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Abstract

This study describes the characteristic and thermal properties of torrefied palm kernel 
shell (PKS) by microwave irradiation pretreatment. The microwave power level (200, 300, 
450, and 600 W) and processing time (4, 8, and 12 min) were used in this study. The 
pretreated samples were analyzed for mass and energy yield, calorific value, proximate 
and elemental composition, and thermal decomposition. Results showed that the char-
acteristic of pretreated PKS was enhanced by increasing the microwave power level and 
processing the time. The oxygen content and O/C ratio of torrefied PKS were reduced 
by increasing the microwave power level. The carbon content of pretreated PKS, which 
was closed to the untreated MB coal properties with comparable calorific value, was 
obtained. The microwave power level of 450 W and processing time of 8 min were suit-
able to upgrade the PKS to a respectable quality feedstock. Thus, it can be concluded that 
the alteration in physical, chemical, and thermal properties of torrefied PKS discovered 
the potential of this feedstock to be applied in subsequent thermochemical conversion 
such as pyrolysis and gasification.

Keywords: pretreatment, torrefaction, microwave irradiation, palm kernel shell, 
gasification

1. Introduction

In recent years, the increasing emission of CO
2
, SOx, and NOx has become a concern on the uti-

lization of the world energy [1]. In the midst of limited availability of fossil fuels and high level 

of air pollution, energy efficient technologies are gaining importance, and gasification, being 
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a highly efficient technology, has received significant attention [2]. Currently, coal is the main 
feedstock in gasification and is expected to be applied as the energy resource for many decades 
ahead. However, this direction is difficult to achieve due to the increase in energy demand that 
had caused the shortage supply and reduction of coal [3]. Consequently, one of the approaches 
is to utilize the biomass in thermochemical conversion such as pyrolysis, liquefaction, and gas-

ification. The traditional use of biomass has been restricted to cooking and heating purposes, 
which has affected adverse impacts such as land degradation and desertification. However, 
the current use of biomass with a high-quality energy carrier transformed from raw biomass 

for electricity and heat production can substantially reduce emissions from the conventional 

power plants. This ability to convert raw biomass into convenient energy carriers increases the 

interest on biomass use for energy purpose, especially the lignocellulosic biomass [4].

Biomass is one of the capable renewable energy sources and is applied as solid, liquid, and 

gas fuels [5]. The biomass is an appealing concern worldwide, because of its nonedible char-

acteristic, carbon neutrality, and relative abundance. Moreover, the rising worries about the 

effects of CO
2
 emissions from fossil fuels call for sustainable energy sources, such as biomass 

[6]. In Malaysia, oil palm residues are considered to be the most plentiful biomass and the 

greatest prospects for fuel generation. Malaysia produces about 47% of the world’s palm oil 

source and can be reflected as one of the world’s largest producers of palm oil. Therefore, 
Malaysia creates huge quantity of oil palm biomass including palm kernel shell (PKS), oil 
palm trunks, oil palm fronds, empty fruit bunches, and fibers as residues from harvesting 
and processing activities [7]. The PKS as one of the residues from oil palm industry generated 

about 4.19 MnT in 2016 [8]. Therefore, PKSs appear to have prominent capacities to become 

an alternative source of energy for the country.

However, the utilization of biomass, which is a renewable and environmental friendly 

resource during thermal conversion, imposed several problems. The untreated biomass has 

the drawbacks as follows:

i. Low energy content

ii. High moisture and oxygenated compound

iii. Hygroscopic behavior

iv. Poor grindability

Likewise, it is reasonably challenging for straight application of untreated PKS as raw mate-

rial for fuel production such as gasification or pyrolysis. Typically, the palm plantations and 
their processing plants are located in rural areas. Thus, the untreated PKS is opened to fungal 

attack and biodegradation through storage and transportation. The high moisture content 
also can interrupt the thermal conversion process for energy production [9]. The low energy 

density of PKS, normally 18 MJ/kg, with high moisture content typically around 10 wt.% 
as a result of its hygroscopic character, is a weakness of biomass [10–12]. As shown by the 

previous researcher [13–15], highly oxygenated biomass with high O/C ratio will lower the 
gasification efficiency in contrast with low O/C feedstock such as coal. Consequently, these 
properties of the untreated PKS were associated with several problems in biomass thermal 
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conversion such as in gasification. As a result, prior to gasification, it might be attractive to 
transform the biomass characteristics.

A pretreatment method prior to thermal conversion is required in direction to reduce some of 

the aforementioned problems. Thus, torrefaction pretreatment appears to be an effective route. 
The thermal pretreatment or torrefaction at low temperature between 200 and 300°C, which 
operated in the nonappearance of oxygen, upgraded the untreated feedstock to more value feed-

stock. Nitrogen is generally used as carrier gas to provide a nonoxidizing atmosphere in most 
laboratory tests. Since torrefaction is conducted at conditions similar to those of pyrolysis that 

usually takes place between 350 and 650°C, torrefaction has also been known as mild pyrolysis 
[16]. The pretreated biomass has high calorific value and carbon fraction with low moisture 
content and O/C ratio compared to the untreated or original material. The energy value of pre-

treated material will increase with increasing carbon fraction and calorific value [17].

The previous studies have also shown other advantages of this torrefaction pretreatment, 

such as it improves feedstock hydrophobicity, homogeneity, and grindability [4, 18]. Satpathy 

et al. [19] found that the torrefied wheat and barley straw are more hydrophobic and the 
moisture uptake is reduced by 61–68% under suitable torrefaction condition. Torrefaction 
of marula seeds and blue gum improves the higher heating value and energy content of the 

biomass. The weight loss also increases when the torrefaction temperature increases due to 

moisture removal and hemicellulose breakdown, which produce H
2
O, CO, CO

2
, and other 

hydrocarbons [20].

Torrefaction temperature is one of the important parameters in torrefaction pretreatment 

[4]. Ibrahim et al. [21] found that the lower temperature and shorter residence time were the 

best treatment to achieve good physical properties with a relatively high energy yield. When 

treated at these conditions, the softwood mixture had the highest energy (95%), followed by 
the hardwood mixture (80%), then willow (79%), and finally eucalyptus (75%). Increasing 
the severity of the torrefaction conditions greatly improved the physical characteristics of the  

torrefied biomass, in terms of grindability properties and hydrophobicity. The optimum 
temperatures were reliant on raw material, and consequently, the effects specify that careful 
optimization is necessary for all feedstock types to increase the advantages of torrefaction 
at the same time preserving an adequate energy yield. As pretreatment conditions became 

more severe between temperature of 250 and 300°C, this led to a more qualified and energy-
dense solid fuel with higher fixed carbon content, increased calorific values, and reduced 
hydrogen and oxygen contents [22]. By increasing the torrefaction temperature, the weight 

loss increased and bulk density decreased. The torrefied wood samples improved solid 
fuel property with high fuel ratio, which are close to lignite coal [23]. Mamvura et al. [20] 

found that the nonoxidative conditions with low heating rates and shorter residence time 
resulted in the best torrefied biomass. The increase in HHV together with increase in energy 
density for torrefied marula seeds during investigation intended that it is potential to co-
conversion with coal making it a promising biomass source. Therefore, the pretreated or 
torrefied biomass, which has been improved in energy density, hydrophobicity, and grind-

ability, overcomes the weakness of untreated biomass and is then driven to be applied in 
thermochemical conversion [4, 16].

Properties of Torrefied Palm Kernel Shell via Microwave Irradiation
http://dx.doi.org/10.5772/intechopen.81374

31



Most of the biomass torrefactions applied the conventional electric heater, while there is 

an alternative technology designated microwave irradiation. Microwave technology has 

expanded remarkable importance in the thermochemical pretreatment of waste materials, 
including biomass, waste cooking oil, scrap tires, and others. Innovative fields are being 
exposed in which microwave can be applied as an alternative source of heating. The applica-

tion of microwave in waste treatment originated about two decades ago. Therefore, it can be 

considered at an early stage of enlargement [24]. Microwave irradiation is an electromagnetic 

irradiation in the range of wavelengths from 0.01 to 1 m and the equivalent frequency range 

of 0.3–300 GHz. Normally, the microwave reactors for chemical synthesis and all domes-

tic microwave ovens operate at 2.45 GHz frequency, which corresponds to a wavelength 

of 12.25 cm. Microwave irradiation has attracted much attention in recent years due to the 
advantages associated with dielectric heating effects. Microwave dielectrics are known as a 
material, which absorbs microwave irradiation; thus, microwave heating is called dielectric 

heating [25]. The pretreatment using microwave irradiation is an effective method for upgrad-

ing the biomass [26]. Unlike conventional heating technique in which heat gradually enters 
into samples over normal heat transfer mechanisms (convection, conduction, and radiation) 

[27], microwave irradiation employs electromagnetic energy to produce heat, which can enter 

deep into samples, permitting heating to initiate volumetrically [28]. Microwave irradiation 

has many advantages such as:

i. Noncontact heating

ii. Energy transfer instead of heat transfer

iii. Rapid heating

iv. Selective material heating

v. Volumetric heating

vi. Quick start-up and stopping

vii. Heating from the interior of the material body [25, 29]

Wang et al. [30] utilized microwave irradiation to upgrade the properties of rice husk and 
sugarcane residues by varying different parameters, including microwave power level and 
processing time. They found that the suitable microwave power levels are proposed to be 

set between 250 and 300 W for the torrefaction of these two agricultural wastes. Also, with 

appropriate processing time, the caloric value is able to increase 26% for rice husk and 57% for 
sugarcane residue. Huang et al. [31] found that higher microwave power levels contributed 

to higher heating rate and reaction temperature and therefore produced the torrefied biomass 
with higher heating value and lower H/C and O/C ratios. The torrefied biomass or biochar 
probably substitutes coal due to high heating value and fuel ratio as well as low atomic H/C 
and O/C ratios. The microwave torrefaction of Leucaena produced thermally stable biochar 

compared with sewage sludge at lower microwave power levels, which means that the micro-

wave heating performance of Leucaena is better. Compared with conventional torrefaction, 
mass and energy yields of microwave torrefaction were lower, which might be attributable to 
the further severe reaction accomplished by microwave irradiation [32].
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Consequently, more research is required to entirely understand the characteristic of torrefied 
biomass using microwave irradiation prior to further thermochemical conversion. It is also 

necessary to understand the thermal decomposition of torrefied biomass during pyrolysis 
in thermogravimetric analyzer (TGA) since, in the thermal conversion studies, the beginning 

stage involves the feedstock devolatilization. Therefore, in this study, the PKS was initially 
torrefied in microwave, and the properties of torrefied PKS were explored. Subsequently, the 
thermal decomposition and behavior of torrefied PKS during pyrolysis process using TGA 
were examined.

2. Method

2.1. Materials

PKS as a biomass sample was obtained from United Oil Palm Mill Sdn. Bhd., Nibong Tebal, 
Penang, Malaysia. The PKS is produced from the shell/kernel separator. The PKS sample was 
crushed and sieved through progressively finer screen to obtain particle sizes in the range 
of 200–400 μm. The untreated PKS sample was dried in an oven at 105°C for 24 h for ren-

dering moisture-free and finally stored in an air-tight container until the experiments and 
analyses were carried out. The pre-drying is needed to avoid further biodegradation of the 

sample through storage since the moisture mass fraction of the raw PKS is relatively high 

[33]. Moreover, the pre-drying is used to simulate the industrial practice of sun-drying the 

materials before storage [6].

2.2. Torrefaction experiment

The torrefaction experiment was carried out in a domestic microwave oven (Samsung) with 
technical specifications of ~240 V and 50 Hz and a maximum power of 800 W. The microwave 
output power levels of 200, 300, 450, and 600 W were used in this study. The untreated PKS 

of 5 g was put in the sample crucible placed at the center of the microwave oven. Then, the 

nitrogen gas at a flow rate of 50 mL/min was purged in the reaction compartment to retain the 
inert atmosphere condition. After 10 min purging, the microwave system was turned on, and  

the microwave output power level was selected with respective processing time of 4, 8, and 

12 min. The inert atmosphere condition was continued during the microwave irradiation. The 

power supply was turned off, and the nitrogen gas flow was stopped after the set processing 
time was achieved. The final temperature of the pretreated PKS was measured using infrared 
thermometer immediately after the pretreatment process. The final weight of pretreated PKS was 
measured once it reached the room temperature. The experiment under all of the studied param-

eters was repeated to confirm the measurement quality and repeatability of the achieved results.

2.3. Calculation of solid conversion, mass yield, and energy yield

The solid conversion (X
s
), mass yield (Y

m
), and energy yield (Y

e
) of the pretreated samples 

were calculated according to Eqs. (1)–(3), respectively:
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where M is the mass of sample, CV is the calorific value, the subscript u means the value of 

untreated sample, and the subscript p means the value of pretreated sample.

2.4. Sample analyses

The physical and chemical characteristics of the untreated and pretreated samples were 

analyzed. The elemental composition of the sample was examined using elemental analyzer 
CHNS-O Flash 2000. The elemental composition examines the carbon (C), hydrogen (H), 
nitrogen (N), and sulfur (S) contents. The oxygen content was analyzed by the different of 
total mass content. The sample of 2 mg was weighted and encapsulated into a tin capsule. 

The sample was placed in the sample loading chamber. During the analysis, the sample was 

dropped into a furnace held at 1000°C. At the same time the sample drops into the furnace, a 
dose of oxygen is released into the furnace. The sample was combusted by the heated oxygen-
rich environment. The products of elemental analysis are CO

2
, H

2
O, NOx, and SOx. These 

gases, which were carried through the system by the helium carrier, will be swept through the 

oxidation tube packed with copper sticks (which removes oxygen), to complete the conver-

sion to SO
2
. These gases are passed through four infrared detectors of C, H, N, and S, and the 

results were displayed as weight percent of C, H, N, and S.

The proximate analysis that analyzed the moisture, volatile matter, ash, and fixed carbon con-

tent was carried out using a Mettler Toledo thermogravimetric analyzer (TGA) according to 
the standards of the American Society for Testing and Materials (ASTM). For each analysis, 
about 10 mg of sample was weighted using a microbalance and placed in a ceramic crucible. 

Next, this crucible was positioned in the furnace where the analysis was performed. The pro-

grammed TGA began by applying the heating rate of 20°C/min to heat the furnace from room 
temperature until the temperature reaches 950°C with a flow of an inert purified nitrogen gas 
at 100 mL/min. Then, the same heating rate was applied to increase the furnace temperature 
to 1300°C, and the gas being flowed at this combustion stage was changed to purified air. The 
trend of weight loss was recorded by thermogravimetry (TG) and derivative thermogravimetry 

(DTG). The data analysis was calculated based on weight loss procedure by the TGA software.

The Leco AC-350 bomb calorimeter was used to determine the calorific value (CV). The calorific 
value of a sample is determined by burning the sample in a controlled environment. The heat 

released by combustion is proportional to the calorific value of the substance. In the AC-350 bomb 
calorimeter, the weighed sample to be examined was located in a combustion vessel, which con-

tains high-pressure atmospheric environment. The combustion vessel was surrounded by water 

and the sample is ignited. Succeeding that, the change in water temperature between pre-fire 
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and post-fire was processed by the computer. The result was then being corrected for the length 
of fuse wire. The result, which is the calorific value, is then being shown on the display screen.

The Fourier-transform infrared (FTIR) spectra were recorded using a Perkin Elmer FTIR spec-

trophotometer. The spectral region from 4000 to 400 cm−1 was investigated. This spectrometer 

has a spectral resolution of 0.5 cm−1 standard with an accuracy in its higher wavelength of 

0.01–3000 cm−1. The resulting spectrum represents the sample absorption, following in its 

molecular fingerprint, due to its own functional groups. The FTIR spectra provide a quick 
qualitative technique that uses the standard IR spectra to identify the functional groups of the 

sample. The fundamental properties of the untreated PKS are summarized in Table 1.

2.5. Thermal decomposition using TGA

The thermal decomposition of the untreated and pretreated PKS was discovered by pyrolysis 

using a Mettler Toledo TGA/DSC 1 STARe System. TGA provides a rapid method for deter-

mining the temperature-assisted decomposition profile of a sample and the kinetics of its 
thermal decomposition. A sample weight of 20 mg was inserted into 90 μL ceramic crucible. 

The pyrolysis temperature was raised from room temperature to 900°C. The experiments 
were conducted under heating rates of 10°C/min. The high-purity nitrogen with flow rate 
of 50 mL/min was used as a carrier gas to ensure the inert atmosphere during the pyrolysis 

aCalculated by different.

Table 1. Properties of untreated PKS.
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Figure 1. Temperature profile of torrefied PKS at various processing time and microwave power levels.

process. The decomposition of the sample was analyzed using the TG curve, which showed 

the mass loss versus temperature and time curves of TGA experiment [34]. Also, the DTG 

curves, representing the rate of weight loss with the increasing temperature, indicated the 

determination of the decomposition and thermal characteristics of untreated and pretreated 

samples. Each untreated and pretreated sample was pyrolyzed at least twice. However, addi-

tional duplications were carried out where some inconsistencies were observed.

3. Results and discussion

3.1. Temperature profiles of torrefied PKS

Figure 1 shows the temperature profiles of torrefied PKS at different processing time and 
microwave power levels. It shows that higher microwave power level contributed to increase 

the final temperature and heating rate. The torrefied PKS demonstrated increasing the final 
temperature and heating rate of 50.2–470.4°C and 12.6–117.6°C/min, respectively, when the 
microwave power level increased from 200 to 600 W in the first 4 min. These temperature 
profiles increased much steadily after about 4–8 min processing time. Conversely the tem-

perature increment is not significant after 8–12 min processing time regardless the microwave 
power level. Therefore, higher processing time above 8 min was not necessary to upgrade 

the PKS. The microwave power level at 600 W with 4 min processing time was not suitable 

for upgrading the PKS, where it reached high heating rate of 117.5°C/min as the torrefaction 
requires heating rate equal or below 50°C/min [31].

Biofuels - Challenges and opportunities36



3.2. Mass and energy yield of torrefied PKS

Figure 2(a) and (b) represents the mass and energy yield of torrefied PKS, respectively. It can 
be seen that the microwave pretreatment decreased the mass and energy yield of torrefied PKS 
while applying higher microwave power at certain reaction time. For example, the mass yields 
of torrefied PKS for 4 min were 97.9, 96.1, 73.3, and 43.2%, while the energy yields were 100.5, 
104.1, 84.9, and 52.8% at 200, 300, 450, and 600 W, respectively. The high mass and energy yield 

at 200 and 300 W were influenced from low reactivity at low microwave power level. While 
at moderate power level of 450 W, the mass and energy yield were reduced reasonably to 70.1 

and 83.5%, respectively, at 8 min processing time. However, at a microwave power level of 

600 W, the mass and energy yield extensively reduced toward 43.7 and 52.8%, respectively, at 
processing time of 4 min, because of the severe reaction at the high microwave power level. At 

the higher reaction temperatures, which also increase microwave power level, the volatilization 

reaction of biomass might become a predominant reaction during the pretreatment process. As 

a result, the mass and energy yield of biomass would be reduced. At operating condition of 

450 W and 8 min, more than 70% of mass and 80% of energy have been remained in the torre-

fied PKS. This phenomenon should be due to the carbonization and volatilization reactions of 
biomass, which would take place at the same time during the pretreatment process.

3.3. Calorific value (CV) of torrefied PKS

The CV is one of the main parameters for fuels to be used in subsequent thermal conversion. 
Figure 3 shows the CV of torrefied PKS at different microwave power levels for 8 min process-

ing time. The CV of untreated PKS was 18.2 MJ/kg. At the microwave power level of 450 W, 
the torrefied PKS had the highest CV of 20.5 MJ/kg, which was 12.6% higher than untreated 
PKS. Commonly, higher microwave power level contributed to higher CV of pretreated feed-

stock. However, when the microwave power level increased from 450 to 600 W, the CV of 

Figure 2. (a) Mass yield of torrefied PKS at various microwave power and processing time, (b) Energy yield of torrefied 
PKS at various microwave power and processing time.
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torrefied PKS decreased. This may infer that when the reaction temperature is over 400°C 
due to higher microwave power levels (referring to Figure 2(b)), the fixed carbon content of 
biomass reduced resulting in the decrease of calorific value of torrefied PKS.

3.4. Proximate analysis of torrefied PKS

The torrefied PKS at 8 min processing time was chosen for proximate analysis. Figure 4 shows 

the effect of microwave power level on moisture, volatile matter, and fixed carbon, respectively, 
of torrefied PKS. Generally, it can be seen that the moisture content and volatile matter decreased 
with increasing microwave power, in comparison to the untreated PKS. The results showed 

the characteristics of the torrefied PKS were altered due to high moisture content of untreated 
sample and its ability in absorbing microwave radiation. However, the fixed carbon of the torre-

fied PKS increased, with increasing microwave power level. The fixed carbon of the pretreated 
sample noticeably increased, representing a modification in quantity of energy per unit mass, 
which is related to the calorific value. Moreover, the decrease in volatile matter and moisture 
was observed. Since, the microwave pretreatment increases the carbon content, the fuel ratio of 

the irradiated samples eventually increased. This phenomenon was due to drying, volatilization, 

and decomposition of biomass feedstock during the pretreatment at higher microwave power.

The ratio of fixed carbon to volatile matter content, which is the fuel ratio, can indicate the 
accurate feedstock for thermal conversion. The fuel ratios of torrefied PKS at different micro-

wave power levels with 8 min processing time are presented in Figure 5. After microwave 

pretreatment, the fuel ratios of pretreated materials significantly increased with increasing 
microwave power level. The fuel ratios of torrefied PKS increased from 0.48 to 2.85 when the 
microwave power levels increased from 200 to 600 W. The fuel ratio of 1.1 for pretreated PKS 

at 450 W is comparable with typical fuel ratio of bituminous coal, which is around 1.0–2.5 [35].

Figure 3. Calorific value of torrefied PKS at various microwave power with 8 min processing time.

Biofuels - Challenges and opportunities38



3.5. Carbon and oxygen content of torrefied PKS

The torrefied PKS at 8 min processing time was chosen for ultimate analysis (carbon and 
oxygen content). Figure 6 shows the effect of microwave power level on carbon and oxygen 
content of pretreated PKS. In general, the results indicate that oxygen decreased and carbon 
increased with the increase in microwave power level. The oxygen was reduced up to 43% 

Figure 4. Volatile matter, fixed carbon and moisture content of torrefied PKS at various microwave power level with  
8 min processing time.

Figure 5. Fuel ratio of torrefied PKS at various microwave power with 8 min processing time.
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of pretreated PKS. On the contrary, carbon was increased up to 52 and 62% for torrefied PKS 
at the highest microwave power level of 600 W. The decrease in oxygen contents was gener-

ally attributable to the destruction of the hydroxyl group (–OH) in PKS during pretreatment, 
which consequently produced solid hydrophobic fuel. Eventually, by removing oxygen using 
microwave irradiation method, the energy density of the torrefied PKS increased.

Figure 7. O/C ratio of torrefied PKS at various microwave power with 8 min processing time.

Figure 6. Carbon and oxygen content of torrefied PKS at various microwave power with 8 min processing time.
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Due to the decomposition and elimination of volatile matter during pretreatment process, the 
oxygen mass fraction of the pretreated products will be lowered. Therefore, as illustrated in 
Figure 7, the O/C ratio of all torrefied samples was lower than that the untreated sample. As 
the microwave power level increased, the O/C ratio of torrefied PKS is gradually reduced as 
more volatile matter is being released as a result of the continuous decomposition process. 
The reduction of the atomic ratios also indicates the measures of conversion efficiency and 
oxidation degree of pretreated products [16].

3.6. Functional group analysis of torrefied PKS

The torrefied PKS at 8 min processing time with microwave power of 200, 300, 450, and 600 W 
were chosen for functional group analysis. The chemical structure difference of untreated and 
pretreated PKS at various microwave power level was characterized using FTIR as shown in 
Figure 8. The FTIR spectra of untreated and pretreated PKS are similar in shape, but the inten-

sity of the peaks is different. A broad peak at 3400 cm−1 for untreated PKS was associated to the 

hydroxyl group (–OH). These –OH groups exist with alcohols and phenols. The –OH peaks were 

Figure 8. FTIR spectra of the untreated and pretreated PKS.
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remarkably decreased with the increase of the microwave power. The peaks at 2920 and 2880 cm−1 

indicated aliphatic methylene groups. The peak intensity of pretreated PKS was smaller than 
raw PKS at higher microwave power of 450 and 600 W. The carbonyl group (C=O) bonds were 
observed at 1750 cm−1 corresponding to various acids, aldehydes, and ketones, which were formed 
by decomposition of cellulose and hemicellulose. The peak was smaller at higher torrefaction tem-

perature, which was linked with breakdown of hemicellulose. Peaks at 1550 cm−1 present alkenes 
of C=C stretching. The most concentrated peaks were observed in the range of 1500–1000 cm−1 

and assigned to C=O stretching and O–H deformation at organic compounds containing oxygen 
(alcohols, phenols, and ethers). Aromatic groups are represented by peak 790 cm−1 for PKS.

3.7. Thermal decomposition of torrefied PKS

The torrefied PKS at 8 min processing time with microwave power of 300, 450, and 600 W 
were chosen for thermal decomposition in TGA. The analysis of pretreated sample at 200 W 

was not chosen because its characteristic was similar with the untreated sample as discussed 

in the earlier section. The DTG curve of untreated and pretreated PKS is presented in Figure 9. 

The untreated and pretreated PKS showed three noticeable peaks existed in the DTG curve. 

Figure 9. DTG curve of the untreated and pretreated PKS.
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The main DTG peak at temperature range of 50–130°C indicated the moisture removal of the 
samples. The second DTG peak is located at 292 and 347°C, which referred to the maximum 
decomposition rate of hemicellulose and cellulose, respectively. After pretreated at micro-

wave power level of 300 W, the peak was at 292°C and decreased slightly. However, the 
peak at 292°C moved to higher temperature at 373°C and significantly increased in the peak 
height. When the microwave power was increased to 450 and 600 W, the peak at 292 disap-

peared. Although the peak at 292°C moved to higher temperature at 373°C and significantly 
increased the peak height when pretreated at 450 W, there was a reduction in peak height 
after pretreated at 600 W. It is obvious that the second peak disappearance represents the 
hemicellulose lost at higher microwave power level at 450 W and above, whereas the third 

peak showed the cellulose retained, but the intensity was different. It is inferred that partial 
part of the cellulose and lignin remains and is not decomposed by the torrefaction using 

microwave irradiation [30].

4. Conclusions

This study presents the properties of torrefied PKS using thermal pretreatment via micro-

wave irradiation. The torrefied PKS underwent physical and chemical modifications, which 
include mass reduction, rise in energy content, and change in chemical compositions. The 

increase in microwave power level showed the significant effect, which decreased the mass 
and energy yield of torrefied PKS. As the microwave power level increased, the moisture, 
volatile mater, oxygen content, and O/C ratio decreased. Among the microwave power-
level variation studies, the carbon content and calorific value were enhanced to 55.94% and 
21.20 MJ/kg, respectively, at microwave power of 450 W. The peak intensity of oxygenated 
functional group was reduced with the increase of the microwave power as presented in 

FTIR spectra. The TGA analysis has correlated the thermal decomposition with hemicellu-

lose, cellulose, and lignin in torrefied PKS. The research can be concluded that the PKS can be 
upgraded via MI pretreatment to a value-added feedstock at microwave power of 450 W with 
processing time of 8 min. Thus, the torrefied PKS has the prospective to be applied in thermo-

chemical conversion such pyrolysis, liquefaction, and gasification or co-conversion with coal.

Acknowledgements

This research project is funded by the Ministry of Higher Education, Malaysia, under 

Fundamental Research Grant Scheme (FRGS/1/2017/TK10/UITM/02/11). The authors ack-
nowledge Universiti Teknologi MARA and Universiti Malaysia Perlis for providing facilities 
during the research work.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Properties of Torrefied Palm Kernel Shell via Microwave Irradiation
http://dx.doi.org/10.5772/intechopen.81374

43



Author details

Razi Ahmad1,4*, Mohd Azlan Mohd Ishak2,3, Nur Nasulhah Kasim1 and Khudzir Ismail1,3

*Address all correspondence to: razi@unimap.edu.my

1 Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

2 Faculty of Applied Sciences, Universiti Teknologi MARA, Perlis, Malaysia

3 Coal and Biomass Energy Research Group, Universiti Teknologi MARA, Shah Alam, 
Selangor, Malaysia

4 School of Environmental Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia

References

[1] Emami Taba L, Irfan MF, Wan Daud WAM, Chakrabarti MH. The effect of temperature 
on various parameters in coal, biomass and CO-gasification: A review. Renewable and 
Sustainable Energy Reviews. 2012;16(8):5584-5596

[2] Heidenreich S, Foscolo PU. New concepts in biomass gasification. Progress in Energy 
and Combustion Science. 2015;46:72-95

[3] Mohr SH, Wang J, Ellem G, Ward J, Giurco D. Projection of world fossil fuels by country. 

Fuel. 2015;141:120-135

[4] Nhuchhen D, Basu P, Acharya B. A comprehensive review on biomass torrefaction. 

International Journal of Renewable Energy & Biofuels. 2014;2014:1-56

[5] Uemura Y, Omar WN, Tsutsui T, Yusup SB, Bt S. Torrefaction of oil palm wastes. Fuel. 
2011;90(8):2585-2591

[6] Sabil KM, Aziz MA, Lal B, Uemura Y. Effects of torrefaction on the physiochemical prop-

erties of oil palm empty fruit bunches, mesocarp fiber and kernel shell. Biomass and 
Bioenergy. 2013;56:351-360

[7] Atnaw SM, Sulaiman SA, Yusup S. Syngas production from downdraft gasification of oil 
palm fronds. Energy. 2013;61:491-501

[8] Ahmad Kushairi D. Malaysian oil palm industry performance 2016 and prospects for 

2017. In: Palm Oil Economic Review & Outlook Seminar 2017. 2017. p. 6

[9] Sabil KM, Aziz MA, Lal B, Uemura Y. Synthetic indicator on the severity of torrefac-

tion of oil palm biomass residues through mass loss measurement. Applied Energy. 

2013;111:821-826

[10] Brar JS, Singh K, Wang J, Kumar S. Cogasification of coal and biomass: A review. Inter-
national Journal of Forestry Research. 2012;2012:1-10

Biofuels - Challenges and opportunities44



[11] Ahmad R, Hamidin N, Ali UFM, Abidin CZA. Characterization of bio-oil from palm 
kernel shell pyrolysis. Journal of Mechanical Engineering Science. 2014;7(1):1134-1140

[12] Ahmad R, Ismail K, Ishak MAM, Kasim NN, Abidin CZA. Pretreatment of palm ker-

nel shell by torrefaction for co-gasification. In: 4th IET Clean Energy and Technology 
Conference (CEAT 2016). 2016. pp. 1-6

[13] Chang ACC, Chang H-F, Lin F-J, Lin K-H, Chen C-H. Biomass gasification for hydrogen 
production. International Journal of Hydrogen Energy. 2011;36(21):14252-14260

[14] Howaniec N, Smoliński A. Effect of fuel blend composition on the efficiency of hydro-

gen-rich gas production in co-gasification of coal and biomass. Fuel. 2014;128:442-450

[15] Ahmad R, Azlan M, Ishak M, Kasim NN, Ismail K. Effect of different pretreatments on 
palm kernel shell and low-rank coal during co-gasification. Progress in Petrochemical 
Science. 2018;2(2):1-7

[16] Chen WH, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification 
and applications. Renewable and Sustainable Energy Reviews. 2015;44:847-866

[17] Asadullah M, Adi AM, Suhada N, Malek NH, Saringat MI, Azdarpour A. Optimization of 
palm kernel shell torrefaction to produce energy densified bio-coal. Energy Conversion 
and Management. 2014;88:1086-1093

[18] Nam H, Capareda S. Experimental investigation of torrefaction of two agricultural 
wastes of different composition using RSM (response surface methodology). Energy. 
2015;91:507-516

[19] Satpathy SK, Tabil LG, Meda V, Naik SN, Prasad R. Torrefaction of wheat and barley 
straw after microwave heating. Fuel. 2014;124:269-278

[20] Mamvura TA, Pahla G, Muzenda E. Torrefaction of waste biomass for application in 

energy production in South Africa. South African Journal of Chemical Engineering. 
2018;25:1-12

[21] Ibrahim RHH, Darvell LI, Jones JM, Williams A. Physicochemical characterisation of 

torrefied biomass. Journal of Analytical and Applied Pyrolysis. 2013;103:21-30

[22] Matali S, Rahman NA, Idris SS, Yaacob N, Alias AB. Lignocellulosic biomass solid fuel 

properties enhancement via torrefaction. Procedia Engineering. 2016;148:671-678

[23] Wang P, Howard BH. Impact of thermal pretreatment temperatures on woody biomass 

chemical composition, physical properties and microstructure. Energies. 2018;11(1):1-20

[24] Salema AA, Ani FN. Microwave-assisted pyrolysis of oil palm shell biomass using an 
overhead stirrer. Journal of Analytical and Applied Pyrolysis. 2012;96:162-172

[25] Motasemi F, Afzal MT. A review on the microwave-assisted pyrolysis technique. 
Renewable and Sustainable Energy Reviews. 2013;28:317-330

[26] Tahmasebi A, Yu J, Han Y, Li X. A study of chemical structure changes of Chinese 
lignite during fluidized-bed drying in nitrogen and air. Fuel Processing Technology. 
2012;101:85-93

Properties of Torrefied Palm Kernel Shell via Microwave Irradiation
http://dx.doi.org/10.5772/intechopen.81374

45



[27] Pickles CA, Gao F, Kelebek S. Microwave drying of a low-rank sub-bituminous coal. 
Minerals Engineering. 2014;62:31-42

[28] Kingman SW, Rowson NA. Microwave treatment of minerals—A review. Minerals 

Engineering. 1998;11(11):1081-1087

[29] Binner E, Lester E, Kingman S, Dodds C, Robinson J. A review of microwave coal pro-

cessing. The Journal of Microwave Power and Electromagnetic Energy. 2014;48(1):35-60

[30] Wang MJ, Huang YF, Chiueh PT, Kuan WH, Lo SL. Microwave-induced torrefaction of 
rice husk and sugarcane residues. Energy. 2012;37(1):177-184

[31] Huang YF, Chen WR, Chiueh PT, Kuan WH, Lo SL. Microwave torrefaction of rice straw 
and pennisetum. Bioresource Technology. 2012;123:1-7

[32] Huang Y, Sung H, Chiueh P, Lo S. Microwave torrefaction of sewage sludge and leu-

caena. Journal of the Taiwan Institute of Chemical Engineers. 2017;70:236-243

[33] Sukiran MA, Abnisa F, Wan Daud WMA, Abu Bakar N, Loh SK. A review of torrefaction 
of oil palm solid wastes for biofuel production. Energy Conversion and Management. 
2017;149:101-120

[34] Vuthaluru HB. Investigations into the pyrolytic behaviour of coal/biomass blends using 
thermogravimetric analysis. Bioresource Technology. 2004;92:187-195

[35] Sutcu H. Pyrolysis by thermogravimetric analysis of blends of peat with coals of differ-

ent characteristics and biomass. Journal of the Chinese Institute of Chemical Engineers. 
2007;38(3-4):245-249

Biofuels - Challenges and opportunities46


