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Chapter

Eight Types of BG Models and
Discretization
Takaaki Uda, Masumi Serizawa and Shiho Miyahara

Abstract

Eight types of the BG models are introduced in this chapter. The Type 1 is a
model using wave parameters at the breaking point. In the Type 2, the effect of
longshore sand transport due to the effect of the longshore gradient of breaker
height is included with an additional term given by Ozasa and Brampton. In the
Type 3, the intensity of sand transport P is assumed to be proportional to the third
power of the amplitude of the bottom oscillatory velocity um due to waves, and in
the Type 4, P is given by the wave energy dissipation rate due to wave breaking at a
local point. In the Type 5, wave power is calculated using the coordinate system
different from that for the calculation of beach changes to predict the topographic
changes of an island or a cuspate foreland in a shallow water body under the action
of waves randomly incident from every direction. In the Type 6, the height of wind
waves is predicted using Wilson’s formula using the wind fetch distance and wind
velocity, and then sand transport fluxes are calculated. The Type 7 is a model for
predicting the formation of the ebb-tidal delta under the combined effect of waves
and ebb-tidal currents with an analogy of the velocity distribution of ebb-tidal
currents to the wave diffraction coefficient, which can be calculated by the angular
spreading method for irregular waves. In the Type 8, the effect of the nearshore
currents induced by forced wave breaking is incorporated into the model by calcu-
lating the nearshore currents, taking both the wave field and the current velocity at
a local point into account.

Keywords: eight types of BG models, discretization method

1. Introduction

Eight types of the BG models to be used in the following chapters are introduced
(Table 1). The Type 1 is a model using wave parameters at the breaking point. In
the Type 2, the effect of longshore sand transport due to the effect of the longshore
gradient of breaker height is included with an additional term given by Ozasa and
Brampton [1], whereas the sand transport equations with the coefficients of
longshore and cross-shore sand transport are employed. In the Type 3, the intensity
of sand transport, P, is assumed to be proportional to the third power of the
amplitude of the bottom oscillatory velocity, um, due to waves predicted in the
calculation of the plane wave field. In the Type 4, P is given by the wave energy
dissipation rate due to wave breaking at a local point. To calculate the wave field, a
numerical simulation method using the energy balance equation is employed. In the
Type 5, wave power is calculated using the coordinate system different from that
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for the calculation of beach changes in order to predict the topographic changes of
an island or a cuspate foreland in a shallow water body under the action of waves
randomly incident from every direction. In the Type 6, the height of wind waves is
predicted using Wilson’s formula given the wind fetch distance and wind velocity,
and the segmentation of a closed water body is predicted. The Type 7 is a model for
predicting the formation of the ebb-tidal delta under the combined effect of waves
and ebb-tidal currents with an analogy of the velocity distribution of ebb-tidal
currents to the wave diffraction coefficient, which is calculated by the angular

Type External

force

Characteristics Application Chapter

1 Waves Most fundamental model using

wave parameters at breaking

point

Prediction of typical beach

changes in coastal engineering

3

2 Waves The effect of longshore sand

transport due to the effect of the

longshore gradient of breaker

height was included with an

additional term given by Ozasa

and Brampton [1]

Prediction of beach changes by

human activities

3

3 Waves The intensity of sand transport P

is assumed to be proportional to

the third power of the amplitude

of the bottom oscillatory velocity,

um, due to waves predicted in the

calculation of the plane wave field

Formation of sand spit and bay

barrier

5

4 Waves The intensity of sand transport P

is given by the wave energy

dissipation rate due to wave

breaking at a local point

Formation of cuspate foreland 7

5 Waves The wave power is calculated

using the coordinate system

different from that for the

calculation of beach changes

under the action of waves

randomly incident from every

direction

Formation of sand spit and bay

barrier and interaction of sandy

islands on flat shallow seabed

owing to waves

5 and 6

6 Wind waves

developed in

closed water

body

The height of wind waves is

predicted using Wilson’s formula

given the wind fetch distance and

wind velocity

Segmentation and merging of

closed water bodies by wind

waves

8

7 Waves and

ebb-tidal

currents

A model for predicting the

formation of the ebb-tidal delta

under the combined effect of

waves and ebb-tidal currents with

an analogy of the velocity

distribution of ebb-tidal currents

to the wave diffraction coefficient

Formation of dynamically stable

ebb-tidal delta

4

8 Waves and

nearshore

currents

The effect of the nearshore

currents induced by forced wave

breaking is incorporated into the

model, taking both the wave field

and the current velocity at a local

point into account

Beach changes around artificial

reef

4

Table 1.
Eight types of BG models and their applications.
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spreading method for irregular waves. In the Type 8, the effect of the nearshore
currents induced by forced wave breaking is incorporated into the model by calcu-
lating the nearshore currents, taking both the wave field and the current velocity at
a local point into account.

2. Eight types of BG models

2.1 Type 1 BG model

A simple, practical Type 1 BG model is derived here using wave parameters at
the breaking point on the basis of Eq. (26) in Chapter 1. The energy dissipation ratio
Φ is evaluated by the energy flux of waves at the breaking point as in the contour-
line change model [2]. Assume that waves are obliquely incident to a coast with

a uniform slope of tan β. Φ is given by the wave energy flux transported per unit
width of the shoreline, ECg

� �

b
cos αb, divided by the cross-shore distance

R ¼ hc þ hRð Þ= tan β between the depth of closure, hc, and the berm height,
hR, corresponding to the wave run-up height (Figure 1). Then, assuming

tan β≈ tan βc cos αb (Eq. (32) in Chapter 1), Φ becomes ECg

� �

b
cos2αb= hc þ hRð Þ=

tan βc. Furthermore, introducing the depth distribution of the sand transport
intensity ε(Z) and transforming 1= hc þ hRð Þ into ε(Z), the coefficient A of Eq. (23)
in Chapter 1 is expressed in terms of the wave energy flux at the breaking point, and
the sand transport flux is reduced to

q
!
¼

G

tan βc
tan βc ew

!
� ∇Z

!h i

: (1)

Eq. (1) can be written in components as Eqs. (2a) and (2b), and G in Eq. (1) is
expressed by Eqs. (3) and (4):

qx ¼
G

tan βc
tan βc cos θw � ∂Z=∂x½ � (2a)

Figure 1.
Zone with cross-shore sand movement and dissipation of wave energy.
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qy ¼
G

tan βc
tan βc sin θw � ∂Z=∂y½ � (2b)

G ¼ C0K1P (3)

P ¼ Φ ¼ ε Zð Þ ECg

� �

b
cos2αb tan βc (4)

ðhR

�hc

ε Zð Þ dZ ¼ 1 (5)

ε Zð Þ ¼

2

h3c

hc
2
� Z

� �

Z þ hcð Þ2 �hc ≤ Z ≤ hRð Þ

0 Z < � hc; hR <Zð Þ

8

>
<

>
:

(6)

Here, ε(Z) is defined so that the integral over the depth between Z = �hc and hR
is equal to 1, as given by Eq. (5), and the depth distribution of the longshore sand
transport, Eq. (6), given by Uda and Kawano [3] is used. This distribution takes a
peak value on the shoreline (Z = 0), and it monotonically decreases landward and
seaward. In addition, when it is given by a uniform distribution, Eq. (7) can be used:

ε Zð Þ ¼
1= hc þ hRð Þ �hc ≤ Z ≤ hRð Þ

0 Z < � hc; hR <Zð Þ

�

(7)

The wave energy flux at the breaking point (ECg)b can be calculated by
small-amplitude wave theory in shallow water using the breaker height Hb, where
Hb is given by the following relation:

ECg

� �

b
¼ C1 Hbð Þ

5
2 (8a)

C1 ¼
ρg

k1

ffiffiffiffiffiffiffi

g=γ
q

γ ≈0:8ð Þ (8b)

k1 ¼
8 for regular waves

4:004ð Þ2 for irregular waves

(

(8c)

Here, γ is the ratio of the breaker height to the water depth. k1 = (4.004)2 in
Eq. (8c) is a constant in the relationship between the wave energy E and the
significant wave height when the probability of the wave height of irregular waves
is assumed to be given by the Rayleigh distribution [4]. Furthermore, regarding the
breaker angle αb in Eq. (4), the following approximation is assumed:

αb ≈ α ¼ θw � θn

¼ θw � tan�1 ∂Z

∂y
=
∂Z

∂x

� �

(9)

Here, α is the angle between the wave direction at each point θw and the direc-
tion (shoreward positive) normal to the contours θn as expressed by Eq. (12) in
Chapter 1. In a numerical simulation, the mean beach slope of the coast before the
construction of the structures is given as the equilibrium slope to consider the long-
term prediction of beach changes, similarly to the contour-line change model [2].
Here, the measured slope is employed as the equilibrium slope to make the predic-
tion of beach changes on real coasts possible. The measured slope is given a priori
because the real seabed topography includes every effect of past events, and it has a
stable form, except for seasonal short-period variations, in the long term.
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In the calculation, the coastal domain is discretized using 2D elements with
widths Δx and Δy. The calculation points of the seabed elevation Z and sand

transport rates q
!
¼ ðqx, qyÞ are set in staggered meshes with a difference of 1/2 mesh.

The explicit finite-difference method is used in the calculation. Figure 2 shows the
flowchart for numerical simulation using the Type 1.

Given the initial seabed topography, the distribution of Hb, αb, hc, and hR, and
the equilibrium slope, sand transport fluxes and the change in seabed elevation after
time Δt are calculated using Eq. (2) and Eq. (28) in Chapter 1, respectively. These
procedures are repeated recurrently. As the boundary conditions, sand transport is
set to 0 along the outer boundaries of the calculation domain and the boundary
along the structures. Here, a lower minimum of 0.5 was set for cos αbj j in the
calculation of P value in Eq. (4) to avoid the occurrence of a local discontinuity in
the topography.

In the calculation of beach changes in the wave-shelter zone behind an offshore
breakwater, the wave diffraction coefficient Kd and the direction of diffracted
waves θd are predicted using the angular spreading method for irregular waves
[5, 6], and (ECg)b in the case of no offshore structure is reduced by multiplying by
the square of the coefficient Kd so that a relation of (ECg)b

0 = Kd
2(ECg)b is satisfied.

On the other hand, the direction of the diffracted waves θd is used as the wave

Figure 2.
Flowchart for numerical calculation using Typ. 1 BG model.
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direction θw to evaluate the wave energy flux at any point. In addition, the effect of
the longshore sand transport induced by a longshore change in the breaker height as
given by Ozasa and Brampton [1] can be included using the method in [5], although
the term expressing this effect is not included in the sand transport equation of the
Type 1 BG model. In the method, the wave direction, θw, in the wave-shelter zone is
modified in response to the ratio of the coefficients of longshore sand transport,
K2/K1, and the longshore gradient of the wave height Hb multiplied by Kd. When
modified wave directions are employed in the sand transport equation, the addi-
tional effect given by Ozasa and Brampton [1] in the CERC-type longshore sand
transport formula can be implicitly included [5].

2.2 Type 2 BG model

In the Type 1 BG model, the fundamental equation for sand transport is
expressed in terms of the wave energy at the breaking point. In the Type 2 BG
model, the equation in the Type 1 is improved to an equation including the coeffi-
cients of longshore and cross-shore sand transports and the additional term given by
Ozasa and Brampton [1] to evaluate the effect of the longshore gradient of the
breaker height.

We use the Cartesian coordinates (x, y), in which the x- and y-axes are taken in
the cross-shore (shoreward positive) and longshore directions, respectively. For the
sand transport equation, Eq. (10), expressed in terms of the wave energy at the
breaking point, is used with the variables given by Eq. (11) together with Eq. (4):

qx ¼
Gx

tan βc
tan βc cos θw � ∂Z=∂x½ �

�hc ≤ Z ≤ hRð Þ

(10a)

qy ¼
Gy

tan βc
tan βc sin θw �

1

tan β

K2

Ky

∂Hb

∂y

� �

� ∂Z=∂y

� 	

�hc ≤ Z ≤ hRð Þ

(10b)

Gx ¼ C0KxP (11a)

Gy ¼ C0KyP (11b)

Here, θw is the wave angle measured counterclockwise from the x-axis. Kx and
Ky are the coefficients of cross-shore and longshore sand transport, respectively, K2

is the coefficient of the term given by Ozasa and Brampton [1], and tan β is the

seabed slope at the breaker point. Here, we assume tan β ¼ tan βc. ε(Z) is the depth
distribution of the intensity of longshore sand transport, as defined by Eq. (6) or (7)
in the Type 1. Beach changes are obtained by solving the continuity equation. The
flowchart for numerical simulation using the Type 2 is the same as that in the
Type 1, as shown in Figure 2.

Note that the x- and y-axes must be taken shoreward from an offshore point and
in longshore direction, respectively, although the sand transport equations of the
Type 1 do not depend on the directions of the orthogonal coordinates (x, y).
Regarding hR and hc, the Kd value is also multiplied to cover the reduction in wave
height if necessary.

2.3 Type 3 BG model

The Type 3 BG model is employed in the calculation of the formation of a sand
spit and a bay barrier to be described in Chapter 5. Although the sand transport
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equations in the Types 1 and 2 BG model are expressed by using the wave energy
flux at the breaking point, the sand transport equation in the Type 3 is expressed
using local wave parameters which can be evaluated from the calculation of the
plane wave field. Because a sand spit and cuspate foreland may change their con-
figuration significantly, their effects on the wave refraction, wave breaking, and the
wave-sheltering effect must be calculated by the recurrent calculations to evaluate
the time changes in the wave field. The additional term given by Ozasa and
Brampton [1] is also incorporated into the fundamental equation of the BG model to
evaluate the longshore sand transport due to the effect of the longshore gradient
of the wave height with the inclusion of two coefficients to evaluate the cross-shore
and longshore sand transports. The fundamental equation is given by

q
!
¼ C0

P

tan βc

Kn tan βcew
!

� cos αj j∇Z

!

� �

þ Ks � Knð Þ sin α�
K2

tan β

∂H

∂s

� 

tan βes
!

8

>
>
>
<

>
>
>
:

9

>
>
>
=

>
>
>
;

�hc ≤Z ≤ hRð Þ

(12)

P ¼ ρ u3m (13)

um ¼
H

2

ffiffiffi

g

h

r

: (14)

Here, tan β es
!

¼ �∂Z=∂y; ∂Z=∂xð Þ, Ks and Kn are the coefficients of longshore

sand transport and cross-shore sand transport, respectively, ∂H=∂s ¼es
!
� ∇H


!

is the
longshore gradient of the wave height H measured parallel to the contour lines, and

∇H


!

¼ ∂H=∂x; ∂H=∂yð Þ. tan β is the characteristic slope of the breaker zone, and h is

the water depth. Furthermore, tan β ¼ tan βc is assumed. um is the amplitude of the
seabed velocity due to the orbital motion of waves given by Eq. (14).

The intensity of sand transport P in Eq. (12) is assumed to be proportional to the
wave energy dissipation rate Φ based on the energetics approach of Bagnold [7]. In
the Type 1, P is formulated using the wave energy at the breaking point, but here it
is combined with the wave characteristics at a local point. Bailard and Inman [8]
used the relationship Φt = τut = ρCf ut

3 for the instantaneous wave energy dissipation
rate Φt to derive their sand transport equation, where τ is the bottom shear stress, ut
is the instantaneous velocity, and Cf is the drag coefficient. We basically follow their
study but assume that Φ is proportional to the third power of the amplitude of the
bottom oscillatory velocity um due to waves instead of the third power of the
instantaneous velocity. The intensity of sand transport P is then given by Eq. (13),
and its coefficient is assumed to be included in the coefficients of longshore and
cross-shore sand transports, Ks and Kn in Eq. (12), respectively. um can be
calculated by small-amplitude wave theory in shallow water using the wave height
H at a local point in Eq. (14), which can be obtained by the numerical calculation of
the plane wave field. hc is assumed to be proportional to the wave height H at a local
point and is given by Eq. (15), referring to the relationship given by Uda and
Kawano [3]:

hc ¼ KH K ¼ 2:5ð Þ (15)

In the numerical simulation of beach changes, the sand transport equation and
the continuity equation are solved on the x-y plane by the explicit finite-difference
method employing a staggered mesh scheme.
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The wave field is calculated using the energy balance equation given by Mase
[9], in which the directional spectrum D ( f, θ) of the irregular waves is the variable
to be solved, with the energy dissipation term due to wave breaking in [10]. Here, f
and θ are the frequency and wave direction, respectively. In this method, wave
refraction, wave breaking, and wave diffraction in the wave-shelter zone can be
calculated with a small calculation load. The energy dissipation term due to wave
breaking Φ, which is incorporated into the energy balance equation of Eq. (16), is
given by Eq. (17):

∂

∂x
DVxð Þ þ

∂

∂y
DVy

� �

þ
∂

∂θ
DVθð Þ ¼ F �Φ (16)

Φ ¼ K=hð Þ DCg 1� Γ=γð Þ2
h i

Φ≥0ð Þ (17)

Here, D is the directional spectrum, (Vx, Vy, Vθ) is the energy transport velocity
in the (x, y, θ) space, F is the wave diffraction term in [9], K is the coefficient of the
wave-breaking intensity, h is the water depth, Cg is the wave group velocity

(Cg ≈
ffiffiffiffiffi

gh
p

in shallow-water wave theory), Γ is the ratio of the critical breaker height
to the water depth on the horizontal bed, and γ is the ratio of the wave height to the
water depth. As the spectrum of the incident waves, a combination of the
Bretschneider-Mitsuyasu-type frequency spectrum and the Mitsuyasu-type direc-
tional function is used as in Goda [11]. Figure 3 shows the flowchart for numerical
simulation using the Type 3.

To prevent the location where the berm develops from being excessively sea-
ward compared with that observed in the experiment or the field, a lower limit is
considered for h in Eq. (17). As a result of this procedure, wave decay near the berm
top is reduced, resulting in a higher landward sand transport rate. In the calculation
of the wave field on land, the imaginary depth h’ between the minimum depth h0
and hR is considered as follows, similarly to the 3D model of Shimizu et al. [12]:

h0 ¼
hR � Z

hR þ h0

� �r

h0 r ¼ 1ð Þ �h0 ≤Z ≤ hRð Þ: (18)

In addition, at locations whose elevation is higher than hR, the wave energy is set
to 0. Similarly to the Type 1, beach changes are obtained by solving the continuity
equation. In the calculation of the formation of a bay barrier in [13], the sand
transport equation without Ozasa and Brampton’s term in Eq. (12) is employed, i.e.,
K2 = 0, and in the calculation of the P value in Eq. (12), Eq. (13) multiplied by the
coefficient F expressed by Eq. (20) is employed:

P ¼ F � ρ u3m (19)

F ¼
tan βw
tan βc

(20)

tan βw ¼ ew
!

• ∇Z
!

tan βw ≥0ð Þ (21)

Here, tanβw is the seabed slope measured along the direction of wave propaga-
tion. In Eq. (19), F is introduced so that the wave dissipation rate can respond to the
seabed slope when the wave dissipation in the surf zone is considered.

Eq. (12) shows that the sand transport flux can be expressed as the sum of the
component along the wave direction and the components due to the effect of
gravity normal to the contours and the effect of longshore currents parallel to the
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contours. To investigate the physical meaning of Eq. (12), neglecting the additional
term given by Ozasa and Brampton [1], that is, assuming K2 = 0 in Eq. (12),
Eqs. (22) and (23) are derived for the cross-shore and longshore components of
sand transport, qn and qs, respectively. Furthermore, under the condition that the
seabed slope is equal to the equilibrium slope, Eq. (23) reduces to Eq. (24):

qn ¼ en
!

• q
!
¼ C0KnP cos αj j

cos α

cos αj j
�

tan β

tan βc

� �

(22)

Figure 3.
Flowchart for numerical calculation using the Typ. 3 BG model.
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qs ¼ es
!
• q
!
¼ C0KsP sin α

tan β

tan βc
þ
Kn

Ks
1�

tan β

tan βc

� �� 

(23)

qs ≈C0KsP sin α ∵ tan β≈ tan βcð Þ (24)

In Eq. (22), the cross-shore sand transport qn becomes 0 when the local seabed
slope is equal to the equilibrium slope, and the longshore sand transport qs becomes
0 when the wave direction coincides with the normal to the contour lines, as shown
in Eqs. (23) and (24). When a discrepancy from these conditions arises, sand
transport is generated by the same stabilization mechanism as that given by the
sand transport equation in the Type 1.

Comparing Eqs. (22) and (24) in the Type 3 with Eqs. (31) and (34) in
Chapter 1, which are the fundamental equations for the cross-shore and longshore
components of sand transport in the Type 1, the sand transport equations in the
Type 1 have a single coefficient, whereas the equations in the Type 3 are expressed
using two coefficients, i.e., the intensities of cross-shore and longshore sand trans-
ports can be independently determined. The equilibrium slope tan β0c, which gives
qn = 0 under the condition of oblique wave incidence, satisfies the relation
tan β0c ¼ tan βc cos α in the Type 1, as in Eq. (33) in Chapter 1, and tan β0c is affected
by α. On the other hand, in the Type 3, the relation tan β0c ¼ tan βc stands after
setting qn = 0 in Eq. (22). Thus, tan β0c is independent of α. This is a result of

multiplying ∇Z
!

in the sand transport equation of Eq. (13) in the Type 3 by the
coefficient cos αj j, assuming that the effect of gravity is proportional to the magni-
tude of the cross-slope velocity component that is generated by waves, similarly to
the bedload equation of Dronkers [14].

Taking the above into account, the first term in the parentheses in Eq. (12) gives
the sand transport in the case that the rates of longshore and cross-shore sand
transports are equal (Ks = Kn), and the second term is the additional longshore sand
transport in the case that the rates are different (Ks > Kn). The physical meaning of
the second term is that longshore sand transport is generated by the small angular
shift that occurs when the wave direction is incompletely reversed in the oscillatory
movement due to waves, and the second term also models the additional longshore
sand transport due to the effect of longshore currents, which is only partially
included in the first term.

2.4 Type 4 BG model

This model is used for the calculation of the development of sand spits and
cuspate forelands with rhythmic shapes and the formation of a cuspate foreland in
Chapter 7. Although the intensity of sand transport P in the Type 3 was assumed to
be proportional to the third power of the amplitude of the bottom oscillatory
velocity, um, due to waves, as shown in Eq. (13), P was given by the wave energy
dissipation rate Φb due to wave breaking at a local point in the Type 4, which can be
determined by the calculation of the plane wave field:

P ¼ Φb (25)

To calculate the wave field, the numerical simulation method using the energy
balance equation given by Mase [9], in which the directional spectrum of irregular
waves is the variable to be solved, is employed, similarly to the Type 3, with an
additional term of energy dissipation due to wave breaking [10], similarly to
Eq. (16). Φb in Eq. (25) is calculated using Eq. (26), which defines the sum of the
energy dissipation of each component wave due to breaking:
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P ¼ Φb ¼ fDE ¼ K
ffiffiffiffiffiffiffi

g=h
q

1� Γ=γð Þ2
h i

E P≥0ð Þ (26)

Here, fD is the energy dissipation rate, E is the wave energy, K is a coefficient
expressing the intensity of wave dissipation due to breaking, h is the water depth, Γ
is the ratio of the critical wave height to the water depth on a flat bottom, and γ is
the ratio of the wave height to the water depth H/h. In addition, similarly to the
calculation in the Type 3, a lower limit is set for the water depth h in Eq. (18) in the
calculation of the plane wave field. To calculate the wave field in the wave run-up
zone, an imaginary depth is assumed, similarly to the Type 3. Furthermore, the
wave energy at locations with elevations higher than hR is set to 0. The flowchart for
numerical simulation using the Type 4 is the same as that in the Type 3, as shown in
Figure 3.

When investigating the physical meaning of Eq. (12) in the Type 3, the effect of
the additional term given by Ozasa and Brampton [1] was neglected. Here, the
effect of the additional term is included, and Eq. (27) is derived for the longshore
component of sand transport, qs, along with Eq. (22) for the cross-shore component
of sand transport, qn. In addition, under the condition that the seabed slope is equal
to the equilibrium slope, Eq. (27) reduces to Eq. (28):

qs ¼es
!
• q
!

¼ C0KsP
tan β

tan βc
sin α�

K2

Ks

1

tan β

∂H

∂s

� �

þ sin α
Kn

Ks
1�

tan β

tan βc

� �� 
(27)

qs ¼ C0KsP sin α�
K2

Ks

1

tan β

∂H

∂s

� �

∵ tan β≈ tan βcð Þ (28)

The cross-shore sand transport qn is the same as Eq. (22) in the Type 3, whereas
the longshore sand transport qs given by Eqs. (27) and (28) has the additional term
of Ozasa and Brampton [1]. When the total sand transport Qs is calculated by
integrating Eq. (28) in the cross-shore direction, it coincides with the CERC-type
formula [15] with the additional term [1] as in Eq. (29) [4]. Here, the relation
P ¼ Φb (Eq. (25)) is employed, α is approximately given by the breaker angle αb,
and the longshore gradient of the breaker height is used in place of the longshore
gradient of the wave height in the Ozasa and Brampton’s term together with the
assumption that the integral of Φ in the cross-shore direction is equal to the energy
flux per unit length of the coastline at the breaking point:

Q s ¼
Ð

qsdn

¼ C0Ks

Ð

P sin α�
K2

Ks

1

tan β

∂H

∂s

� �� 

dn

¼ C0Ks

Ð

Φb sin α�
K2

Ks

1

tan β

∂H

∂s

� �� 

dn ∵P ¼ Φbð Þ

¼ C0Ks sin αb �
K2

Ks

1

tan β

∂Hb

∂s

� 
Ð

Φb dn ∵α≈ αb;
∂H

∂s
≈

∂Hb

∂s

� �

¼ C0Ks ECg

� �

b
cos αb sin αb �

K2

Ks

1

tan β

∂Hb

∂s

� 

∵
Ð

Φb dn≈ ECg

� �

b
cos αb

� �

(29)
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2.5 Type 5 BG model

To predict the topographic changes of an island or a cuspate foreland in a
shallow water body under the action of waves randomly incident from every direc-
tion, the wave power P is calculated using a coordinate system different from that
for the calculation of beach changes, assuming that waves propagate in a straight
line by neglecting the effect of the wave refraction. Since the wave field itself
significantly changes with time in response to the deformation of the topography,
the calculation of the wave power P and beach changes is carried out recurrently
every time step. This model is employed in the numerical simulation of the elonga-
tion and merging of bay mouth sand spits in Chapter 5 and the interaction of islands
in Chapter 6.

The sand transport equation employed is Eq. (30), which uses the expression of
the wave energy evaluated at the breaking point. The variables in Eq. (30) are given
by Eqs. (31)–(36) along with Eqs. (5), (7), (8), and (9) in the Type 1 BG model:

q
!
¼ C0

KsP

tan βc
tan βc ew

!
� cos αj j ∇Z


!
n o

�hc ≤Z ≤ hRð Þ (30)

P ¼ ε Zð Þ ECg

� �

b
tan βw P≥0ð Þ (31)

tan βw ¼ dZ=dxw tan βw ≥0ð Þ (32)

Iε Zð Þ ¼

1 Z < � hcð Þ

Ð hR
Z ε Zð Þ dZ ¼

hR � Z

hc þ hR
�hc ≤Z ≤ hRð Þ

0 Z>hRð Þ

8

>
>
>
<

>
>
>
:

(33)

P ¼ ECg

� �

b
�

dIε
dxw

� �

P≥0ð Þ (34)

Iε
iþ1ð Þ ¼ min Eq: 33ð ÞjZ¼Z iþ1ð Þ

; Iε
ið Þ

� �

(35)

P iþ1=2ð Þ ¼ ECg

� �

b

Iε
ið Þ � Iε

iþ1ð Þ

Δxw

 !

(36)

Here, Ks is the longshore and cross-shore sand transport coefficients, and the
index i in Eqs. (35) and (36) is the mesh number along the xw-axis, and min denotes
the selection of the smaller of either value in the parentheses. In the calculation, the
local beach slope measured along the wave ray is used as the beach slope in Eq. (31),
as shown in Eq. (32).

For the calculation of the P value, another coordinate system different from that
for the calculation of beach changes is used as in [16], in which the xw- and yw-axes
are taken along the wave direction and the direction normal to the wave direction,
respectively (Figure 4). The fixed coordinate system (x, y) is used for the calcula-
tion of beach changes with a rectangular calculation domain ABCD, whereas the P
value is calculated in the rectangular domain A0B0C0D0 including the domain ABCD
with the coordinate system (xw, yw). In the calculation of the wave field, wave
refraction is neglected, and waves are assumed to propagate in a straight line while
maintaining the wave incident angle. The distance along the xw-axis is subdivided
by a mesh of Δxw, and a cumulative function of ε(Z), Iε Zð Þ, is introduced as in
Eq. (33). Here, ε(Z) is assumed to have a uniform distribution (Eq. (7)), and Iε Zð Þ
takes a value of unity in the zone deeper than hc, decreases with the water depth,
and becomes 0 in the zone higher than hR.
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Using Eq. (33), Eq. (31) is transformed into Eq. (34). Thus, the P value can be
determined from the derivative of Iε Zð Þ at a point along the xw-axis using Eq. (34).
Iε Zð Þ is calculated along the xw-axis from the starting point of wave incidence in the
direction of wave propagation; Iε Zð Þ at the (i + 1)th point can be calculated from
Eq. (35) with the given value of Iε Zð Þ at the ith point when the initial value of Iε Zð Þ

at the offshore end is given and the mesh location is denoted by xw
ið Þ ¼ iΔxw.

Furthermore, the P value at the (i + 1/2)th point is calculated from Eq. (36),
which is derived from Eq. (34). Note that in calculating Iε Zð Þ at the (i+1)th point,
the smaller value calculated from Eq. (35) given the elevation Z(i+1) at the (i+1)th

point and Iε Zð Þ at the ith point is adopted. As a result, the value of Iε Zð Þ
corresponding to the minimum water depth (maximum Z) between the offshore
end and a designated point along the xw-axis can be adopted.

Using this procedure, the depth distribution along the xw-axis between the
offshore end and a certain point is automatically taken into account in the calcula-
tion of the P value. For example, when there is a location with an elevation higher
than hR, the P value in the shoreward zone is automatically reset as 0 regardless of
the elevation and water depth. This procedure becomes important when the beach
profile along the xw-axis has several uneven shapes.

Consider the case where the xw-axis passes through their tips of two sand spits.
The wave energy is reduced when waves pass through near the tip of the first sand
spit, resulting in the reduction of the wave energy reaching the second sand spit.
Using this procedure, the wave-sheltering effect due to the existence of multiple
sand spits can be automatically evaluated, in contrast to the method where the P
value is calculated by substituting the local elevation Z into ε(Z) in Eq. (31). More-
over, the P value on an impermeable breakwater is set to 0 to take the wave-
sheltering effect of the breakwater into account. The P value integrated from a
location on land whose elevation exceeds hR to an offshore end along the xw-axis is
always equivalent to (ECg)b regardless of the seabed topography. Because (ECg)b
corresponds to the entire power of the incident waves, the exact satisfaction of this
condition is reasonable.

The calculation of the P value is independently carried out along each the xw-
axis. The P value calculated at point (xw, yw) is memorized, and the P value at point
(x, y) necessary for the calculation of beach changes is interpolated from the

Figure 4.
Definition of coordinate system around an island.
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memorized value at point (xw, yw). The mesh intervals Δxw and Δyw are the same as
Δx and Δy. Here, Δx and Δy are the mesh intervals of the coordinate system for the
calculation of beach changes, and we assume the equivalent condition of Δx = Δy.
The beach changes are calculated by explicitly solving the continuity equations on
the staggered meshes using the sand transport fluxes obtained from Eq. (30).
Figure 5 shows the flowchart for numerical simulation using the Type 5 BG model.

The incident wave direction at each time step in the calculation of beach changes
is selected to be a value determined randomly so as to satisfy the probability
distribution function of the incident wave direction, although the incident wave
height is assumed to be constant. For example, in Chapter 5, the energy distribution
for multidirectional irregular waves with a directional spreading parameter of
Smax = 10 is used, and in Chapter 6, the wave incidence with the direction ranging
between 0 and 360° with the same probability is employed as the probability
distribution function of the wave direction. The P value, which is subject to change
with the propagation of waves, is recalculated at every time step in the calculation
of the beach changes.

2.6 Type 6 BG model

The Type 6 is employed in the numerical simulation of the segmentation of a
closed water body, as mentioned in Chapter 8. The height of wind waves in a closed
body is predicted using Wilson’s formula on the basis of the fetch distance and wind
velocity, and then sand transport fluxes are calculated. To calculate the topographic
changes in a lake under the action of wind waves randomly incident from all
directions, the wave power P is calculated using a coordinate system different from
that for the calculation of beach changes. Since the wave field itself significantly
changes with time in response to the deformation of the topography, the calculation
of the height of the wind waves and beach changes was carried out recurrently
every time step.

As the sand transport equation, Eq. (37) is used, which is expressed using the
wave energy at the breaking point, similarly to the Type 5. The variables in Eq. (37)
are given by Eqs. (38)–(41) along with the relations of Eqs. (6)–(8) in the Type 1
and Eqs. (31) and (32) in the Type 5. Although the P value in Eq. (31) was calculated
from Eqs. (33)–(36) in the Type 5, the P value was evaluated directly from Eq. (31)
in the Type 6:

q
!
¼ C0

KsP

tan βc
tan βc ew

!
� cos αj j ∇Z

!n o

�hc ≤Z ≤ hRð Þ (37)

F iþ1ð Þ ¼ F ið Þ þ rΔxw (38)

r ¼
1 Z ≤0ð Þ

0 Z>0ð Þ

�

(39)

F ið Þ ¼ 0 if Z ≥0 and dZ=dxw ≤0ð Þ (40)

H1=3 ¼ f F;Uð Þ

¼ 0:30 1� 1þ 0:004 gF=U2
� �1=2

h i�2
� 

U2=g
� � (41)

Here, F is the local fetch distance and U is the wind velocity. The index i in
Eq. (38) is the mesh number along the xw-axis. Prior to the calculation of beach
changes, the significant wave height at a point is calculated using Wilson’s equation
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(Eq. (41)), described in Wilson [17] and Goda [18], given the local fetch F at a point
and wind velocity U.

In this calculation, a fixed coordinate system (x, y) is adopted for the calculation
of beach changes with the rectangular calculation domain ABCD, as shown in
Figure 6, whereas another coordinate system (xw, yw) is set corresponding to the
wave direction, and the wave height is calculated in the rectangular domain
A0B0C0D0 including the domain ABCD.

Neglecting the wave refraction effect, waves are assumed to propagate in the
same direction as the wind. The xw-axis is subdivided by mesh intervals of Δxw. The
fetch F is added from upwind to downwind along the xw-axis using Eq. (38). When
a grid point is located on land and the downslope condition of dZ/dxw ≤ 0 is
satisfied, the local fetch is reset to F = 0 (Eq. (40)). Also we reset F to 0 on
structures. When the grid point is located in the lake, F is recalculated. By this

Figure 5.
Flowchart for numerical calculation using Typ. 5 BG model.
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procedure, the wave-sheltering effect by a sand spit or a structure on wind-wave
development is taken into account. Then, the significant wave height is calculated
with Wilson’s [17] equation (Eq. (41)) using the wind fetch F and wind velocity U
[18], and this wave height is assumed to be equal to the breaker height. Simulta-
neously, the wave power P was calculated and assigned to each grid point in the
coordinate system (xw, yw). The calculation of the P value is independently carried
out along each xw-axis, similarly to the Type 5. The beach changes are calculated by
explicitly solving the continuity equations on the staggered meshes using the sand
transport fluxes obtained from Eq. (37). The flowchart for numerical simulation
using the Type 6 is shown in Figure 7.

The wind direction at each time step in the calculation of beach changes is
selected to be a value determined randomly so as to satisfy the probability distribu-
tion function of the wind direction, although the wind velocity is assumed to be
constant. For example, in Chapter 8, wind is assumed to blow uniformly from all
directions between 0 and 360°, that is, a symmetric circular distribution, together
with the calculation with asymmetric probability distribution of occurrence of wind
direction. In every time step of the calculation of beach changes, the wind direction
is reset randomly, and the distribution of the P value is recalculated.

2.7 Type 7 BG model

Tung et al. [19] predicted the evolution of ebb-tidal deltas using the Delft 3D
model. In their model, the full equations of waves and nearshore and tidal currents
were solved to predict three-dimensional bathymetric changes. Beck and Kraus [20]
have also carried out the numerical simulation of the development of an ebb-tidal
delta by solving the equations of waves and nearshore and ebb-tidal currents. For
practical applications, however, the development of a model by which bathymetric
changes can be more easily predicted and used to investigate measures against
beach erosion is also desirable. Therefore, the model described below was developed
[21, 22].

A model for predicting the formation of ebb-tidal deltas under the combined
effect of waves and ebb-tidal currents was developed on the basis of the BG model

Figure 6.
Definition of two coordinate systems around a lake.
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[23] with an analogy of the velocity distribution of ebb-tidal currents to the wave
diffraction coefficient, which was calculated using the angular spreading method
for irregular waves [5, 6].

Assume that the total sand transport q
!
is a linear sum of the sand transport due

to waves qw
!

and that due to ebb-tidal currents qR
!
,

q
!
¼ qw

!
þ qR :

!
(42)

For the equation of sediment transport due to waves, the equation in the Type 1
is improved to take the differences in the intensity of cross-shore and longshore
sand transports into account. Consider the Cartesian coordinates (x, y), where the
x- and y-coordinates are taken to be the cross-shore distance (positive for shore-
ward) and longshore distance parallel to the shoreline, respectively. Assume that
waves are obliquely incident to a coast with a slope of tanβ. Then, the net sand

transport flux due to waves qw
!

¼ ðqwx, qwyÞ is written as

Figure 7.
Flowchart for numerical calculation using Typ. 6 BG model.
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qwx ¼
Gwx

tan βc
tan βc cos θw �

∂Z

∂x

� 	

, (43a)

qwy ¼
Gwy

tan βc
tan βc sin θw �

∂Z

∂y

� 	

: (43b)

Here, Gwx and Gwy are given by

Gwx ¼ C0KxP (44a)

Gwy ¼ C0KyP (44b)

Here, qx is the cross-shore component of the sediment transport flux (positive
for shoreward), and qy is the longshore component of sediment transport flux. Kx

and Ky are the coefficients of cross-shore and longshore sand transports, respec-
tively. tanβc is the equilibrium slope for which zero net cross-shore transport occurs
when waves are incident from the direction normal to the slope.

Regarding Eq. (43), Serizawa et al. [21] used the sediment transport equation in
the Type 1. This implicitly assumes that the coefficients of cross-shore and
longshore sand transports are equivalent. Here, to take the difference in the inten-
sities of cross-shore and longshore sand transport into account, the coefficients of
cross-shore and longshore sand transports, Kx and Ky, are determined indepen-
dently. This equation is the same as the sand transport equation in the Type 2 BG
model without the additional term given by Ozasa and Brampton [1].

Regarding the sand transport flux qR
!

¼ ðqRx, qRyÞ due to ebb-tidal currents,

Eq. (45) of Bailard and Inman [8] is employed, which was derived in terms of the
seabed slope from the bedload transport formula of Bagnold [7] by a linear approx-
imation:

qRx ¼
GR

tanϕ
tanϕ cos θR �

∂Z

∂x

� 	

(45a)

qRy ¼
GR

tanϕ
tanϕ sin θR �

∂Z

∂y

� 	

(45b)

Here, the subscript R denotes the ebb-tidal currents, θR is the angle between the
direction of the ebb-tidal currents and the x-axis, and tanϕ is the angle of repose of
the sand. In the original equation of Bailard and Inman [8], the coefficient GR in
Eq. (45) is expressed in terms of the instantaneous velocity, the angle of repose of
the sand, and a friction factor, but here sand transport due to currents is assumed to
satisfy an equation of the same form as Eq. (45), and all these effects are included in
the coefficient GR in Eq. (45). The first and second terms in the parentheses in
Eq. (45) correspond to the action of currents and the downslope action due to
gravity, respectively.

In fact, the sand transport due to ebb-tidal currents is comprised of bedload
and suspended load, and Eq. (45), therefore, should be expressed by the ratio of
ebb-tidal currents to the falling velocity as in [24, 25]. However, in this study, it was
assumed that Eq. (45) could be employed as the total load formula, and GR is
given by

GR ¼
C0KRFwK

3
V �hc2 ≤Z ≤ hR2ð Þ

0 Z < � hc2; hR2 <Zð Þ

(

(46)
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Fw ¼
ECg

� �

bo

hc þ hR
(47)

KV ¼
V

V0
¼ KV1

h0
h

� �

(48)

KV1 ¼
V1

V0

� �

: (49)

Here, KR is the coefficient of sand transport due to ebb-tidal currents, and KV is
the ratio of the ebb-tidal current velocity to V0, V/V0, where V is the velocity of the
ebb-tidal currents and V0 is a reference velocity at the inlet. Fw is a characteristic
value of the intensity of wave action and is given by the wave energy flux at the
breaking point of the reference point, (ECg)b0, divided by the sum of hc and hR, as
in Eq. (47). V1 is the flow velocity of the ebb-tidal currents on the plane bottom. KV1

is the ratio of the velocity to the flow velocity at the inlet on the plane bottom. In
addition, h0 and h in Eq. (48) are the reference depth on the plane bottom and
water depth, respectively. hc2 and hR2 are the lower and upper limit depths of
bathymetric changes due to ebb-tidal currents, respectively.

Regarding the reason why GR is given as Eq. (46), GR in Eq. (45) represents the
work done by the ebb-tidal currents in sand movement and is proportional to the
energy dissipation rate of the ebb-tidal currents [7, 24]. Here, the action of the ebb-
tidal currents is evaluated in macroscopically, and Eq. (45) is assumed to have the
same form as Eq. (43); GR is expressed by the intensity of the ebb-tidal currents
relative to the wave intensity (ECg)b0 and is assumed to be zero outside the zone
between the upper and lower limit depths of bathymetric changes due to the ebb-
tidal currents. Furthermore, GR is assumed to be proportional to the third power of
the velocity ratio so that the energy dissipation rate is proportional to the third
power of the velocity [7, 24].

When the distribution of KV1, as expressed by Eq. (49), on a flat bottom is given,
the effect of a change in current velocity associated with a depth change is evaluated
using Eq. (48) so that the mass conservation of the fluid is satisfied. KV1 is calcu-
lated by applying the angular spreading method for irregular waves [5, 6], taking
into consideration the fact that the jet-like velocity distribution of ebb-tidal currents
at an inlet is very similar to the distribution of the wave diffraction coefficient at the
opening of offshore breakwaters. Finally, the coefficient of sand transport due to
ebb-tidal currents KR in Eq. (46) becomes a coefficient including the ratio of the
action due to the currents to the wave action. In the calculation, the mean beach
slope before the construction of artificial structures is assumed to be the equilibrium
slope, considering the long-term beach changes. Although the actions of waves and
ebb-tidal currents both simultaneously occur in a tidal inlet, it is assumed that there
is no sand supply during the ebb-tidal currents. Figure 8 shows the flowchart for
numerical simulation using the Type 7.

2.8 Type 8 BG model

When an artificial reef (submerged breakwater) is constructed on a coast with
detached breakwaters, strong shoreward currents are generated by the forced wave
breaking, producing rip currents at the opening between the artificial reef and the
existing detached breakwaters. The effects of these currents are not considered in
the Type 3, which employs only the wave field without calculating the nearshore
currents, although the effect of longshore currents is implicitly considered in the
sand transport equation described using the local wave characteristics. Here, the
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effect of the nearshore currents induced by forced wave breaking is incorporated
into the model by calculating the nearshore currents. Zanuttigh [26] and Kuroiwa
et al. [27] predicted the topographic changes around the low-crested structures by
numerical simulation using the so-called 3D model. In this study, an improved BG
model is proposed to predict the topographic changes around the artificial reefs. In
this study, the sand transport equation based on the concept of the equilibrium
slope is employed.

The Type 3 BG model is improved by taking both the wave field and the current
velocity at a local point into account. The fundamental equations of the model are
given by Eqs. (50)–(54) in the Cartesian coordinates (x, y), assuming that the sand

transport flux q
!
= (qx, qy) is a linear sum of the component due to waves,

qw
!

= (qwx, qwy), and that due to currents, qc
!

= (qcx, qcy):

q
!
¼ qw

!
þ qc

!
�hc ≤Z ≤ hRð Þ (50)

Figure 8.
Flowchart for numerical calculation using Typ. 7 BG model.
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qw
!

¼ C0
Pw

tan βc
tan βc ew

!
� b1 ∇Z


!
� �

(51)

Pw ¼ Kw � ρ um
3 (52)

qc
!

¼ C0
Pc

tanϕ
tanϕ ec

!
� b2 ∇Z


!
� �

(53)

Pc ¼ Kc � ρ um
2V (54)

Here, q
!
is the total sand transport, qw

!
is the sand transport due to waves, qc

!
is

the sand transport due to currents, ec
!
is the unit vector in the current direction, and

um is the amplitude of the seabed velocity due to the orbital motion of waves

defined by Eq. (14) in the Type 3 BG model. b1 ¼ cos α1j j ¼ ew
!

•∇Z

!

�
�
�

�
�
�

.

∇Z

!
�
�
�

�
�
�, α1 is

the angle between the wave direction and the direction normal to the contour lines,
V is the velocity of the currents, Kw and Kc are the coefficients of sand transport due

to waves and currents, respectively, b2 ¼ cos α2j j ¼ ec
!
•∇Z

!

�
�
�

�
�
�

.

∇Z

!
�
�
�

�
�
�, α2 is the angle

between the direction of the currents and the direction normal to the contour lines,
and tanϕ is the slope of the angle of repose of sand. Here, b2 is assumed to be 0 in
the calculation.

The sand transport equations of Eqs. (51) and (53) were derived on the basis of
Bagnold’s concept as the sand transport equation in the Type 7 BG model. Eq. (51),
expressing the effect due to waves, is the same as the equation when assuming that
the coefficient of cross-shore sand transport is equivalent to that of longshore sand
transport, and the Ozasa and Brampton’s term [1] is excluded from the sand trans-
port equation in the Type 3.

In Eq. (53), the wave power by which sand transport is caused by nearshore
current is assumed to have the form of um

2V, referring the previous studies on
3D beach change models in the nearshore zone [4, 12, 28–31]. In the calculation of
beach changes, the wave field and nearshore currents are calculated first, and
then beach changes are predicted.

Similarly to the calculation in the Type 3 BG model, the wave field is calculated
using the energy balance equation [9] with the energy dissipation term due to wave
breaking [10]. As the directional spectrum of the incident waves, the combination
of the Bretschneider-Mitsuyasu-type frequency spectrum and the Mitsuyasu-type
directional function is used [11]. To calculate the nearshore currents, the upwind
finite-difference scheme is used for the 2-D momentum equation [4], along with
the lateral diffusion term of Larson and Kraus [32]. Because recurrent feedback
calculations are necessary in response to the topographic changes in this calculation,
the energy balance equation method is used to reduce the calculation load.

In the calculation of the wave field on land, the imaginary depth is assumed
between hR and the shoreline. In this case, the imaginary depth h’ can be obtained
from Eq. (18) using the minimum depth h0 and hR. In particular, in the calculation
in Chapter 4, h0 is assumed to be 1 m. The wave energy is set to be 0 in the area with
an elevation higher than the berm height. Although hc is assumed to be 2.5H, where
H is the wave height at a local point, the increment due to the effect of the strong rip
currents is evaluated as

hc
0 ¼ 1þ a V=umð Þf ghc: (55)
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Here, V is the velocity of the nearshore currents, and in the calculation in
Chapter 4, a coefficient of 0.5 is employed. Similar to the calculation in the Type 1
BG model, beach changes are obtained by solving the continuity equation. Figure 9
shows the flowchart for the Type 8.

Figure 9.
Flowchart for numerical calculation using Typ. 8 BG model.
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3. Discretization method

3.1 Discretization of mass conservation equation

Beach changes can be calculated using the mass conservation equation (Eq. (28)
in Chapter 1). In the calculation, the coastal domain is discretized using 2D
elements with widths Δx and Δy, as schematically shown in Figure 10. The calcu-
lation points of the seabed elevation Z and sand transport rates are set in staggered
meshes with a difference of 1/2 mesh, and the equations are solved by the explicit
finite-difference method.

First, the calculation point of the elevation Z at ðxi, yjÞ ¼ iΔx; jΔyð Þ is taken at the

center of the cell, as shown in Figure 11, and Z i;jð Þ ¼ Zðxi, yj, tÞ (1 ≤ i ≤ Nx,

1 ≤ j ≤ Ny) is evaluated at each point. Here, the subscripts i and j are the cell
numbers taken in the x- and y-directions, and Nx and Ny are the numbers of cells
in the x- and y-directions, respectively. Then, qx i�1=2;jð Þ (1 ≤ i ≤ Nx + 1, 1 ≤ j ≤ Ny)

and qy i;j�1=2ð Þ (1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny + 1) are set at points i� 1=2ð ÞΔx; jΔyð Þ and

iΔx; j� 1=2ð ÞΔyð Þ, which are separated from the points Z(i, j) by 1/2 mesh in the x-
and y-directions, respectively.

When the sand transport flux q
!
¼ ðqx, qyÞ is calculated, the seabed elevation

Z0
i;jð Þ ¼ Zðxi, yj, tþ ΔtÞ after time Δt can be calculated using Eq. (56), which is the

discretized form of Eq. (29) in Chapter 1:

Z0
ði, jÞ ¼ Zði, jÞ þ qx i�1=2;jð Þ � qx iþ1=2;jð Þ

n o
Δt

Δx

� �

þ qy i;j�1=2ð Þ � qy i;jþ1=2ð Þ

n o
Δt

Δy

� � (56)

Figure 10.
Calculation domain and meshes.
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In the calculation of Eq. (56) in a closed system, sand transport is set to 0 along
the outer boundaries of the domain as the boundary conditions. A free boundary
condition of dqx=dx ¼ 0 or dqy=dy ¼ 0 is often set, where sand freely enters or

passes through the boundary. In this case, the value at the boundary is evaluated to
be the same value as the sand transport evaluated at an inner point.

As a boundary condition of the structure, sand transport is set to 0 along the
boundary. In the calculation of the Type 1 BG model, given the initial seabed
topography, the distribution of Hb, αb, hc, and hR, and the equilibrium slope, sand
transport fluxes (qx, qy) are calculated using the equations given later, and the
change in seabed elevation after time Δt is calculated using Eq. (56). These pro-
cedures are repeated recurrently.

3.2 Discretization of sand transport equation

All the BG models except the Types 2 and 7 are expressed as

q
!
¼ A1 ew

!
þ A2 ∇Z

!
þ A3 tan β es ,

!
(57)

where ew
!
, ∇Z

!
, and tan β es

!
are given by Eqs. (3), (9), and (11) in Chapter 1.

When using the vector expression of Eq. (57), the coefficients of the sand transport
equation of the Type 1 (Eq. (58)) are given by Eq. (59):

q
!
¼ C0

K1P

tan βc
tan βc ew

!
� ∇Z

!
�

h

(58)

A1 ¼ C0K1P (59a)

A2 ¼ �
A1

tan βc
(59b)

Figure 11.
Arrangement of variables in discretization.
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A3 ¼ 0 (59c)

Similarly, the coefficients of the sand transport equation of the Type 3 in
Eq. (60) are given by Eq. (61):

q
!
¼ C0

P

tan βc

Kn tan βc ew
!

� cos αj j ∇Z
!� �

þ Ks � Knð Þ sin α�
K2

tan β

∂H

∂s

� 

tan β es
!

8

>
>
<

>
>
:

9

>
>
=

>
>
;

�hc ≤Z ≤ hRð Þ

(60)

A1 ¼ C0KnP (61a)

A2 ¼ �
cos αj j

tan βc
A1 (61b)

A3 ¼
1

Kn tan βc
Ks � Knð Þ sin α�

K2

tan β

∂H

∂s

� 

A1 (61c)

Since the sand transport equations of the various types can be written as the
form in Eq. (57), the sand transport flux of Eq. (57) can be written as x- and y-
component expressions for use in the calculation procedure as follows:

qx ¼ A1 cos θw þ A2 ∂Z=∂xð Þ � A3 ∂Z=∂yð Þ (62a)

qy ¼ A1 sin θw þ A2 ∂Z=∂yð Þ þ A3 ∂Z=∂xð Þ (62b)

Using Eq. (62), the four components of the sand transport equation in Eq. (56)
are expressed as follows:

qx i�1=2;jð Þ is calculated as

qx i�1=2;jð Þ ¼ A1 i�1=2;jð Þ cos θw i�1=2;jð Þ

þ A2 i�1=2;jð Þ ∂Z=∂xð Þ i�1=2;jð Þ

� A3 i�1=2;jð Þ ∂Z=∂yð Þ i�1=2;jð Þ,

(63)

where

∂Z=∂xð Þ i�1=2;jð Þ ¼
Z i;jð Þ � Z i�1;jð Þ

Δx
, (64)

∂Z=∂yð Þ i�1=2;jð Þ ¼
1

2
∂Z=∂yð Þ i�1;jð Þ þ ∂Z=∂yð Þ i;jð Þ

n o

¼
Z i�1;jþ1ð Þ � Z i�1;j�1ð Þ þ Z i;jþ1ð Þ � Z i;j�1ð Þ

4Δy
:

(65)

qx iþ1=2;jð Þ is calculated as

qx iþ1=2;jð Þ ¼ Eq: 63ð Þ½ �i¼iþ1: (66)

qy i;j�1=2ð Þ is calculated as

qy i;j�1=2ð Þ ¼ A1 i;j�1=2ð Þ sin θw i;j�1=2ð Þ

þ A2 i;j�1=2ð Þ ∂Z=∂yð Þ i;j�1=2ð Þ

þ A3 i;j�1=2ð Þ ∂Z=∂xð Þ i;j�1=2ð Þ,

(67)
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where

∂Z=∂yð Þ i;j�1=2ð Þ ¼
Z i;jð Þ � Z i;j�1ð Þ

Δy
, (68)

∂Z=∂xð Þ i;j�1=2ð Þ ¼
1

2
∂Z=∂xð Þ i;j�1ð Þ þ ∂Z=∂xð Þ i;jð Þ

n o

¼
Z iþ1;j�1ð Þ � Z i�1;j�1ð Þ þ Z iþ1;jð Þ � Z i�1;jð Þ

4Δx
:

(69)

Finally, qy i;jþ1=2ð Þ is calculated as

qy i;jþ1=2ð Þ ¼ Eq: 67ð Þ½ �j¼jþ1: (70)

3.3 Procedure to estimate sand transport near berm top and depth
of closure

In the estimation of the intensity of sand transport near the berm top and at the
depth of closure, the intensity of sand transport is linearly reduced to 0 by multi-
plying by the reduction ratio near hR or hc to prevent sand from being deposited in
the zone higher than hR and the beach from being eroded in the zone deeper than hc
[33]. In this method, the evaluation method for sand transport on an exposed rock
bed in the 3-D beach change model proposed by Ikeno et al. [34] was employed as in

[35]. The sand transport fluxes q
!
¼ ðqx, qyÞ are reduced by multiplying by a coeffi-

cient μ as in Eq. (71), where μ is given by Eq. (72). ΔZ0 is the thickness of the sand
layer from which the reduction in sand transport begins, and ΔZ is given by Eq. (73)
near hR and by Eq. (74) near hc (Figure 12). On a fixed bed comprising a coral reef,
Eq. (74) is employed near the depth of the solid bed.

q0
!

¼ μ q
!

(71)

μ ¼ μ Zð Þ ¼
ΔZ

ΔZ0
0≤ μ≤ 1ð Þ (72)

ΔZ ¼ hR � Z near Z ¼ hRð Þ (73)

ΔZ ¼ Z � �hcð Þ near Z ¼ �hcð Þ (74)

The calculation points of the sand transport and seabed elevation have a 1/2
mesh difference because of the staggered meshes with a 1/2 mesh interval. Here, on
the basis of the direction of sand transport, the Z value at a point immediately
downcoast and upcoast of the calculation point of sand transport is used in Eqs. (73)
and (74), respectively. For example, in the calculation of the x-component in
Eq. (74), the Z value at a point immediately upcoast of the calculation point of sand
transport is used and is calculated using Eq. (75) as in Figure 13:

q0x i�1=2;jð Þ ¼ μiup qx i�1=2;jð Þ near Z ¼ �hcð Þ (75a)

μiup ¼
ΔZiup

ΔZ0
¼

Z iup;jð Þ � �hcð Þ

ΔZ0
(75b)

iup ¼
i� 1 qx i�1=2;jð Þ ≥0

� �

i qx i�1=2;jð Þ <0
� �

8

>
<

>
:

(75c)
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Here, the subscript iup represents the location of the Z value at a point immedi-
ately updrift of qx (Figure 13). A similar method can be used for the y-component
of q. In the calculation of the x-component in Eq. (73), the Z value at a point
immediately downcoast of the calculation point of sand transport is used and
calculated using Eq. (76) (Figure 14).

q0x i�1=2;jð Þ ¼ μidown qx i�1=2;jð Þ near Z ¼ hRð Þ (76a)

μidown ¼
ΔZidown

ΔZ0
¼

hR � Z idown;jð Þ

ΔZ0
(76b)

idown ¼

i qx i�1=2;jð Þ ≥0
� �

i‐1 qx i�1=2;jð Þ <0
� �

8

>
<

>
:

(76c)

Here, the subscript idown represents the location of the Z value at a point
immediately downdrift of qx (Figure 14). A similar method can be used for the
y-component of q. Here, the thickness of the sand layer ΔZ0, from which the

Figure 12
Reduction coefficient μ of sand tranport rate near berm height hR and depth of closure hc.
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reduction in sand transport begins, in Eq. (72) was empirically determined. In the
calculation in Chapter 3 using the Type 1 BG model, ΔZ0 is determined using
Eq. (77), considering that the reduction of sand transport begins when the slope
angle coincides with the angle of the slope in a right-angled triangle whose base has
a length of one mesh and whose height is equal to the depth difference, similarly to
[2, 6]:

ΔZ0 ¼
1

2
tan βc � ΔL ΔL ¼ min Δx;Δyð Þð Þ (77)

In the other calculation, ΔZ0 is selected as a value within the following range:

ΔZ0 ¼ 0:05‐0:2ð Þhc: (78)

Figure 13.
Method selecting Z value near hc depending on the direction of sand transport qx when calculating reduction
coefficient μ of sand transport rate.
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3.4 Procedure for calculating cross-shore sand movement due to the
effect of gravity

Regarding the seaward sand movement in regions above hR and deeper than hc,
the falling of sand to the deep sea bottom when the local slope exceeds the slope of
the angle of repose of sand was evaluated by calculating the sand transport flux due

to the gravity [35]. In this calculation, the sand transport flux qg
!

due to the effect of

gravity on a steep slope is calculated by Eq. (79) (Figure 15), given the slope of the
angle of repose of sand.

qg
!

¼ Ag tan β � tanϕð Þ �en
!

� �

tan β≥ tanϕð Þ (79)

Figure 14.
Method selecting Z value near hR depending on the direction of sand transport qx when calculating reduction
coefficient μ of sand transport rate.
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Here, en
!

is the unit vector normal to the contour lines (shoreward), where n is
the local coordinate taken along the direction normal (shoreward) to the contour

lines, tan β ¼ ∇Z

!
�
�
�

�
�
� is the local slope, and tanϕ is the slope of the angle of repose of

sand particle. Here, we assume tanϕ ¼ 1=2. Sand transport with flux qg
!

takes place

when the local slope exceeds the slope of the angle of repose of sand, the direction

of qg
!

is down the slope and normal to the contour lines, and the strength is propor-

tional to the deviation between the local slope and the slope of the angle of repose
with proportionality coefficient Ag. Thus, Eq. (79) expresses the effect of the seabed
slope, that is, the steeper the seabed slope, the larger the sand transport. Moreover,

when the local slope is gentler than the slope of the angle of repose, qg
!

is set to 0.

Using Eq. (80), Eq. (79) can be written as Eq. (81):

∇Z

!

¼ tan β en
!
¼ ∂Z=∂n (80)

qg
!

¼ Ag tanϕ= tan β � 1ð Þ ∇Z

!

tan β≥ tanϕð Þ (81)

Eq. (81) can be expressed by the basic expression for sand transport of
Eq. (57), as mentioned earlier, and the coefficients A1, A2, and A3 of each term of
Eq. (57) are given by

A1 ¼ A3 ¼ 0 (82a)

A2 ¼ Ag tanϕ= tan β � 1ð Þ : (82b)

Accordingly, qg
!

can be evaluated in the same manner as Eq. (57) using the

coefficients given by Eq. (82), assuming that the coefficient Ag is known. Since sand
transport due to the effect of gravity is much faster than that due to waves, a large
value can be selected for Ag. However, when an excessively large value is employed
for Ag, it is difficult to stably carry out the numerical calculation. Here, Ag is
designated as the maximum value in a range, in which the numerical simulation can
stably proceed as follows.

Figure 15.
Seaward sand transport due to gravity when local slope exceeds slope of repose angle.
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First, qg
!

in Eq. (79) is reduced to Eq. (83) using Eq. (80), and the cross-shore

sand transport component qn becomes Eq. (84). Assuming the one-dimensional
problem in the n-direction, Eq. (84) is substituted into the continuity equation of
Eq. (85), and we obtain the one-dimensional diffusion equation of Eq. (86) in the n-
direction with a diffusion coefficient of Ag. To solve Eq. (86) using the explicit
finite-difference method, Eq. (87) must be satisfied as the stability condition of
Eq. (86):

qg
!
¼ Ag tanϕ� ∂Z=∂nð Þ en

!
(83)

qn ¼en
!

• qg
!

¼ Ag tanϕ� ∂Z=∂nð Þ (84)

∂Z

∂t
¼ �

∂qn
∂n

(85)

∂Z

∂t
¼ Ag

∂Z2

∂n2
(86)

Δt≤0:5
Δnð Þ2

Ag
(87)

Here, Δn is the mesh interval along the n-axis and Δt is the time interval.
Although Eq. (87) is normally used to determine the upper limit of Δt given Ag and
Δn, here it is employed as a relationship to determine the upper limit of Ag given Δn
and Δt. Eq. (87) can be rewritten as Eq. (88) to provide a stability condition for Ag.
Thus, the right term of Eq. (88) gives the upper limit of Ag:

Ag ≤0:5
Δnð Þ2

Δt
(88)

The coefficient Ag that ensures the stability of Eq. (89) is given:

Ag ¼ RS
ΔLð Þ2

Δt
(89a)

RS ¼ 0:2 (89b)

ΔL ¼ min Δx;Δyð Þ : (89c)

Finally, qg
!

is calculated in the same manner as Eq. (57) using Eqs. (82) and (89).

In the numerical simulation, sand transport fluxes due to both waves and the effect
of gravity are calculated at each time step, and the larger value at a location is
employed as in Eq. (90):

q
!
¼

qg
!

if qg
!
�
�
�

�
�
�> q

!
due to waves

�
�
�

�
�
�

� �

q
!
due to waves otherwiseð Þ

8

>
<

>
:

(90)
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