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Chapter

Concept of Phase Transition Based
on Elastic Systematics
Paul S. Nnamchi and Camillus S. Obayi

Abstract

The use of elastic constants systematics to describe fundamental properties of
engineering materials has made materials science education and its related subjects
increasingly important not only for manufacturing engineers but also for mankind
at large. In this chapter, we present actual scaling of phase transition-driven con-
siderations, such as martensitic transformation and transformable shape memory
formation via elastic constant systematics. The scaling in terms of the simple and
polycrystals mechanical stability criteria based on the elastic moduli and an acoustic
anisotropy is in good agreement with novel experimental data from the literatures,
and further, a long-standing concern in predicting polycrystalline elastic constants
was considered beyond the commonly encountered criteria.

Keywords: elastic, elastic modulus, martensitic transformation, shape memory
effect, elastic constant, ductility criterion, mechanical properties

1. Introduction

The ingenuity and the art required to tailor precisely the desired physical and
structural properties in materials have been the main goal of the material scientists
and engineers. Elastic response (i.e. elastic constant) to an applied load is one of
such basic properties of all solids and originates from the distortion of atomic bonds.
Simply put, elastic constants are a reflection of the fundamental thermodynamic
properties that take place in the crystal lattice of solids. Complementary to this, the
otherwise inaccessible essential information can be revealed from their temperature
and stress dependencies of these important constants. For instance, the crystal
structures of the three long periods of transition elements change more or less
systematically from hcp through bcc to fcc as their group numbers increase from IV
to VIII as does their elastic properties. Thus, the knowledge of microscopic elasticity
can provide a fruitful ground for the exploration of the material behaviour yet
uncommon to our knowledge about the relationship between crystal structure and
bonding.

The earliest foundation of elastic theory dates back to seventeenth century
(around 1821), when Navier first gave the equation for the equilibrium and
motion of elastic solids [1], but modern foundation of microscopic elastic theory
was established by the work of Born and Huang [2], followed by other excellent
treatments [3]. It is well known that crystalline solids are by no means ideal and
invariably contain some lattice defects such as vacancies, solute atoms or some
extent of disorder. These point defects strongly affect almost all properties of
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materials, including elastic behaviours. In effect, the early investigators of these
phenomena were motivated by the response of naturally occurring anisotropic
materials such as wood and other crystalline solids. On that premise, of interest
here is the relationship between crystal structure and elastic properties, mainly
because of the important information they provide about nature of binding forces
in solids.

Over the past three decades, elastic constants of some simple crystals have
been a subject of numerous researches and have been investigated both theo-
retically and experimentally. Some of the outcomes have revealed that funda-
mental elastic properties of a martensitic crystal are fully determined by the
elastic constants Cij. All macroscopic elastic moduli (Young’s and shear modu-
lus, Poisson ratio, etc.) can be derived from the Cij at least within certain upper
and lower bounds [4]. There is considerable evidence that the magnitude of

C‘ ¼ C11 � C12ð Þ=2 elastic shear modulus in metallic bcc structures is closely
related to the occurrence of martensitic phase transformations and is thus a
useful parameter for estimating bcc structures [5]. Similarly, whether a struc-
tural material shows plastic flow or brittle fracture on loading is of clear prac-
tical significance. Brittleness in polycrystalline metals can be intrinsic or
induced. The basic question is: Do these two general properties (i.e. phase
stability and elastic properties) of crystals correlate to each other?

2. Analytical criterion of elastic constants of perfect crystals

The elastic properties are among the most important physical properties of
materials and the importance of studying elastic properties of materials cannot
be overemphasised. The knowledge of elastic properties is essential for both
structural design and experimental mechanics [6]. It also enables the assessment
of the sufficiency of strength, stiffness and stability of newly developed mate-
rials. Although the crystals are assumed to free from lattice imperfections and
difficult to produce, their study had always been the building block for a better
understanding of the behaviour of bulk materials. Usually, the determination of
elastic properties of crystalline solids is based on its single or perfect crystal
configuration under special loading conditions. The elastic moduli are the
material constants that connect stress with strain and are therefore crucial to
engineering applications. A crystal subjected to external load undergoes dimen-
sional change. If the eternal load is a stress tensor denoted by σij, then the
deformation per unit length in three-dimensional space, can be described by a
strain tensor, eij. Within the elastic limit or for sufficiently small deformations,
the stress tensor is a linear function of the strain tensor and the generalised
delta notation of Hooke’s law can be used to express the relationship between
these two quantities [7] as:

σij ¼ Cijklekl (1)

where Cijkl is the proportionality constant that characterises the crystal’s resis-

tance to elastic shape change; often referred to as the elastic coefficients or elastic
constants or elastic moduli or stress-strain coefficients [8].

The inverse relation between the strain and the stress can be determined by
taking the inverse of stress-strain relation to get:

ð2Þ
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Here, Sijkl represents the elastic compliance of the crystal. From symmetry or
equilibrium principles, the state of stress in an elastic body can be approximated by
six independent stress and strain components. And as such the stress and strain
components in Eq. (1) can be expressed in three orthogonal axes as:

ð3Þ

Here, exx, eyy and ezz are tensile strains, exy, eyz and ezx are shear strains. The
experimental values of elastic constants, Cijkl, were originally determined by con-

sidering the response of crystals to small strains or unstressed lattice using Eq. (1).
Beyond using Eq. (1) based on measured stress-strain relations, there are now
methods of determining elastic constants from the first principles often referred to
as ab initio methods. There are many methods of evaluating elastic coefficients such
as the one based on expanding the internal strain energy of the crystal [7]. Thus, we
may write as Eq. (4),

U ¼ U0 þ V0∑σiei þ
1

2
V∑

i
∑
i
Cijeiej þ :… (4)

where U is the energy of the crystal, is a quadratic function of the strains, in the
approximation of Hooke’s law (recall the expression for the energy of a stretched
spring). V0 is its equilibrium volume and e denotes an elastic strain. If the material
is a crystal, the number of independent elastic constants is reduced further
depending on the crystal system.

Elastic coefficients and elastic moduli have significant effect of mechanical
response of crystals. Elastic constants, Cij(C11, C12, C44) and elastic moduli such
as bulk modulus (B), shear modulus (G), Young’s modulus (E) influence mechani-
cal response of crystals. For instance, the bulk modulus (B) is associated with the
hardness of materials which is of extreme importance in high-temperature and
pressure applications, while elastic constants could provide essential information
about bonding between adjacent atomic planes, anisotropic character of bonding
and structural stability [7]. By far, the most widely reported elastic properties are
E, G and B, corresponding to tensile, shear and hydrostatic loading, respectively.
Since B signifies the compressibility of a substance, it can be calculated from the
partial derivative of volume (V) and pressure (P) at constant temperature (T), as
per Eq. (5).

B ¼ δV
δP=ð ÞT (5)

It is worth pointing out that other definitions of elastic constant are possible.
Elastic modulus Emeasures the resistance to a change in atomic separation distance
within the plane of the bond and so can be determined from the linear portion of the
interatomic potential. G quantifies the resistance to shear loading and B, since it
corresponds to a volumetric dilatation, is dependent on the electronic properties of
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a solid, i.e. the compressibility of the electron gas. Elastic moduli are therefore
controlled by interatomic interactions and so may be considered a fundamental
property of condensed matter. By excitation of longitudinal and transverse phone
modes, E and G can, respectively, be calculated if the density (ρ) of the material is
known. This is done via an ultrasonic probe which emits and measures the longitu-
dinal (vl) and transverse (vt) sound wave velocities, from which E and G can be
calculated via Eqs. (6) and (7):

E ¼ ρv2l (6)

G ¼ ρv2t (7)

E, G and B can also be calculated from Cij elastic constants. For a material with
cubic structure, the number of Cij in the elastic tensor can be reduced from 36 to
just 9, due to Cij = Cji and there being strong symmetry in a cubic lattice. The
resulting relevant Cij are C11, C12 and C44.

C12 ¼ Bþ
4G

3
(8)

C11 ¼ 3B�
C11

2
(9)

C11 ¼ G (10)

Cʼ ¼ C11 �
C12

2
(11)

The tetragonal shear modulus, Cʼ, corresponds to a specific phonon vibration
mode in the atomic structure, and is thus directional in nature. In comparison, B is
non-directional as it relates to a volumetric effect.

B ¼
C11 þ 2C12

3
(12)

ð13Þ

3. Elastic and lattice stability criteria

3.1 Lattice stability in perfect crystal

Elastic properties of a material are very important because they check the
mechanical stability, ductile or brittle behaviour based on the analysis of elastic
constants, Cij, bulk modulus B and shear modulus G. For example, the bulk modulus
measures the resistance of the volume variation in a solid and provides an estima-
tion of the elastic response of the materials under hydrostatic pressure. The shear
modulus describes the resistance of a material to shape change.

The fundamental understanding of the conditions of mechanical stability of
unstressed crystal structure was laid by the work of Max-Born and co-authors in
the 1940s [3], and consolidated later in 1954 [3]. This and other text books gave
the generic requirements for elastic stability of crystal lattices in terms of elastic
constants [3] and offers simplified equivalents of the generic conditions for
some high-symmetry classes. The general stability condition can be stated by
considering the second-order elastic matrix and the elastic energy of the crystal
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deformed homogeneously by infinitesimal strain as shown in Eqs. (14) and (15)
[3], respectively:

Cij ¼
1

V0

∂
2U

∂
2ei∂

2ej

 !
(14)

U ¼
1

2
V0 ∑

6

i, j¼1
Cijeiej þO e3

� �
(15)

where U is the elastic energy, VO is the volume of unstressed sample,Cij (I, j = 1–6)
is the elastic constant and ei and ej are the applied strains [2]. In Eq. (15), O (e3)
denotes the terms of numerical error in the order e3 or higher. A crystal lattice is
dynamically said to be stable only if elastic energy U is positive for any small defor-
mation [9], which implies that principal minors of the determinant with elements Cij
are all positive [3].

Most real materials (cubic and non-cubic polycrystalline structures) have some
types of symmetry, which further reduces the required number of independent
elastic moduli. In the case of cubic systems, such as bcc, fcc, NaCl type, or CsCl
type) structures, in particular, number of independent elastic moduli is reduced
from 36 to 9, as Cij = Cji and there being strong symmetry in the two lattices.
Therefore, the conditions for stability reduced to a very simple form using three
different elastic constants: C11, C22 and C44. The mechanical stability criteria are
given by [10]:

C11 � C12;j j>0

C11 þ 2 C12>0

C44>0

C12>C11

(16)

The condition when B <0 is referred to as spinodal instability.
Although hexagonal and tetragonal systems have the same form for the elastic

matrix, the hexagonal has five, while tetragonal has six independent elastic con-
stants. By direct calculation of the Eigen values of the stiffness matrix, according to
[11], four conditions can be derived for elastic stability in both classes:

C11> C12;j j;2C2
13 <C33 C11 þ C12ð Þ

C44>0;C66>0
(17)

Similarly, for the orthorhombic system, there are nine independent elastic con-
stants: C11, C22, C33, C44, C12C55,C66,C23 and C13. The mechanical stability of the
structure at each concentration can be judged by calculated elastic stiffness.
According to Born’s criteria [3], the requirement of mechanical stability in an
orthorhombic system leads to the following equations [12].

C11>0;C22>0;C44>0;C33>0;C55>0;C66>0;

C11 þ C22>2 C12;C11 þ C33>2 C13;

C11 þ C22 C33 þ 2 C12 þ 2 C23 þ 2 C13>0;

(18)

Further to this, conditions for stability for some high-symmetry crystal classes
have been studied. However, there is still some confusion about the form of stability
criteria for other crystal systems and classes [8].
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A crystal lattice is said to be stable in the absence of external load (unstressed
condition) and in the harmonic approximation [13] if and only if it has both
dynamic and elastic stability. Dynamic stability implies that its phonon modes have
positive frequencies for all wave vectors, while its elastic stability is dependent on
elastic energy given by Eq. (15) being always positive (U > 0,∀ε 6¼ 0). Elastic
stability criterion is mathematically equivalent to the following necessary and suf-
ficient conditions: the elastic matrix C is definite exactly positive and all Eigen
values of matrix C are positive; all the leading principal and arbitrary minors of
matrix C are all positive. The closed form expressions for necessary and sufficient
elastic stability criteria for other crystal lattices have been studied. While the sta-
bility criterion is linear for some crystal lattices, it is quadratic and even polynomial
for others. Thus, the mechanical stability of a crystal is combination of the elastic
constant and Born’s stability criteria. The elastic constant of a stable crystal must
satisfy the Born’s criteria to prove its mechanical stability.

3.2 Relative stability of polycrystalline materials

In the case of multi-phase stability, multi-phase composites can be obtained
based on multiple scattering theory. For example, polycrystalline materials
consisting of two phases, namely cubic and orthorhombic phases can be obtained by
homogenising the integral elastic response of the multi-phase polycrystalline sam-
ples, following the effective medium approach originally applied by Zeller and
Dederichs [13] to determine elastic properties of single-phase polycrystals with
cubic symmetry. This type of concept was generalised by Middya and Basu [14] and
further extended by Middya [15] and by Raabe et al. [16] to multi-phase composites
to determine: (i) the elastic single constants and (ii) the volume fraction of the
components within a self-consistent T-matrix solution for the effective medium
elastic properties of hexagonal, and orthorhombic polycrystals.

The subset of supercells or cubic and orthorhombic symmetries consisting of
three (C11, C12, C44) and nine (C11, C12, C13, C22, C23, C33, C44, C55, C66) elastic
constants, respectively, was calculated by employing the methodology explained in
[16–18] for the elastic properties of the multi-component alloys. This can be viewed
as a macroscopic homogeneous effective medium consisting of microscopic fluctu-
ations and characterised by an effective stiffness of Cijkl defined by:

σij rð Þ
� �

¼ Cijkl ϵkl rð Þh i (19)

Here, Cijkl is the local elastic constant tensor with σij rð Þ
� �

and ϵkl rð Þh i as the local

stress and strain field at a point r, respectively, and the angular brackets denoting
ensemble averages. A repeated index implies the usual summation convention. The
effective stiffness of Cijkl is defined by:

σij rð Þ
� �

¼ C∗
ijkl ϵkl rð Þh i (20)

Since the aggregate represents a body in equilibrium, σij rð Þ∣j ¼ 0, where
∣j ¼ ∂=∂rj and the local elastic constant tensor can now be decomposed into an
arbitrary constants part (Co

ijkl) and a fluctuating part—δC rð Þ.

Cijkl rð Þ ¼ Co
ijkl þ δCijkl rð Þ (21)

As shown in [16], an integral part of Eq. (19) is the interactive equivalent
solution representing the resulting local strain ϵ distribution (in a short notation) as:
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ϵ ¼ ϵ0 þGTϵ0, (22)

Here, ϵ0 and G are the strain and modified Green’s function of the medium

defined by CO, and the T-matrix given by:

T ¼ δC 1�GδCð Þ�1 (23)

Here, І is equivalent to the unit tensor. Combining Eqs. (21) and (22), we get:

C∗ ¼ C0 þ Th i= 1þ GTh ið Þ�1 (24)

Although Eq. (21) constitutes an exact solution for C∗, finding the exact solution
of Th i and GTh i for realistic cases is impossible. By neglecting the intergranular
scattering that may occur in some cases in the form of a grain-to-grain position-
orientation correlation function however, the T-matrix can be written in terms of
single-grain T-matrix (tα) for each grain α

T ≈∑
α

tα ¼ τ: (25)

where

tα ¼ δCα þ δCαGtα ¼ δCα 1�GδCαð Þ�1 (26)

∑
α

δCα ¼ δC ¼ C� C0 (27)

Inserting Eq. (21) into (22) leads to:

C∗ ¼ C0 þ τh i 1þ Gτh ið Þ�1 (28)

For single-phase polycrystal, the self-consistent solution of Eq. (11) can be
obtained by choosing a C∗ that satisfies:

τh i ¼ 0 (29)

For a multi-phase polycrystals, a solution to Eq. (4) can be found by evaluating
the volume fraction and τ of each phase i u2 and τ2ð Þ, respectively [19], via:

∑
i
v2τ2

� �
¼ 0 (30)

The application of the method to both single-phase aggregates and multi-phase
composites is relevant to many multi-component alloys. For a single-phase poly-
crystal with cubic symmetry [16, 20] to the following expression for B∗ and
μ∗ : B∗ ¼ Bo

8μ∗3 þ 9B0 þ 4C
00
0� 	
μ∗2 � 3C44 BO þ 4C

0 0
� 	

μ∗ � 6BOC44C
0 0

¼ 0 (31)

In Eq. (31), three independent single-crystal elastic constants

(C11, C12, C44Þ define the single-crystal bulk modulus Bo ¼ C0
11 þ 2CO

12

� �
=3, the

tetragonal shear modulus C0 ¼ C11�C12ð Þ=2 and trigonal shear modulus, C44,

μ∗ ¼ C∗
44 ¼ μ0 þ τ44h i

1þG44τ44
.
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Here, C∗
44 is the homogenised bulk modulus. The details of the equation for

calculating the elastic constants of polycrystals alloy with hexagonal symmetry have
been explained elsewhere by [20], and the details here concern polycrystals with
orthorhombic symmetry. Eqs. (29) and (30) are reduced to a set of coupled equa-
tions for B∗ and μ∗:

0 ¼ 9 KV � B∗ð Þ þ 2β d� cþ eð Þ þ 3β2∆0 (32)

0 ¼
a� bþ β 2d� 2c� eð Þ þ 3γ d� cþ eð Þ þ ηβ∆0

1� αβ � 9γ kv � B0ð Þ þ β β þ 2γð Þ c� dð Þ � 2eβγ �
1

3
ηβ2∆

0 0
þ

3
C44 � μO

1� 2β C44 � μOð Þ
þ

C55 � μO

1� 2β C55 � μOð Þ
þ

C66 � μO

1� 2β C66 � μOð Þ


 � (33)

where

9Kv ¼ C11 þ C22 þ C33 þ 2 C12 þ C13 þ C23ð Þ, (34)

B ¼ 1=3 C11 þ 2C12ð Þμ∗ ¼ C44 (35)

γ ¼ 1=9 η� 3βð Þ (36)

a ¼ δC11 þ δC22 þ δC33;b ¼ δC12 þ δC13 þ δC23 (37)

c ¼ δC11δC22 þ δC11δC33 þ δC22δC33;d ¼ δC2
12 þ δC2

13 þ δC2
23 (38)

e ¼ δC12δC13 þ δC12δC23 þ δC13δC23 � δC11δC23 � δC22δC13 � δC33δC12 (39)

∆
0 ¼ δC11δC22δC33 þ 2δC12δC13δC23 � δC11δC

2
23 � δC22δC

2
13 � δC33δC

2
12 (40)

δC11 ¼ C11 � CO
11 ¼ C11 � K0 �

4

3
μ0;δC22 ¼ C22 ¼ C22 � K0 �

4

3
μ0 (41)

δC33 ¼ C33 � K0 �
4

3
μ0;δC12 ¼ C12 � CO

12 ¼ C12 � K0 þ
4

3
μ0 (42)

δC13 ¼ C13 � K0 þ
4

3
μ0;δC23 ¼ C23 � K0 þ

4

3
μ0 (43)

β ¼
�3 B∗ þ 2μ∗ð Þ

5μ∗ 3B∗ þ 4μ∗ð Þ
, (44)

η=3 ¼ �1=3B∗ þ 4μ∗, (45)

C66 ¼ 1=2ð Þ C11 � C12ð Þ (46)

and orthorhombic symmetry has nine of the single crystal elastic constants,
namely: C11,C22,C33,C44C55,C66,C12,C23 and C13.

The elastic constants of a multi-phase polycrystals were determined directly by
coupling Eq. (13) for τ44 and the τ11 þ 2τ12ð Þ components of the T-matrix. For
materials with cubic symmetry, the equation is defined as:

5τ44 ¼
1

C11 � C12 � eG
∗

�β
 !�1

þ 3
1

C44 � eG
∗

�2β
 !�1

(47)

τ11 þ 2τ12 ¼
3 C11 þ 2C12ð Þ � 9eB∗

3� C11 þ 2C12ð Þ � 3eB∗ (48)

This is where β is defined in Eq. (31) with eG∗
and eB∗

replacing G∗ and B∗. For
materials with orthorhombic symmetry, the equation reads:
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15τ44 ¼
a� bþ β 2d� 2c� eð Þ þ 3γ d� cþ eð Þ þ υβ∆0

1� αβ � 9γ Kv � eB0

� 	
þ β β þ 2γð Þ c� dð Þ � 2eβγ �

1

3
υβ2∆

0 0

þ3
C44 � eG

O

1� 2k C44 � eG
O

� 	þ C55 � eG
O

1� 2k C55 � eG
O

� 	þ C66 � eμO

1� 2β C66 � eG
O

� 	

0
B@

1
CA

(49)

τ11 þ 2τ12 ¼
9 Kv � eB

0
� 	

þ 2β d� cþ eð Þ þ 3β2∆0

3 1� αβ � 9γ KV � eB0
� 	

þ β β þ 2γð Þ c� dð Þ � 2eβγ � 1ηβ2∆0

3

h i (50)

Here, β is defined in Eq. (28), η is defined in Eq. (29), and ∆0 in Eq. (23). Here,

again G∗ and eB∗
replaces G∗ and B∗ in the equations for β, υ and ∆0. As soon as G∗

and eB∗
have been determined, the homogenised Young’s modulus eE

� 	∗
and

Poisson’s ratio υð Þ∗ for (an elastically isotropic) polycrystal can be determined using
standard elasticity relationships. The homogenised polycrystalline Young’s modulus
is calculated using:

E∗ ¼
9eB∗

G∗

3eB∗
þG∗

(51)

G∗ ¼
3eE∗eB∗

9eB∗
� eE∗ (52)

4. Correlation of elastic constants with properties of polycrystalline
materials

Inmany problem relating to polycrystalline or anisotropic materials, it is customary
to make use of the properties in an elastically isotropic materials. Most of the common
metals and engineering alloys, however, exhibit a marked degree of anisotropy in their
single-crystal elastic behaviour and it is therefore more desirable to obtain same on the
bases of anisotropic elastic property. The fundamental factors determining the intrin-
sic plasticity or brittleness behaviour in solids have great link with interatomic poten-
tials, for instance, there is a correlation with the ratio of the elastic shear modulus μ to
the bulk modulus B. It is evident, elastic moduli show trends with a range of proper-
ties, including hardness, yield strength, toughness and fragility [21, 22]. In this section,
for limitation of space, we will, in particular, consider elastic aspect of polycrystals
materials with respect to their dependency on specific crystal structure.

4.1 Elasticity and ductility criteria

Strength and ductility have always been one of the crucial issues to study for
metal materials. The tendency of materials to be ductile or brittle is being predicted
using models based on elastic constants. Some of these include that of Pugh crite-
rion [23] and Cauchy pressure as defined by Pettifor [24]. Pugh proposed an
empirical relationship between the plasticity and fracture properties showing the
ratio G/B indicates the intrinsic ability of a crystalline metal to resist fracture and
deform plastically [25]. This represents a competition between plasticity and frac-
ture considering that B and G represent resistance to fracture and plastic deforma-
tion, respectively. Thus, the force required to propagate a dislocation is proportional
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to Gb where b is the Burgers vector. This implies that a material with high value of
the ratio tends to be brittle (fracture is easier and plasticity is much less), while a
low value indicates ductility (plasticity is easier and fracture is not). Fracture
strength is also proportional to Ba (a, is the lattice constant) since B is related to
surface energy, which indicates brittle fracture strength.

These empirical observations implicate G/B as explaining well brittle or tough
behaviour [19, 26]. Pugh’s criterion is the most widely used model to predict plastic
behaviour of materials [27]. Since yield strength and fracture stress scale with shear
modulus and elastic constant, respectively, the Pugh’s ratio determines the likelihood
of material’s failure. If the effect of crystal structure is neglected, high value of Pugh’s
ratio indicates that a material is prone to brittle failure, while low value of G/B implies
ductile failure. The large data on polycrystalline pure metals collected by Pugh [2],
when he provided a qualitative ranking from ductile (e.g. Ag, Au, Cd, Cu) to brittle
(e.g. Be, Ir) behaviour as G/B increases. For cubic close-packed (ccp) metals, the
critical ratio G=Bð Þcrit dividing the two regimes is in the range 0.43–0.56, and for
hexagonal close-packed metals, it is 0.60–0.63. Cottrell [28] has estimated G=Bð Þcrit for
transgranular fracture from measured surface energies: 0.32–0.57 for ccp metals and
0.35–0.68 for body-centred cubic metals. The spread in values for each structure type
largely indicates the interrelationship between crystal structure and elastic constant.
Each structure type, however, includes metals with widely differing degrees of elastic
anisotropy. Detailed analysis requires knowledge of the relevant elastic constants.

On the other hand, the Cauchy pressure ductility criterion is associated with
elastic constants of single cubic crystals such as C12–C44 and is useful in describing
the nature of bonding in a material [27]. When a material has high resistance to
bond bending as found in covalently bonded solids, it will have a negative Cauchy
pressure (C44 > C12). This is in contrast with materials with metallic bonding which
exhibit positive Cauchy pressure. When compared with Pugh’s ductility criterion,
ductile and brittle behaviours are considered to be indicated by a positive and a
negative Cauchy pressure, respectively. Although Pugh’s and Cauchy pressure
criteria are adjured to be based on easily measurable properties of materials such as
elastic constants, they do not give the critical value dividing brittle and ductile
materials. It is proven in certain materials, including metallic glasses and compos-
ites, which religiously respect this dividing line [21]. The behaviour is shown
graphically in Figure 1. A summary of the correlation between C12–C44 and G=Bð Þcrit

Figure 1.
Ductile and brittle phase fields in metallic glasses, where G* is the local modulus and ‘G’ the global modulus.
Decreasing the fraction of low G sites reduces the need for a globally low ν (culled from [28]).

10

Elasticity of Materials ‐ Basic Principles and Design of Structures



for a wide variety of aluminide group of materials is displayed in Figure 2. As can be
seen, it is evident that an intrinsic correlation between strength and ductility of Al-
based materials. It has been observed the criteria indicate a trend in a class of
materials with similar deformation mechanism, but is limited by the effects of
specimen sizes and crystal structures on deformation processes.

Several authors have studied elastic softening behaviour and recent evidence
suggests elastic moduli manifest array of trends with a range of properties including
mechanical such as hardness, yield strength, toughness and fragility [22, 30]. In
early 1950s, Gilman and Cohen [31] made a historic revelations when they observed
that there is a linear correlation between the hardness and elasticity in polycrystal-
line materials. Nevertheless, successive studies demonstrated that an uniformed
linear correlation between hardness and bulk modulus does not really hold for a
variety of materials [29] as illustrated in Figure 3(a). Following this, Tester [32]
proposed a better empirical link between hardness and shear modulus (G), as
illustrated in Figure 3(b). Although, the link between hardness and elastic shear
modulus can be arguable, it is certain that he had demonstrated that the shear
modulus, the resistance to reversible deformation under shear strain, can correctly
provide a key assessment of hardness or ductility criteria for some materials. It is
well known that some phase exhibits more hardness or ductility properties than
others. Accordingly, it is fair to say that such descriptions could lead to further
outlandish discovery in connections with regards to phase components in poly-
crystalline solids.

4.2 Elastic moduli and martensitic transformation

Martensitic transformation (MT) is a first-order phase type of transforma-
tion from a high-symmetry phase (austenite) at high temperature to a crystal-
lographically low-symmetry phase (martensite) at low temperature. Martensitic
behaviour has been extensively studied for decades because of its importance

Figure 2.
Correlation between C12–C44 and G/B for 35 aluminides (culled from [29]).
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in metallurgy and its key role in shape memory phenomenon. Shape memory
alloys (SMA) are materials such as TiNi and TiNi-based alloys [33], Ti-Nb [34],
Ti-Mo [20, 31] etc. that exhibit diffusion-less first-order martensitic phase
transitions induced by the change of temperature and/or stress. The relation
between softening of elastic constants and martensitic transformation has
attracted considerable attention for many years and has been discussed by
many researchers [35, 36]. This interesting feature of martensitic transformation
in shape memory alloys is the existence of precursor phenomena [1, 2]. The
relations between MT temperature and elastic constants were investigated by
Ren et al. [36]. Experiments [37] indicate that martensitic transition occurs at

almost constant values of C‘. Slight change in composition would cause strong

deviation in the critical temperature at which C‘ softens to a critical value
and martensitic transition occurs. In some alloys exhibiting martensitic trans-

formation, softening of elastic constants C‘ ¼ C11 � C12ð Þ=2 and large elastic

anisotropy, A ¼ C44ð Þ=C‘ was observed in the parent phase, but the
significance of the softening is largely different between the alloys. For exam-

ple, Earlier Takashi Fukuda and co-workers [34] observed the value of C‘ near
the transformation start temperature is approximately 0.01 GPa in In-27Ti
(at %) alloy [38], 1 GPa in Au-30Cu-47Zn (at %) alloy [37], 5 GPa in Fe-30Pd
(at %) alloy [39], 8 GPa in Cu-14Al-4Ni (at %) alloy [9], and 14 GPa in
Ti-50.8Ni (at %) [33] and Al-63.2Ni (at %) alloys [40]. Because of such a

large distribution of C‘ at the Ms temperature, the influence of softening of C‘

on martensitic transformation is expected to be significantly different
between these alloys. Martensitic transformation in some alloys is probably

strongly related to the softening of C‘, while that in others is weakly related
despite the fact that the softening appears before the transformation.

Previously, Zener [5] established a correlation between the magnitudes of

C‘ ¼ C11 � C12ð Þ=2 elastic shear modulus in metallic bcc structures with the
occurrence of martensitic phase transformations suggesting links with phase
stability, via the atomic interactions. He observed that the large value suggests

that C‘ is much smaller than C44 and that MT temperature is dominated by C‘

[5]. Thus, independent elastic constants are needed to characterize the
material response, such as Martensitic transformations (MTs), Shape memory
etc. Martensitic transformations (MTs) are often accompanied by elastic modu-
lus softening (acoustic phonon softening) [5]. This explains the strong

Figure 3.
Correlation of experimental Vickers hardness (HvÞ with (a) bulk modulus (B) and with (b) shear modulus
(G) for 39 compounds [29].
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composition-dependence of MT temperature. As a result, the modulus softens
abruptly within a narrow temperature window around martensitic start tem-
perature, Ms. However, this is unsurprising since it is well known that they are
a consequence of weak restoring forces in specific crystallographic directions
that announce the possibility of a dynamical instability. The elastic constants
are closely related to the acoustic lattice vibrations or even atomic bondings in
crystals, and accordingly will be related to the transformation mechanism for
not only the Martensitic alloys but also any other compounds which accompany
shear-like or displacive transitions.

Following the above, Nnamchi et al. [41] in a recent study considered the
link between different groups of shape memory materials with elastic system-
atics found a clear delineated in a 2D plot of two dimensionless ratios of elastic
constants or reduced elastic-stiffness coefficients, C12ð Þ= C11ð Þ vs. C44ð Þ= C11ð Þ for-
mally popularised earlier by Blackman [42], It is only one table with different
sections. (see Figure 4 and Tables 1 and 2). This reveals among others the
elastic anisotropy, proximity to Born mechanical instability, elastic-constants
(interatomic-bonding) changes caused by alloying, pressure, temperature, phase
transformations and similarities in types of interatomic bonding. The significance
of the softening is largely different between the alloys. Inspecting the diagram, we
notice materials with similar chemical bonding tend to fall in the same region of
the diagrams. Such diagrams provide many uses.

Figure 4.
Correlations between parameters reduced elastic-stiffness coefficients C12ð Þ= C11ð Þ vs. C44ð Þ= C11ð Þ for several
classes of shape memory materials (culled from [34]).

This work C11 C12 C12/C11 C44/C11 Ref.

1 Ti-3Mo 159.3 115 0.72 1.21 [34]

2 Ti-6Mo 111.3 69.07 0.62 0.93 [34]

3 Ti-10Mo 167 19.6 0.12 0.081 [34]

4 Ti-14Mo 179.2 17.9 0.10 0.074 [34]
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This work C11 C12 C12/C11 C44/C11 Ref.

5 Ti-18Mo 192.6 16.3 0.085 0.066 [34]

6 Ti-23Mo 197.5 16 0.081 0.051 [34]

Non-SIM (BCC)alloys

1 Ti50Ni30Cu20 209 183 0.88 0.17 [43]

2 Ti-50Ni 165 140 0.85 0.21 [44]

3 Ti-29Nb-13Ta-4.6Zr 67.1 39.9 0.87 0.19 [45]

4 Ti-30Nb-10Ta-5Zr 128 92 0.86 0.24 [46]

5 Ti-35Nb 163.5 142 0.87 0.22 [47]

6 Ti-30Nb-5Ta-5Zr 70 30 0.87 0.185 [48]

7 Ti-32.7Nb-11.6Ta-4.49Zr-0.066O-0.052N 137 91.1 0.86 0.12 [49]

Non-SIM (FCC) alloys

1 Ag-75Au 230 161.5 0.702 0.33 [43]

2 Cu-4.17Si 117 85.2 0.73 0.64 [43]

3 α-Ag-2.4Zn 190 162 0.85 0.43 [43]

4 α-Cu-9.98Al 199 179 0.89 0.50 [43]

5 α-Cu-22.7Zn 158.9 136.2 0.86 0.43 [43]

SIM (BCC) alloys

1 Ti-35.37Nb 130.2 52 0.40 0.078 [50]

2 Ti-35Nb-2Zr-0.7Ta 183 31.4 0.17 0.15 [49]

3 Ti-35.4Nb-1.9Ta-2.8Zr-0.37O 122 27 0.22 0.11 [49]

4 Ti-24.1Nb-4Zr-8.06Sn-0.15O 140 26.3 0.19 0.16 [49]

5 Ti-35Nb-10Ta-4.6Zr-0.16O 102.5 36 0.16 0.12 [51]

6 Ti-23.9Nb-3.75Zr-8.01Sn-0.04O 157.2 36 0.26 0.127 [51]

7 Ti-24Nb-4Zr-7.9Sn-0.17O 0.23 0.22 [51]

8 Ti-24Nb-4Zr-7.6Sn-0.07O 122 31.4 0.26 0.21 [49]

9 Ti-35.2Nb-10.5Ta-4.97Zr-0.091O-0.014N 140 27 0.19 0.1 [51]

10 Ti-23.9Nb-3.8Zr-7.61Sn-0.08O 102.5 26.3 0.12 0.13 [51]

11 Ti-24Nb-4Zr-7.9Sn 157.2 46 0.29 0.27 [52]

SIM (FCC) alloys

1 Cu44.9- 50Zn 125 80 0.64 0.6 [43]

2 Au47.5-50Cd 142 96.77 0.68 0.53 [43]

3 Ag45-50Zn 132.8 83.16 0.63 0.57 [43]

4 γ-FeNi 209 183 0.65 0.54 [53]

5 CuAlNi 142.8 93.7 0.66 0.59 [54]

6 B2-NiTi 162 104 0.64 0.52 [55]

7 Cu2.726A11.122Ni 0.152 137 89.2 0.65 0.59 [56]

8 Cu2.742Al1.105Ni0.152 136 81.763 0.65 0.61 [56]

Table 1.
Elastic constant of some bcc and fcc metals and alloys.
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5. Summary and future challenges

The following bullet points summarise some of the main challenges facing the
community.

• Some empirical elastic relationship such as a low G/B ratio (or high ν)
favours toughness but also indicates a fragility in polycrystalline materials,
though they can be typically difficult to vitrify in some polycrystalline
materials.

• Some empirical correlations exist in most of the metallic elements in the
periodic table have been found, and alloy development has moved beyond the
bucket chemistry type approach used in the early days of elastic properties
research. While a number of general guidelines exist for explaining elastic
systematics property formation (such as Zener, and Burger’s rules), Pugh and
Pettifor’s criterion [16, 17] in addition to Blackmans have gone beyond simply
stating the chemical species that should be present, and their rough
proportions, and instead gives exact elastic relationship. However, a more
rigorous that delineated the phase stability using systematics could be
envisaged in new future.

BCC elements C12/C11 C44/C114 Ref.

1 V 0.52 0.19 [53]

2 Nb 0.59 0.13 [53]

3 Ta 0.60 0.31 [53]

4 Mo 0.38 0.28 [53]

5 W 0.5 0.43 [53]

6 Li 0.83 0.78 [53]

7 Na 0.82 0.75 [53]

8 K 0.79 0.73 [53]

9 Ba 0.43 0.7 [53]

FCC elements [53]

1 Au 0.83 0.22 [53]

2 Pd 0.79 0.3 [53]

3 Pt 0.74 0.2 [53]

4 Ag 0.76 0.39 [53]

5 Cu 0.76 0.43 [53]

6 β-Co 0.69 0.6 [53]

7 α-Sr 0.65 0.39 [53]

8 γ-Fe 0.68 0.5 [53]

9 Ni 0.62 0.51 [53]

10 δ-Pu 0.78 0.96 [53]

Table 2.
Elastic constant of some bcc and fcc metals and alloys.
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Glossary of symbols

Symbols used symbols derived from disambiguation (e.g. d for
Cijkl the local elastic constant tensor with σij rð Þ

� �
and

ϵkl rð Þh i as the local stress and strain field at a point
r, respectively, and the angular brackets denote
ensemble averages

C44 single crystal bulk modulus; Bo ¼ C0
11 þ 2CO

12

� �
=3

C0 ¼ C11� C12ð Þ=2 tetragonal shear modulus

C44, μ∗ ¼ C∗
44 ¼ μ0 þ τ44h i

1þG44τ44
trigonal shear modulus

G the ratio of shearing stress τ to shearing strain γ

within the proportional limit of a material
B bulk modulus, ratio between the fluid pressure

and the Volumetric Strain
E modulus of elasticity or Young’s modulus
G modulus of rigidity or shear modulus
VL and VS the ultrasonic longitudinal and shear wave veloci-

ties respectively
ρ the density of the material

A ¼ C44ð Þ=C‘ elastic anisotropy

U the energy of the crystal, and quadratic function
of the strains

V0 equilibrium volume
e an elastic strain
σij rð Þ
� �

effective stiffness of Cijkl

ϵ ¼ ϵ0 þGTϵ0 ϵ0 and GT are the strain and modify Green’s
function

T T-matrix is given by T ¼ δC 1� GδCð Þ�1

І equivalent to the unit tensor
eY∗ the homogenised polycrystalline Young’s modulus

eμ∗ homogenised polycrystalline Poisson’s ratio
MS martensite formation start temperature
MF martensite finish temperature
SME shape memory effect
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