
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 8

Applications of General Regression Neural Networks in
Dynamic Systems

Ahmad Jobran Al-Mahasneh, Sreenatha Anavatti,
Matthew Garratt and Mahardhika Pratama

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.80258

Abstract

Nowadays, computational intelligence (CI) receives much attention in academic and indus-
try due to a plethora of possible applications. CI includes fuzzy logic (FL), evolutionary
algorithms (EA), expert systems (ES) and artificial neural networks (ANN). Many CI com-
ponents have applications in modeling and control of dynamic systems. FL mimics the
human reasoning by converting linguistic variables into a set of rules. EA are metaheuristic
population-based algorithms which use evolutionary operations such as mutation, cross-
over, and selection to find an optimal solution for a given problem. ES are programmed
based on an expert knowledge to make informed decisions in complex tasks. ANN models
how the neurons are connected in animal nervous systems. ANN have learning abilities and
they are trained using data to make intelligent decisions. Since ANN have universal approx-
imation abilities, they can be used to solve regression, classification, and forecasting prob-
lems. ANNs are made of interconnected layers where every layer is made of neurons and
these neurons have connections with other neurons. These layers consist of an input layer,
hidden layer/layers, and an output layer.

Keywords: applications, general regression, neural networks, dynamic systems

1. Introduction

Nowadays, computational intelligence (CI) receives much attention in academic and industry

due to a plethora of possible applications. CI includes fuzzy logic (FL), evolutionary algo-

rithms (EA), expert systems (ES), and artificial neural networks (ANN). Many CI components

have applications in modeling and control of dynamic systems. FL mimics the human reason-

ing by converting linguistic variables into a set of rules. EA are metaheuristic population-based

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

algorithms which use evolutionary operations such as mutation, crossover, and selection to

find an optimal solution for a given problem. ES are programmed based on an expert knowl-

edge to make informed decisions in complex tasks. ANN model how the neurons are

connected in animal nervous systems. ANN have learning abilities and they are trained using

data to make intelligent decisions. Since ANN have universal approximation abilities [1], they

can be used to solve regression, classification, and forecasting problems. ANNs are made of

interconnected layers where every layer is made of neurons, and these neurons have connec-

tions with other neurons. These layers consist of an input layer, hidden layer/layers, and an

output layer. ANN have two major types as shown in Figure 1: feed-forward neural network

(FFNN) and recurrent neural network (RNN). In FFNN, the data can only flow from the input

to hidden layer, while in RNN, the data can flow in any direction. The output of a single-

hidden-layer FFNN can be written as

Y ¼ WHO h xW IH þ bIð Þð Þ þ bO (1)

where Y is the network output, WHO is the hidden-output layers weights matrix, h is the

hidden layer activation function, x is the input vector, W IH is the input-hidden layers weights

matrix, bI is the input layer bias vector, and bO is the hidden layer bias vector.

The output of a single-hidden-layer RNN with a recurrent hidden layer can be written as

Y ¼ WHO h x W IH þ ht�1 WHH þ bIð Þð Þ þ bO (2)

The training of neural networks involves modifying the neural network parameters to reduce

a given error function. Gradient descent (GD) [2, 3] is the most common ANN training

method:

θnew ¼ θold � λ
∂E

∂θ
(3)

Figure 1. Feed-forward and recurrent networks.

Digital Systems134

where θ are the network parameters, λ is the learning rate, and E is the error function:

E ¼
1

N

XN

I¼1

y� tð Þ2 (4)

where N is the number of samples, y is the network output, and t is the network target.

2. General regression neural network (GRNN)

The general regression neural network (GRNN) is a single-pass neural network which uses a

Gaussian activation function in the hidden layer [4]. GRNN consists of input, hidden, summa-

tion, and division layers.

The regression of the random variable y on the observed values X of random variable x can be

found using

E yjX½ � ¼

Ð
∞

�∞ yf X; yð ÞdyÐ
∞

�∞ f X; yð Þdy
(5)

where f X; yð Þ is a known joint continuous probability density function.

When f X; yð Þ is unknown, it should be estimated from a set of observations of x and y. f X; yð Þ

can be estimated using the nonparametric consistent estimator suggested by Parzen as follows:

f̂ X;Yð Þ ¼
1

2π pþ1ð Þ=2 σ pþ1ð Þ

1

n

Xn

i¼1

e�
X�Xið Þ

T
X�Xið Þ

2σ2 e�
Y�Yið Þ

2

2σ2 (6)

where n is the number of observations, p is the dimension of the vector variable, and x and σ

are the smoothing factors.

Substituting (6) into (5) leads to

Ŷ Xð Þ ¼

Pn
i¼1 e

� X�Xið Þ
T

X�Xið Þ
2σ2

Pn
i¼1 e

� X�Xið Þ
T

X�Xið Þ
2σ2

Ð
∞

�∞ ye
�

Y�Yið Þ
2

2σ2 dy

Ð
∞

�∞ e
�

Y�Yið Þ
2

2σ2 dy

(7)

After solving the integration, the following will result:

Ŷ Xð Þ ¼

Pn
i¼1 ye

� X�Xið Þ
T

X�Xið Þ
2σ2

Pn
i¼1 e

� X�Xið Þ
T

X�Xið Þ
2σ2

(8)

2.1. Previous studies

GRNN was used in different applications related to modeling, system identification, predic-

tion, and control of dynamic systems including: feedback linearization controller [5], HVAC

Applications of General Regression Neural Networks in Dynamic Systems
http://dx.doi.org/10.5772/intechopen.80258

135

process identification and control [6], modeling and monitoring of batch processes [7], cooling

load prediction for buildings [8], fault diagnosis of a building’s air handling unit [9], intelligent

control [10], optimal control for variable-speed wind generation systems [11], annual power

load forecasting model [12], vehicle sideslip angle estimation [13], fault diagnosis for methane

sensors [14], fault detection of excavator’s hydraulic system [15], detection of time-varying

inter-turn short circuit in a squirrel cage induction machine [16], system identification of

nonlinear rotorcraft heave mode [17], and modeling of traveling wave ultrasonic motors [18].

Some significant modifications of GRNN include using fuzzy c-means clustering to cluster the

input data of GRNN [19], modified GRNN which uses different types of Parzen estimators to

estimate the density function of the regression [20], density-driven GRNN combining GRNN,

density-dependent kernels and regularization for function approximation [21], GRNN to

model time-varying systems [22], adapting GRNN for modeling of dynamic plants [23] using

different adaptation approaches including modifying the training targets, and adding a new

pattern and dynamic initialization of σ.

2.2. GRNN training algorithm

GRNN training is rather simple. The input weights are the training inputs transposed, and the

output weights are the training targets. Since GRNN is an associative memory, after training,

the number of the hidden neurons is equal to the number of the training samples. However,

this training procedure is not efficient if there are many training samples, so one of the

suggested solutions is using a data dimensionality reduction technique such as clustering or

principal component analysis (PCA). One of the novel solutions to data dimensionality reduc-

tion is using an error-based algorithm to grow GRNN [24] as explained in Algorithm 1. The

algorithm will check whether an input is required to be included in the training, based on

prediction error before training GRNN with that input. If the prediction error without includ-

ing that input is more than the certain level, then GRNN should be trained with it.

Digital Systems136

2.2.1. Reducing data dimensionality using clustering

Clustering techniques can be used to reduce the data dimensionality before feeding it to the

GRNN. k-means clustering is one of the popular clustering techniques. The k-means clustering

algorithm is explained in Algorithm 2. Also, results of comparing GRNN performance before

and after applying k-means algorithm are shown in Table 1. Although the training and testing

errors will increase, there are large reductions in the network size.

The aim of the algorithm is to minimize the distance objective function:

J ¼
X

N

i¼1

X

M

j¼1

xi � cj
�

�

�

�

2
(9)

2.2.2. Reducing data dimensionality using PCA

PCA can be used to reduce a large dataset into a smaller dataset which still carries most of the

important information from the large dataset. In a mathematical sense, PCA converts a num-

ber of correlated variables into a number of uncorrelated variables. PCA algorithm is explained

in Algorithm 3.

2.3. GRNN output algorithm

After GRNN is trained, the output of GRNN can be calculated using

Dataset Training error after/before k-means

MSE

Testing error after/before k-means

MSE

Size reduction %

Abalone 0.0177/0.002 0.0141/0.006 99.76

Building energy 0.047/3.44e-05 0.0165/0.023 99.76

Chemical sensor 0.241/0.016 0.328/0.034 97.99

Cholesterol 0.050/4.605e-05 0.030/0.009 92

Table 1. Using GRNN with k-means clustering.

Applications of General Regression Neural Networks in Dynamic Systems
http://dx.doi.org/10.5772/intechopen.80258

137

D ¼ X�W ið ÞT X�W ið Þ (10)

Ŷ ¼

P
N

i¼1 Woe
ðD=2σ2Þ

P
N

i¼1 e
D=2σ2ð Þ

(11)

where D is the Euclidean distance between the input X and the input weights W i, Wo is the

output weight, and σ is the smoothing factor of the radial basis function.

GRNN output calculation is explained in Algorithm 4.

Other distance measures can be also used such as Manhattan (city block), so (10) will become

D ¼ X�W i (12)

Dataset Training error after/before PCA MSE Testing error after/before PCA MSE Size reduction %

Abalone 0.197/0.002 0.188/0.006 99.8

Building energy 0.061/3.44e-05 0.049/0.023 99.6

Chemical sensor 0.241/0.016 0.328/0.034 98.3

Cholesterol 0.026/4.605e-05 0.028/0.009 92

Table 2. Using GRNN with PCA.

Digital Systems138

3. Estimation of GRNN smoothing parameter (σ)

Since σ is the only free parameter in GRNN and suitable values of it will improve GRNN

accuracy, it should be estimated. Since there is no optimal analytical solution for finding σ,

numerical approaches can be used to estimate it. The holdout method is one of the suggested

methods. In this method, samples are randomly removed from the training dataset; then using

the GRNNwith a fixed σ, the output is calculated using the removed samples; then the error is

calculated between the network outputs and the sample targets. This procedure is repeated for

different σ values. The smoothing parameter (σ) with the lowest sum of errors is selected as the

best σ. The holdout algorithm is explained in Algorithm 5.

Other search and optimization methods might be also used to find σ. For instance, genetic

algorithms (GA) and differential evolution (DE) are suitable options. Algorithm 6 explains

how to find σ using DE or GA. Also, the results of using DE and GA are depicted in Figure 2.

Applications of General Regression Neural Networks in Dynamic Systems
http://dx.doi.org/10.5772/intechopen.80258

139

Both of GA and DE can find a good approximation of σ within 100 iterations only; however,

DE converges faster since it is a vectorized algorithm.

4. GRNN vs. back-propagation neural networks (BPNN)

There are many differences between GRNN and BPNN. Firstly, GRNN is single-pass learning

algorithm, while BPNN needs two passes: forward and backward pass. This means that

GRNN consumes significantly less training time. Secondly, the only free parameter in GRNN

is the smoothing parameter σ, while in BPNN more parameters are required such as weights,

biases, and learning rates. This also indicates that GRNN quick learning abilities and its

suitability for online systems or for system where minimal computations are required. Also,

another difference is that since GRNN is an autoassociative memory network, it will store all

the distinct input/output samples while BPNN has a limited predefined size. This size growth

Figure 2. DE and GA used to estimate GRNN σ. (a) Estimation of σ using DE (b) MSE evolution when using DE to

estimate s (c) Estimation of σ using GA (d) MSE evolution when using GA to estimate σ.

Digital Systems140

issue is resolved by either using clustering or PCA (read Sections 2.21 and 2.2.2). Finally,

GRNN is based on the general regression theory, while BPNN is based on gradient-descent

iterative optimization method.

To show the advantages of GRNN over BPNN, a comparison is held using standard regression

datasets built inside MATLAB software [25]. For all the datasets, they are divided 70% for

training and 30% for testing. After training the network with the 70% training data, the output

of the neural network is found using the remaining testing data. The most notable advantage

of GRNN over BPNN is the shorter training time which confirms its selection for dynamic

systems modeling and control. Also, GRNN has less testing error which means it has better

generalization abilities than BPNN. The comparison results are summarized in Table 3.

5. GRNN in identification of dynamic systems

System identification is the process of building a model of unknown/partially known dynamic

system based on observed input/output data. Gray-box and black-box identification are two

common approaches of system identification. In the gray-box approach, a nominal model of a

dynamic system is known, but its exact parameters are unknown, so an identifier is used to

find these parameters. In the black-box approach, the identification is based only on the data.

Examples of black-box identification include fuzzy logic (FL) and neural networks (NN).

GRNN can be used to identify dynamic systems quickly and accurately. There are two

methods to use GRNN for system identification: the batch mode (off-line training) and sequen-

tial mode (online training). In the batch mode, all the observed data is available before the

system identification, so GRNN can be trained with a big chunk of the data, while in the

sequential mode only a few data samples are available for identification.

5.1. GRNN identification in batch training mode

In the batch mode, the observed data should be divided into training, validation, and testing.

GRNNwill be fed with all the training data to identify the system. Then in the validation stage,

the network should be tested with different data, usually randomly selected, and the error is

Type Dataset Training time (sec) Training error (MSE) Testing error (MSE)

GRNN Abalone 0.621 0.342 0.384

BPNN Abalone 1.323 0.436 0.395

GRNN Building energy 0.630 0.0731 0.628

BPNN Building energy 1.880 0.1152 0.631

GRNN Chemical sensor 0.701 0.888 1.316

BPNN Chemical sensor 1.473 0.228 1.584

GRNN Cholesterol 0.801 0.037 0.172

BPNN Cholesterol 2.099 0.061 0.215

Table 3. GRNN vs. BPNN training and testing performance.

Applications of General Regression Neural Networks in Dynamic Systems
http://dx.doi.org/10.5772/intechopen.80258

141

recorded for every validation test. Then the validation process is repeated several times.

Usually 10 times is standard. And then the average validation error is found based on all the

validation tests. This validation procedure is called k-fold cross validation a standard tech-

nique in machine learning (ML) applications. To test the generalization ability of an identified

model, a new dataset is used called testing dataset. Based on the model performance in the

testing stage, one can decide whether the model is suitable or not.

5.1.1. Batch training GRNN to identify hexacopter attitude dynamics

In this example, GRNN is used to identify the attitude (pitch/roll/yaw) of a hexacopter drone

based on real flight test data in the free flight mode. The data consist of three inputs: rolling,

pitching, and yawing control values and three outputs: rolling, pitching, and yawing rates. The

dataset contains 6691 data samples with a sample rate of 0.01 seconds. A total of 4683 samples

are used to train GRNN in the batch mode, and the remaining data samples (2008) are used for

testing. The results of hexacopter attitude identification are shown in Figure 3(a–c). The results

are accurate with very low error. MSE in training stage is 0.001139 and 0.00258 in the testing

stage. Also, the training time was only 0.720 seconds.

Figure 3. Attitude identification of hexacopter in batch training: (a) rolling rate identification, (b) pitching rate identifica-

tion, and (c) yawing rate identification.

Digital Systems142

5.2. GRNN identification in sequential training mode

In sequential training, the data flow once at a time which makes using the batch training

procedures impossible. So GRNN should be able to find the system model from only the

current and past measurements. So it is a prediction problem. Since GRNN converges to a

regression surface even with a few data samples and since it is accurate and quick, it can be

used in the online dynamic systems identification.

5.2.1. Sequential training GRNN to identify hexacopter attitude dynamics

To use GRNN in sequential mode, it is preferred to use the delayed output of the plant as an

input in addition to the current input as shown in Figure 4. The same data which was used for

batch mode is used in the sequential training. The inputs to GRNN are the control values of

Figure 4. Sequential training GRNN.

Figure 5. Attitude identification of hexacopter in sequential training: (a) rolling rate identification, (b) pitching rate

identification, and (c) yawing rate identification.

Applications of General Regression Neural Networks in Dynamic Systems
http://dx.doi.org/10.5772/intechopen.80258

143

rolling, pitching, and yawing and the delayed rolling, pitching, and yawing rates. The results

of using GRNN in the sequential training mode are shown in Figure 5(a–c). The results of

sequential training are more accurate than the results in batch training.

6. GRNN in control of dynamic systems

The aim of adding a closed-loop controller to the dynamic systems is either to reach the desired

performance or stabilize the unstable system. GRNN can be used in controlling dynamic

systems as a predictive or feedback controller. GRNN in control systems can be used as either

supervised or unsupervised. When GRNN is trained as a predictive then the controller input

and output data are known, so this is a supervised problem. On the other hand, if GRNN is

utilized as a feedback controller (see Figure 6) without being pretrained, only the controller

input data is known so GRNN have to find the suitable control signal u.

6.1. GRNN as predictive controller

To utilize GRNN as a predictive controller, it should be trained with input-output data from

another controller. For example, training a GRNNwith a proportional integral derivative (PID)

controller input/output data as shown in Figure 7. Then the trained GRNN can be used as a

controller.

6.1.1. Example 1: GRNN as predictive controller

If we have a discrete time system Liu [26] described as

Figure 6. Unsupervised learning problem in control.

Figure 7. Training GRNN as predictive controller.

Digital Systems144

y kþ 1ð Þ ¼ 0:8∗ sin y kð Þð Þ þ 15∗u kð Þ (13)

The desired reference is yd kð Þ ¼ 2∗ sin 0:1πtð Þ.

The perfect control law can be written as

u kð Þ ¼
yd kþ 1ð Þ

15
�
0:8∗ sin y kð Þð Þ

15
(14)

To train GRNN as a predictive controller, the system described in (13) and (14) is simulated for

50 seconds. Then the controller output u and the plant output ywere stored.GRNN is trainedwith

the plant output as input and the controller output as output. For any time step the plant output is

fed to GRNN, and the controller output u is estimated. The estimated controller output byGRNN

and the perfect controller output are almost identical as shown in Figure 8. Also, the tracking

performance after using GRNN as a predictive controller is very accurate as shown in Figure 9.

6.2. GRNN as an adaptive estimator controller

Since GRNN has robust approximation abilities, it can be used to approximate the dynamics of

a given system to find the control law especially if the system is partially known or unknown.

Assume there is a nonlinear dynamic system written as

_x ¼ f x; tð Þ þ buþ d (15)

where _x is the derivative of the states, f x; tð Þ is a known function of the states, b is the input

gain, and d is the external disturbance.

Figure 8. Perfect vs. estimated GRNN controller output.

Applications of General Regression Neural Networks in Dynamic Systems
http://dx.doi.org/10.5772/intechopen.80258

145

The perfect control law can be written as

u ¼
1

b
_x � f x; tð Þ � dð Þ (16)

If f x; tð Þ is unknown, then the control law in (16) cannot be found; hence, the alternative is

using GRNN to estimate the unknown function f x; tð Þ. To derive the update law of GRNN

weights, let us define the objective function as MSE error function as follows:

E ¼
1

2
ŷ � yð Þ2 (17)

where ŷ is the estimation of GRNN and y is the optimal value of f x; tð Þ. To derive the update

law of the GRNN weights, the error should be minimized with respect to GRNN weights W :

∂E

∂W
¼ ŴH � y
� �

∗H (18)

where Ŵ is the GRNN current hidden-output layers weights and H is the hidden layer output,

so the update law of GRNN weights will be

W iþ1 ¼ W i þH ŴH � y
� �

(19)

6.3. Example 2: using GRNN to approximate the unknown dynamics

Let us consider the same discrete as in example 1:

Figure 9. GRNN tracking performance.

Digital Systems146

y kþ 1ð Þ ¼ f kð Þ þ 15∗u kð Þ (20)

The desired reference is yd kð Þ ¼ 2∗ sin 0:1πtð Þ

where f kð Þ is unknown nonlinear function.

The perfect control law can be written as

u kð Þ ¼
�f kð Þ

15
þ
yd kð Þ

15
(21)

GRNN is used to estimate the unknown function f kð Þ. With applying the update law in (19),

f kð Þ is estimated with an acceptable accuracy as shown in Figure 10. MSE between the ideal

and the estimated f kð Þ is 0.0033. The accurate controller tracking performance is also shown

Figure 11.

6.4. GRNN as an adaptive optimal controller

GRNN has learning abilities which means it is suitable to be an adaptive intelligent controller.

Rather than approximating the unknown function in the control law (16), one can use GRNN

to approximate the whole controller output as shown in Figure 12. The same update law as in

(19) can be used to update GRNN weights to approximate the controller output u.

6.4.1. Example 3: using GRNN as an adaptive controller

Let us consider the same discrete system as in (13):

y kþ 1ð Þ ¼ 0:8∗ sin y kð Þð Þ þ 15∗u kð Þ

Figure 10. Using GRNN to estimate the unknown dynamics.

Applications of General Regression Neural Networks in Dynamic Systems
http://dx.doi.org/10.5772/intechopen.80258

147

Figure 11. GRNN tracking performance for example 2.

Figure 12. Training GRNN as an adaptive controller.

Figure 13. GRNN tracking performance for example 3.

Digital Systems148

with the same desired reference yd kð Þ ¼ 2∗ sin 0:1πtð Þ, but in this case GRNN is used to estimate

the full controller output u as shown in Figure 14 and the tracking performance is shown in

Figure 13.

6.4.2. Example 4: using GRNN as an adaptive controller

Let us use GRNN to control a more complex discrete plant [27] described as

y kþ 1ð Þ ¼ 0:2 cos 0:8 y kð Þ þ y k� 1ð Þð Þð Þ þ 0:4 sin 0:8 y k� 1ð Þ þ y kð Þ þ 2u kð Þ þ u k� 1ð Þð Þð Þ

þ 0:1 9þ y kð Þ þ y k� 1ð Þð Þ þ
2 u kð Þ þ u k� 1ð Þð Þ

ð1þ cos y kð Þð Þ

(22)

Figure 14. GRNN Estimated control law for example 3.

Figure 15. GRNN as an adaptive controller in Example 4.

Applications of General Regression Neural Networks in Dynamic Systems
http://dx.doi.org/10.5772/intechopen.80258

149

The desired reference in this case is

yd kð Þ ¼ 0:8þ 0:05 sin πk=50ð Þ þ sin πk=100ð Þ þ sin sin πk=150ð Þð Þð Þ

The tracking performance of adaptive GRNN is shown in Figure 15.

7. MATLAB examples

In this section, GRNN MATLAB code examples are provided.

7.1. Basic GRNN Commands in MATLAB

In this example, GRNN is trained to find the square of a given number.

To design a GRNN in MATLAB:

Firstly, create the inputs and the targets and specify the spread parameter:

Secondly, create GRNN:

To view GRNN after creating it:

The results are shown in Figure 16.

To find GRNN output based on a given input:

The result is 17.

Digital Systems150

7.2. The holdout method to find σ

Figure 16. View GRNN in MATLAB.

Applications of General Regression Neural Networks in Dynamic Systems
http://dx.doi.org/10.5772/intechopen.80258

151

Author details

Ahmad Jobran Al-Mahasneh1, Sreenatha Anavatti1*, Matthew Garratt1 and

Mahardhika Pratama2

*Address all correspondence to: s.anavatti@adfa.edu.au

1 School of Engineering and Information Technology, The University of New South Wales

Canberra, ACT, Australia

2 School of Computer Science and Engineering, Nanyang Technological University, Singapore

References

[1] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal

approximators. Neural Networks. 1989;2(5):359-366

[2] Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt algorithm.

IEEE Transactions on Neural Networks. 1994;5(6):989-993

[3] Hecht-Nielsen R. Theory of the backpropagation neural network. In: Neural Networks for

Perception. Netherlands: Elsevier; 1992. pp. 65-93

[4] Specht DF. A general regression neural network. IEEE Transactions on Neural Networks.

1991;2(6):568-576

[5] Schaffner C, Schroder D. An application of general regression neural network to nonlinear

adaptive control. In: Fifth European Conference on Power Electronics and Applications,

IET; 1993. pp. 219-224

[6] Ahmed O, Mitchell JW, Klein SA. Application of general regression neural network in

hvac process identification and control, Technical report. Atlanta, GA (United States):

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc; 1996

[7] Kulkarni SG, Chaudhary AK, Nandi S, Tambe SS, Kulkarni BD. Modeling and monitoring

of batch processes using principal component analysis assisted generalized regression

neural networks. Biochemical Engineering Journal. 2004;18(3):193-210

[8] Ben-Nakhi AE, Mahmoud MA. Cooling load prediction for buildings using general regres-

sion neural networks. Energy Conversion andManagement. 2004;45(13–14):2127-2141

[9] Lee WY, House JM, Kyong NH. Subsystem level fault diagnosis of a building’s air-

handling unit using general regression neural networks. Applied Energy. 2004;77(2):

153-170

[10] Sahroni A. Design of intelligent control system based on general regression neural net-

work algorithm. GSTF Journal on Computing (JoC). 2018;2(4):103-110

Digital Systems152

[11] Hong CM, Cheng FS, Chen CH. Optimal control for variable-speed wind generation

systems using general regression neural network. International Journal of Electrical Power

and Energy Systems. 2014;60:14-23

[12] Li HZ, Guo S, Li CJ, Sun JQ. A hybrid annual power load forecasting model based on

generalized regression neural network with fruit fly optimization algorithm. Knowledge-

Based Systems. 2013;37:378-387

[13] Wei W, Shaoyi B, Lanchun Z, Kai Z, Yongzhi W, Weixing H. Vehicle sideslip angle

estimation based on general regression neural network. Mathematical Problems in Engi-

neering. 2016;2016:1-7

[14] Huang K, Liu Z, Huang D. Fault diagnosis for methane sensors using generalized regres-

sion neural network. International Journal of Online Engineering (iJOE). 2016;12(03):42-47

[15] He XY, He SH. Fault detection of excavators hydraulic system using dynamic general

regression neural network. Applied Mechanics and Materials, Trans Tech Publications.

2011;48:511-514

[16] Pietrowski W. Detection of time-varying inter-turn short-circuit in a squirrel cage induc-

tion machine by means of generalized regression neural network. COMPEL-The Interna-

tional Journal for Computation and Mathematics in Electrical and Electronic Engineering.

2017;36(1):289-297

[17] Stenhouse T. Integration of helicopter autonomy payload for non-linear system identication

of rotorcraft heave mode. The UNSW Canberra at ADFA Journal of Undergraduate Engi-

neering Research. 2018;9(2):1-15

[18] Chen TC, Yu CH. Generalized regression neural-network-based modeling approach for

traveling-wave ultrasonic motors. Electric Power Components and Systems. 2009;37(6):

645-657

[19] Husain H, Khalid M, Yusof R. Automatic clustering of generalized regression neural

network by similarity index based fuzzy c-means clustering. In: 2004 IEEE Region 10

Conference, TENCON 2004, IEEE; 2004. pp. 302-305

[20] Tomandl D, Schober A. A modified general regression neural network with new, efficient

training algorithms as a robust black box-tool for data analysis. Neural Networks. 2001;

14(8):1023-1034

[21] Goulermas JY, Liatsis P, Zeng XJ, Cook P. Density-driven generalized regression neural

networks for function approximation. IEEE Transactions on Neural Networks. 2007;18(6):

1683-1696

[22] Rutkowski L. Generalized regression neural networks in time-varying environment. IEEE

Transactions on Neural Networks. 2004;15(3):576-596

[23] Seng T, Khalid M, Yusof R. Adaptive general regression neural network for modelling of

dynamic plants. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of

Systems and Control Engineering. 1999;213(4):275-287

Applications of General Regression Neural Networks in Dynamic Systems
http://dx.doi.org/10.5772/intechopen.80258

153

[24] Al-Mahasneh AJ, Anavatti SG, Garratt MA. Altitude identification and intelligent control

of a flapping wing micro aerial vehicle using modified generalized regression neural

networks. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE;

2017. pp. 2302-2307

[25] Mathworks 2018. Neural Network Toolbox Sample Data Sets for Shallow Networks.

[Accessed: June 11, 2018]

[26] Liu J. Radial basis function neural network control based on gradient descent algorithm.

In: Radial Basis Function Neural Network Control for Mechanical Systems. Germany:

Springer; 2013. pp. 55-69

[27] Adetona O, Garcia E, Keel LH. A new method for the control of discrete nonlinear

dynamic systems using neural networks. IEEE Transactions on Neural Networks. 2000;

11(1):102-112

Digital Systems154

