an area of considerable research interest.

A second aspect to the role of lipids in promoting cancer is the influence of 
exogenous sources of lipids in facilitating tumorigenesis and metastasis. Numerous 
studies have experimented with high lipid content diets using mouse models 
and reported increases in tumour growth and/or metastasis, implicating high fat 
ketogenic diets [34–36] or specific lipids such as cholesterol [37] or palmitic acid 
[38] in promoting cancer. There is a variety of mechanisms by which high concen-
trations of dietary lipids can exert a tumorigenic effect. According to Liśkiewicz 
and colleagues, their high fat ketogenic diet administered ad libitum to mice led to 
activation of ERK1/2 which controls cell proliferation, differentiation and survival 
[39], as well as elevated mTOR signalling in renal tumours [34]. In a different study, 
high fat diets caused acetoacetate levels in the serum of recipient mice to increase, 
subsequently leading to enhanced tumour growth of xenograft human melanoma 
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cells with a V600E mutation in the BRAF gene [35]. Another mechanism by which 
high fat diets could enhance tumour metastasis is through the Ras-Raf-MEK-ERK 
mitogen-activated protein kinase (MAPK) pathway which was recently shown to 
activate SREBPs and therefore lipogenesis in metastatic human prostate cancer 
[36]. More examples of specific lipid groups linked to cancer include cholesterol 
and palmitic acid as mentioned above. The introduction of excess cholesterol either 
through dietary sources or by genetically increasing cellular cholesterol biosynthesis 
stimulated growth of intestinal crypt cells, leading to a more than 100-fold increase 
in the rate of tumour formation in the gastrointestinal tracts of live mice [37]. 
Similarly, exogenous addition of palmitic acid was shown to increase the invasive-
ness of human pancreatic cancer cells via a toll-like receptor 4 (TLR4)-mediated 
pathway [40], promote growth of melanoma cells through Akt signalling [41], and 
also increase the metastatic potential of human oral carcinoma through membrane-
bound fatty acid receptors termed CD36 [38]. These studies collectively suggest 
that excess dietary lipids are detrimental to health and could exacerbate cancers in 
addition to obesity; however, whether these findings translate into appreciable risks 
of cancers in humans remains an open question.

1.3 Lipids as suppressor of cancer

On the other hand, not all classes of lipids appear to stimulate cancer growth 
and metastasis. There is evidence supporting an inhibitory role of polyunsaturated 
fatty acids (PUFAs) in cancer development [42–44]; reviewed in [45], although 
conflicting experimental results do exist [46]; reviewed in [47]. Dietary PUFAs 
commonly consumed by humans encompass two major groups—the n-3 and n-6 
families of PUFAs. These PUFAs are categorised by the position of their first double 
bond from the methyl end of the fatty acid molecule (n-3 signifying double bond 
between third and fourth carbon atom, n-6 between sixth and seventh carbon 
atom). Some common n-3 PUFAs include alpha-linolenic acid (ALA), eicosapentae-
noic acid (EPA) and docosahexaenoic acid (DHA), and common n-6 ones include 
linoleic acid (LA) and arachidonic acid (AA). The cancer promoting or inhibitory 
effects of PUFAs is hypothesised to depend on the relative amounts of n-6 and n-3 
administered [48]. Current trends suggest that n-3 PUFAs are beneficial towards 
reducing cancer, whereas n-6 PUFAs tend to increase risks. An epidemiological 
survey tracking more than 72,000 female participants and their diets over an aver-
age duration of 8 years indicated that individuals consuming higher amounts of n-6 
PUFAs relative to n-3 faced increased risks of developing breast cancer [49]. These 
trends in a large cohort were consistent with previous assessments of the beneficial 
properties of the n-3 PUFAs EPA [50–52] and DHA [53, 54] in fighting various 
cancers. The beneficial properties of ALA (also n-3), however, is less established 
compared to EPA and DHA. Consumption of ALA in mouse models of prostate can-
cer were shown to reduce cancer growth [46], although another study conducted on 
human prostate tissue presented evidence that ALA in the prostate was associated 
with aggressive prostate cancer [47]. The n-6 PUFA LA is commonly studied in the 
context of breast cancers, although its role is still currently unclear as studies of LA 
and risk of breast cancer have returned inconsistent results [55, 56]. The other n-6 
PUFA, AA, is often studied in the context of prostate cancers and have been shown 
to increase prostate cancer growth [57, 58], although a meta-analysis of AA and the 
risk of various cancers including prostate only show weak associations [59]. The 
exact role of PUFAs in cancers most likely depends on many other factors including 
cancer cell type, stage and host metabolism of these PUFAs, all of which should be 
explored in more detail to exploit PUFAs in anticancer therapy.
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2. Lipids as signalling mediators in cancer

Many cellular signalling hormones and growth factors have structural com-
ponents comprising of lipids. Examples of such hormones and factors include 
prostaglandins, lysophosphatidic acid, and steroid hormones to name a few. 
Lysophosphatidic acid is a phospholipid derivative that binds G protein coupled 
receptors (GPCRs) to activate cell proliferation, survival, and migration. As such, 
tumorigenesis and cancer expansion is commonly attributed to dysregulated 
lysophosphatidic acid expression and signalling [60]. In addition, autotaxin, a 
secreted enzyme involved in production of lysophosphatidic acid is associated with 
hyper proliferation [61] and tumour invasiveness [62]. Overexpression of autotaxin 
and lysophosphatidic acid receptors was reported in several cancers including 
glioblastoma [63], prostate [64], and breast cancer [65], all of which overexpression 
contributed to increased cell motility and invasive potential. Notably, production of 
either autotaxin or lysophosphatidic acid receptors was sufficient to induce devel-
opment of high frequency invasive breast tumours [60]. In human liver cancer cells, 
lysophosphatidic acid has also been shown to bind lysophosphatidic receptor 1 to 
activate MMP-9 signalling and promote cancer cell invasion [66].

Bioactive sphingolipids form an important class of lipids consisting of sphin-
gosines, ceramides, and other complex sphingolipids such as sphingomyelins and 
glycosphingolipids. They bind specific protein targets to elicit signalling responses in 
important cellular events such as growth regulation, cell adhesion, migration, apop-
tosis, and inflammation [67]. Sphingolipids and its derivatives have been implicated 
in the regulation of signalling cascades in multiple aspects of cancer pathogenesis 
and therapy, in either tumour suppression or survival of various cancers [33, 67]. For 
instance, ceramides are commonly known to suppress tumour growth by mediating 
cancer cell death via apoptosis, necroptosis or mitophagy [68]. They are synthesised 
in response to cellular stresses that produce apoptotic signals such as chemotherapy 
or ultraviolet (UV) radiation [69]. Various modes by which ceramide regulates 
apoptosis have been proposed. One such example is in radiation-induced apop-
tosis, during which ceramide channels activate mitochondrial apoptosis through 
mitochondrial outer membrane permeabilization [70]. On the other hand, S1P is 
considered to be a pro-survival lipid as it is able to initiate cancer cell proliferation, 
malignant transformation, prevent apoptosis, and promote resistance to anti-cancer 
therapies [68, 71, 72]. SIP mediates host-cancer cell communication by engaging 
G protein-coupled S1P receptor-dependent or -independent signalling to promote 
tumour migration, survival, and evasion of host immune responses [73].

Prostaglandins are a subclass of eicosanoids. They are synthesised by the oxida-
tion of 20-carbon essential fatty acids catalysed by phospholipases and cyclooxy-
genase (COX) enzymes. Prostaglandin E2 (PGE(2)) is the most widely studied 
and has been proposed to directly modulate tumorigenesis in several cancers 
(reviewed in [74]). For instance, administration of exogenous PGE(2) to F344 rat 
models resulted in higher incidences and multiplicity of intestinal adenomas [75]. 
Enhanced colon carcinogenesis was proposed to occur through the activation of 
PGE(2) signalling, by binding of E-prostanoid (EP) membrane receptors 1–4 [75]. 
A separate in vitro study showed that PGE(2) treatment upregulated epithelial cell 
proliferation and COX-2 expression in intestinal adenomas, proposed to act via the 
Ras-mitogen-activated protein kinase signalling pathway [76]. Other than PGE(2), 
uncontrolled expression of EP has also been reported and as a result affects the 
outcome of various cancers [77, 78]. For example, Jin and colleagues [79] demon-
strated that activation of PGE(2) with EP1 receptor agonist ONO-DI-004, but not 
antagonist ONO-8711, improved cell viability and migration of liver cancer cells. 
In Lewis lung carcinoma cells, EP3 was shown to trigger production of MMP-9 and 
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VEGF, both of which are central regulators of angiogenesis and subsequent metas-
tasis [80], further indicating the role of prostaglandin signalling in cancer progres-
sion. Taken together, the modification of signalling pathways by cancer cells affects 
abundance and activation of signalling lipids which, as a result promotes pro-
oncogenic pathways that could lead to resistance against anti-cancer treatments.

3. Lipid-based post-translational modification of proteins in cancer

The understanding of the role of lipids in the modulation of cellular processes 
in cancer cells (with comparison to normal cells) is important to help identify 
potential cancer markers. Since post-translational modification of proteins is 
an important component in many key signalling components during oncogenic 
progression, they are a suitable candidate for cancer studies. Ongoing research 
has highlighted the importance of various post-translational modifications that 
contribute to oncogenesis, namely phosphorylation, glycosylation, ubiquitination, 
prenylation, methylation and acetylation [81]. A common involvement of lipids in 
post-translational modification is known as prenylation. Prenylation is a process 
in which a hydrocarbon-based hydrophobic group (such as farnesyl [a 15-carbon 
isoprenoid] or geranylgeranyl) is covalently attached to a protein post-translation, 
which as a consequence changes cellular localization, protein-protein interaction, 
and function of the modified protein [82]. Prenylation is crucial for membrane 
association and activation of GTPases such as Ras, Rho, cdc42, and GPCRs, all 
of which are important regulators of cancer [83, 84]. For instance, stimulation of 
Ras proteins is known to promote oncogenesis by regulating gene expression, cell 
cycle progression, survival and migration [85]. Inactivation of the retinoblastoma 
protein (a tumour suppressor protein) induced unregulated expression of farnesyl 
diphosphate synthase and prenyltransferases, subsequently increasing prenylation/
activation of N-ras in retinoblastoma tumour and promoted senescence [86]. 
Furthermore, prenylation is also known to involve farnesyl-pyrophosphate, an 
intermediate for cholesterol synthesis. Given the importance of lipid-based post-
translational modification of proteins, many anti-cancer therapies currently target 
proteins and enzymes of the prenylation pathway [87, 88].

Another type of lipid-related post-translational modification is termed acyla-
tion, which is the process of adding fatty acids to amino acids. Protein acylation is 
tightly regulated by histone acetyltransferases (HATs) and deacetylases (HDACs), 
and modulates various cellular functions such as cell proliferation, differentiation, 
and migration [89]. HATs have been reported to modulate cancer in two ways 
depending on the site of acetylation and type of cancer-one pro-tumorigenic and 
the other tumour-suppressive [90]. For instance, histone hyperacetylation was 
reported in liver cancer cells [91] whereas deficiency in acetylation was observed 
in prostate cancer patients [92]. In gastrointestinal carcinomas, decreased histone 
acetylation is significantly associated with severity of tumour invasion and metasta-
sis [93]. Moreover, Kang and colleagues [94] demonstrated that curcumin-induced 
histone hypoacetylation triggers caspase-3-dependent apoptosis and promotes 
neuron differentiation of neural progenitor cells in brain cancer. The role of HDACs 
in cancer was also demonstrated in several cancers such as cervical [95], colon 
[96], and gastric cancer [97]. Similar to HATs, HDACs also have a dual function in 
cancer regulation. For example, loss of HDAC1 in teratomas increased apoptosis 
and induced cell arrest, albeit no change in tumour size [98]. Similarly, increase in 
cellular differentiation and apoptosis was observed when HDAC2 expression was 
ablated in colorectal cancer cells [95]. In contrast, knockdown of HDAC6 promoted 
migration and tube formation in HUVEC cells in vitro [99].
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The modification of proteins by lipids is also important for cellular localiza-
tion and transport [100]. For example, attachment of GPI to proteins triggers 
translocation to the outer leaflet of the plasma membrane, which is important for 
signal transduction events [101]. Therefore, the knowledge of different types of 
lipid-based post-translational modification of proteins is useful to dissect the causal 
effects of these modifications in the context of cancer biology.

4. Lipids and autophagy in cancer

The recycling and circulation of lipids within a cell is regulated by lysosomes, a 
membrane enclosed organelle containing hydrolytic enzymes [102]. In recent years, 
there have been emerging studies indicating the importance of lysosomal-mediated 
degradation, a process termed autophagy, in maintaining cellular lipid homeostasis 
in various tissues [103]. Autophagy is essential for cell survival in the event of 
nutrient deprivation, where intracellular proteins and organelles are targeted to 
the lysosome for degradation as an alternative source of recycled energy [104]. 
There are three commonly described autophagy processes: autophagy (also referred 
as macroautophagy) [105], microautophagy [106], and chaperone-mediated 
autophagy [107]. Dysregulation in autophagy is associated with a wide array of 
diseases such as metabolic, cardiovascular, and neurodegenerative diseases, ageing 
and cancer [108]. In addition to its role in starvation responses, growth and dif-
ferentiation, and the clearance of dysfunctional/damaged cytoplasmic protein and 
organelles, autophagy has also been reported in tumour regulation in cancer [109].

The relationship between lipids and autophagy is of particular interest as 
autophagy has been widely established to have a role in cancer, albeit a complicated 
one. Some reports have stated that early in tumorigenesis, autophagy may act as a 
tumour suppressor mechanism (reviewed in [110, 111]). Beclin-1, the mammalian 
ortholog of yeast autophagy-related gene 6 (Atg6), has been widely accepted as a 
candidate for tumour suppression. Allelic deletion of Beclin-1 [112] and reduced 
protein expression [113] was observed in ovarian, breast, and prostate cancers. 
Beclin 1+/− heterozygous mutant mice had reduced autophagic activity and spon-
taneous tumour development [114], indicating the importance of Beclin-1 in the 
causal effect of autophagy and tumour growth. However, as cancer progresses, 
autophagy becomes essential to overcome oxidative and metabolic stressors in the 
cell, hence improving cancer cell survival and progression [115]. For example, 
human cancer cells expressing the Ras oncogene are able to upregulate autophagy 
to support tumorigenesis and tumour cell survival under starvation conditions 
[116]. As autophagy can facilitate or suppress the development of cancer, targeting 
this facet as a cancer therapy should focus on both the regulation and inhibition of 
autophagy at the appropriate stages. It still nevertheless holds potential as a primary 
target or co-target as multiple studies have shown that inhibition of autophagy 
enhanced therapeutic effects against cancer in myeloma, breast, colon, and prostate 
cancer [117].

Lipids and lipid enzymes have indispensable roles in the autophagic process and 
can influence autophagy at various stages [118, 119]. For instance, the mTOR com-
plex is an important negative regulator of autophagy and lipids such as phospha-
tidylinositol 3-phosphate (PI3P), diacylglycerol, and phosphatidic acids interfere 
with mTOR downstream signalling by acting independently to promote autophagy 
[118, 120]. During later stages of autophagy, cellular materials targeted for degrada-
tion are signalled to autophagosomes. Lipid droplets and the lipid enzyme phos-
pholipase D have been postulated to regulate autophagosomes biogenesis as well as 
positively modulate autophagy in vivo and in vitro [121, 122]. Furthermore, Seo and 
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colleagues shown that upon starvation, SREBPs can directly activate genes related 
to autophagy and are required for autophagosome formation and association with 
lipid droplets.

5. Lipids in angiogenesis and lymphangiogenesis

Classic characteristics of malignant tumours are their augmented proliferative 
and invasive properties. In order for cancer cells to sustain these enhanced growth 
requirements as well as expansion into other tissues, they have been shown to 
induce angiogenesis for oxygen and nutrient supply [123]. Tumour vasculature is 
also useful for the clearance of metabolic end products such as lactic acid whose 
accumulation may be toxic to the tumour cells. New capillary formation into 
tumours can be stimulated by growth factors such as vascular endothelial growth 
factor (VEGF) and fibroblast growth factor (bFGF) [124, 125]. In normal healthy 
cells, VEGF functions by creating new blood vessels during embryonic develop-
ment and wound healing [126]. The tumour microenvironment is made up of a 
variety of cell types that are normal or quiescent. As a tumour expands in size, 
nutrient deprivation and hypoxia occurs. This triggers the production of VEGF and 
cytokines by the tumour into its surrounding microenvironment [127], thereby 
initiating the proliferation of endothelial cells which allows tumours to develop and 
grow exponentially. Although this vasculature initiation may provide the tumour 
with more oxygen and nutrients, the eventual outcome is not ideal. VEGF-induced 
formation of tumour vasculature are irregularly shaped, leaky, and often function-
ally abnormal [124]. The leaky nature of these tumour vasculature triggers the 
recruitment of platelets, which subsequently releases angiogenic stimulatory factors 
into the microenvironment to further promote angiogenesis [128]. Other than 
dissemination through blood vessels, tumour cells can also exploit the lymphatic 
vessel pathway for invasion into other tissues, hence promoting metastasis [129]. 
In particular, VEGF-C is the main mediator of lymphangiogenesis and lymph node 
metastasis [130].

The importance of lipids in tumour angiogenesis is highlighted in studies related 
to the bioactive sphingolipid derivative S1P. The function of S1P is comparable to 
growth factors VEGF and bFGF, where its secretion stimulates angiogenesis [131] 
and vascular maturation [132]. Interactions between S1P and these proangiogenic 
growth factors have also been reported and may provide a collective effect in 
promoting development of the vascular network [133]. S1P expression is upregu-
lated in various tumours such as lung [134] and colorectal cancer [135]. Cancer cells 
are able to secrete S1P into their microenvironment to induce both angiogenesis 
and lymphangiogenesis [136, 137]; via binding of S1P receptors [138], thereby 
facilitating tumour spread. Furthermore, in vitro analysis revealed that high levels 
of S1P are associated with increased migration and tube formation in co-cultured 
vascular or lymphatic endothelial cells [139]. Angiogenic and lymphatic metastasis 
is also stimulated by the secretion of prostaglandins, a group of lipid compounds 
enzymatically derived from fatty acids [140]. In particular, PGE(2) in breast cancer 
is able to bind GPCRs and induce angiogenic regulatory genes for proliferation, tube 
formation and subsequently metastasis [141]. This was also true in prostate cancer 
where PGE(2) activates angiogenesis via the prostanoids EP2 and EP4 pathways 
to increase production of urokinase-type plasminogen and vascular endothelial 
growth factors to alter prostate cancer cell motility [142].

Lipid metabolism has also been implicated in angiogenesis. SREBP1 expres-
sion is elevated in newly formed vasculature [143]. In response to VEGF signals, 
endothelial cells activate SREBP1 and SREBP2 to trigger proliferation, migration, 
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and vascular formation [144]. Vice versa, inhibition of SREBP1 resulted in reduced 
production of pro-angiogenic factors [143]. Metastasis is one of the main causes of 
mortality in human cancers. Since angiogenesis and lymphangiogenesis provide a 
platform for tumours to acquire nutrients and metastasise, understanding the role 
of lipids in endothelial cell metabolism may be useful as a target for cancer therapy 
and drug resistance [145, 146].

6. Concluding remarks

Lipid metabolism and signalling are now widely accepted as major players in 
cancer biology. Targeting components such as enzymes, bioactive lipids, and recep-
tors, all of which are important for maintaining lipid homeostasis, metabolism and 
signalling, have been shown to reduce cancer cell proliferation and metastasis. This 
can be achieved through various means such as modifying the function of enzymes 
involved in biosynthesis and metabolism of lipids, altering the structure, composi-
tion and localisation of bioactive lipids and lipid rafts, or through disruption of 
lipid-mediated tumour-stromal crosstalk in the tumour microenvironment, and by 
promoting apoptosis of cancer cells. Considering the central role of lipids in cancer, 
these strategies are encouraging for the treatment and cure against cancer.
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