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1. Introduction

Dendritic cells (DC) are critical antigen-presenting cells (APC) of the immune system due to 

their unmatched ability to sample antigens and initiate T cell responses [1]. In addition to the 

induction of primary immune responses, DC are also important cells for the maintenance of 

immunological tolerance. DC were discovered by Ralph Steinman and Zanvil Cohn in 1973 

[2, 3]. However, the peak of publications focusing on DC as main sentinel cells of the immune 

system happened 20–30 years after their discovery. This chapter discusses major advances in 

our understanding of DC biology, subtypes, phenotypes, cell-cell interplay, and roles in sev-

eral pathologic conditions such as infectious, autoimmune, and tumorous diseases (Table 1). 

These new discoveries in DC biology and contemporary approaches in directed and tightly 

controlled DC manipulations will help in the development of improved therapeutic and vac-

cination strategies to fight many diseases.

2. DC subtypes, phenotypes, and functions

A recent comprehensive review of published research on DC migration in health and disease 

also shows the phenotypic characteristics of DC in different tissues, namely, in skin, intestines, 
lungs, and CNS [4]. In contrast to other organs, where several DC subtypes exist simultane-

ously, in skin epidermis, for example, only one type of DC is present, CD207+ Langerhans cells. 

In contrast to that, several DC subsets were found in dermis, such as conventional (c) DC1 and 

cDC2, distinguished by the presence or absence of XC-chemokine receptor 1 (XCR1) expres-

sion, correspondingly. There is a third cDC subpopulation in skin dermis, so called double-

negative cDC (lacking XCR1 and CD11b expression). These three dermal DC subtypes have 

different origin/cellular progenitors, and perform distinct functions during skin inflammation. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In contrast, intestinal cDC1 is characterized by CD103 expression. At the same time, intestinal 

cDC2 expresses CD11b in addition to CD103. Surprisingly, lamina propria CD103+cDC induce 

regulatory T cells, as for other organs it is a selective function of plasmacytoid (p) DC [4]. The 

authors admit the presence of yet uncharacterized DC phenotypes in human gut.

Lung-resident cDC and pDC subpopulations have been characterized previously in mice [5] and 

humans [6]; however, more recent findings show the existence of two cellular subpopulations 
within lung cDC. In addition to cDC, the presence of monocyte-derived (mo) DC, which can 

be discriminated in the lungs based on the expression of cell surface markers such as CD103 

(Integrin aE), CD207 (langerin, a C-type lectin with mannose binding specificity), DNGR1 
(C-Type Lectin Domain Containing 9A, CLEC9A, a receptor for necrotic cells required by DC 

to cross-prime CTLs against dead cell antigens), Signal regulatory protein α (SIRPa), MAR-1 

(Fc epsilon receptor I alpha), and Ly6C (a mid-stage cell development differentiation antigen, 
GPI-anchored glycoprotein) [4]. Moreover, CD64 and MAR-1 are considered to be the most 

selective markers for the effective separation moDC from cDC. In addition to that, the GenChip 
technology application to DC research has recently demonstrated that DC subsets display dif-

ferent transcriptional factor’s requirement in their development and function [7, 8]. Several 

transcription factors including PU.1 (E26 transformation-specific family transcription factor), 
Bcl11a (C2H2 type zinc-finger protein), Irf4 and Irf8 (Interferon Regulatory Factors 4 and 8, cor-

respondingly), E2-2 (basic helix-loop-helix transcription factor E protein), Id2 (Inhibitor of DNA 

Topic References

DC development [1, 7, 9–11, 13, 14]

Antigen processing and presentation [1, 9, 13, 14, 16–19]

Phenotypes, cell surface markers [4, 9–15]

Transcriptional control and classification [1, 7, 8, 10]

Functional characterization [8–10, 13–15]

DC cytokine profile [14, 15]

Immune tolerance [14, 30, 31, 35]

Tissue- and organ-resident DC [5, 13, 19]

DC migration [4]

Cell-cell interaction [16–23]

DC and allergy [5, 12, 14, 24]

DC and cancer [14, 24, 32]

DC and autoimmunity [4, 14, 15, 24, 35]

DC and infectious diseases [15, 24–28]

DC in osteoimmunology [33, 34]

Novel techniques in DC research [11, 20, 21]

Table 1. Main topics of research and discussion covered by cited manuscripts.
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Binding Protein 2), Batf3 (basic leucine zipper transcription factor ATF-like 3), IFN regulatory 

factors (IRFs), zbtb46 (zinc finger transcription factor 46), Notch RBP-J (the main transcriptional 
mediator of Notch signaling), Icaros (DNA-binding zinc finger protein), and others have been 
found to be differentially regulated in different DC subsets [7, 9, 10]. The comprehensive review 

by Murphy and associates [10] discusses DC origins, heterogeneity, functions, phenotypic and 

functional homology between mouse and human DC subsets, and the requirement of several 

transcription factors for DC subtypes’ development. According to a contemporary view on DC 

presented in this chapter, DC are divided into two main subpopulations, namely, interferon 

regulatory factor of transcription 8 (Irf8+) cDC (CD8a+) and Irf4+ cDC (CD11b+). Moreover, 

two subpopulations can be clearly distinguished even within Irf4+ cDC based on their devel-

opmental dependency on either Notch-2 or Klf4. The authors discuss the functional differences 
between different DC subsets based on the in vitro studies and the in vivo specific gene-knockout 
mouse evaluation. They also discuss the DC origins and transcription factors necessary for DC 

subtype’s development from a precursor cell. As an example, Nfil3 (nuclear factor, interleukin  
3 regulated; another abbreviation for it is E4BP4) is required for CD8α+ DC development, whereas  

Id-2 is required for Irf8+ cDC. Furthermore, a recently published international comprehensive 

study has used a combination of single-cell messenger RNA sequencing (scmRNAseq) and cell 

cytometry by time-of-flight (CyTOF) contemporary technologies to study individual human DC 
subsets and their precursors among blood CD135+HLA-DR+ cells [11]. The authors created a 

panel of 38 labeled Abs based on DC-specific markers including CD2, CX3CR1, CD11c, and 
HLA-DR. This panel also included Abs to cDC-associated markers such as CD11c, CX3CR1, 

CD2, CD33, CD141, and reported the existence of individual DC lineage-committed subpopu-

lations, intermediate DC clusters, previously unrecognized human pDC heterogeneity. It 

definitely brought new insights into DC therapeutic potential in many diseases. Lineage com-

mitment is directly regulated by several hematopoietic cytokines, where Flt3L, M-CSF, GM-CSF, 
Lymphotoxin β and TGFβ1 play the major roles in the individual DC subset’s development [9].

In conclusion, the previous simplistic division of mouse and human DC on cDC and pDC 

and definition of their function as: the inductors of CD4+ T cell immunity (CD11b+ cDC), 
efficient Ag cross-presenters to CD8+ T cells (CD8α+ cDC), and rapid producers of type I IFN 

to fight viral infections (pDC), has been upgraded significantly [4, 8, 9, 12–15]. Human pDC 

differs from cDC as they are CD11clow and the expression of other lineage-associated markers 

such as CD3, CD14, CD16, and CD19 is not detected on their surface; however, they express 

BDCA-2 (blood dendritic cell Ag–c-type lectin, CLEC4C (CD303)), CD4, CD68, CD123 (IL-3R), 

and immunoglobulin-like transcript 3 (ILT3), or ILT-7. Similarly to human pDC, mouse pDC 

are also CD11clow, but they express Ly-6C (a GPI-anchored glycoprotein - lymphocyte Ag 6 
complex) and Siglec-H (sialic acid-binding immunoglobulin-like lectin H), which is not found 

on mouse cDC. The pDC ability to induce tolerance through IDO production and Treg cell 
induction explains, in part, their protective role in allergic diseases and transplant rejection 

[15]. However, pDC play tissue-damaging type I IFN-associated pro-inflammatory functions 
in autoimmune diseases [15]. The latter chapter has divided human DC into four subpopula-

tions such as CD141+ DC, CD1c+ DC, pDC, and moDC, correspondingly to the mouse subsets 

such as CD8/CD103+ DC, CD11b+ DC, pDC, and moDC. Human moDCs have been shown 
to serve as an effective inducer of Th1 responses, which partially overlaps with CD141+ DC 
and CD1c+ DC functions [15]. Functional specializations of different DC subsets as well as the 
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clinical syndromes associated with DC deficiency are being discussed in details in a review 
by Merad and colleagues published in 2013 [9], whereas a review by Mildner and Jung [13] 

focuses on functional similarities and differences of organ-specific DC.

3. The role of cell-cell interplay in DC activation and function

DC uptake Ag, process it, and present it to T cells as Ag-derived peptide in the context of specific 
MHCI or MHCII molecules [1]. DC are subdivided on immature, Ag-sampling, and mature, 

Ag-presenting, cells. After Ag uptake, DC undergo maturation and migrate to the T cell areas of 

lymph nodes. In the lymph nodes, DC present Ag to T cells, which effective stimulation depends 
on two critical signals, MHC-TCR and costimulation. Several recent studies consider the neces-

sity of a third, so called “polarization” signal, for an optimal T cell activation [16–18]. Such signal 

can be provided by certain cytokines [17, 18] or semaphorins [16]. A recent review by Federika 

Benvenuti [19] focuses on the structural and functional composition and significance of DC-T cell 
cross-talk, on the formation of an immunological synapse between these two immune cells and 

a synapse composition. The interesting current technical developments aimed to analyze DC-T 

cell interaction and resulting corresponding cell activation include two-photon intravital imag-

ing technique [20] and Labelling Immune Partnerships by SorTagging Intercellular Contacts 

(LIPSTIC) [21]. Both techniques can be used to study cell activation in vitro and in vivo and ben-

eficiary complement each other. Activation of T cells can be additionally analyzed by the use 
of dynamic in situ cytometry, Ca+ influx analysis, and/or transcription factor translocation [20].

Direct cell-cell contact between DC and other immune cells can significantly modulate DC 
themselves and the resulting DC-induced immune response to Ag. DC-macrophage interaction 

and its role in the immune response activation have been described for CD169+ (siloadhesin, 

Siglec-1) macrophages and BATF3-dependent CD8α+ DC [21]. Specific viral Ag targeting to 
CD169+ macrophages led to Ag transfer to cross-presenting CD8α+ DC and subsequent T cell 

activation. A review by Walzer and colleagues [22] discusses the activation of NK cells by DC 

after a direct cell-cell contact, DC maturation induced by such interaction, immature DC lysis by 

activated NK cells, and other effects of such interaction, which have all important consequences 
for antimicrobial response. A direct interaction of DC with neutrophils, critical cellular fighters 
of bacterial infection and regulators of immune response on the infection site, has been reported 

previously as the interaction between Dendritic Cell-Specific Intercellular adhesion molecule-
3-Grabbing Nonintegrin (DC-SIGN or CD209) with Mac-1 or CEACAM1 on neutrophils [23]. 

These cell-cell interaction pathways play important connecting roles between innate and adap-

tive immunity. The communication of different DC subsets between themselves and the result-
ing changes/modifications in the immune response has never been addressed although such 
cellular cross-talk might significantly influence the outcome of immune response.

4. DC and infections

The main role of DC in infection is to induce an immune response leading to microbe elimi-

nation. DC are equipped with numerous Ag uptake receptors such as DEC-205, mannose 
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receptor CD206, CD209 (DC-SIGN), CD207 (langerin), CLEC4A (DCIR), which bind a 
whole array of microbes (reviewed in [24]). Following Ag uptake, CD8α+ DC cross-present 

Ag on MHCI to stimulate CD8+ T cells to kill infected cells. In addition to that, a protective 

Th1 response is generated over effective Ag presentation to CD4+ T cells. However, numer-

ous microbial agents are capable of blocking DC maturation. Those include Herpes simplex 

virus, vaccinia virus, varicella zoster, CMV, measles, Salmonella typhi, Plasmodia, Coxiella 

burnettii, and others. Some microbial agents, such as Yersinia pestis or Salmonella typhi, can 

selectively destroy DC by injecting toxins into cells thus avoiding recognition by a host 

immune system. Mycobacterium tuberculosis blocks the expression of CCR7 on DC thus 

interfering with DC migration step. Aspergilus fumigatus, malaria and hepatitis C viruses 

modify DC function in such way that DC induce a Th2 type of immune response instead of 

a protective Th1 response. Furthermore, several microbes can multiply/replicate within DC 
cytoplasm, which leads to infection spreading. Those DC-disseminating microbes include, 

but not limited to, HIV-1, LCMV, Toxoplasma gongii, Bacillus anthracis, CMV, and Ebola 

virus. The in vitro pathogen invading study has been done in human myeloid DC cultures. 

As the numbers of pDC are significantly lowered in the blood of people with HIV, HTLV-1 
and RSV infections, it is highly likely that these microbes can evade pDC as well. pDC 

produce a large amount of type I IFNs in response to either viral (HIV) [25] or nonviral 

(Aspergillus fumigatus) [26] pathogens. Besides pathogens, however, the healthy microbiota 

representatives, such as Lactococcus lactis [27] and Bacteroides fragilis [28], have the capacity 

to activate pDC. The latter studies suggest that pDC can function as the enhancers of cor-

responding probiotic’s activity.

5. DC in allergy

DC in lung tissue continuously sample exogenous Ags and make sure the immune system 

does not generate a harmful response to such generally un-harmful agents as pollens, dust 

mites, cockroaches, and others. Basically, instead of T cell activation, lung-resident DC were 

shown to induce T cell tolerance to those innocuous proteins in steady-state conditions. One 
of the potential mechanisms of T cell silencing by DC is based on ICOSL molecule, which 
has been shown to co-stimulate Treg cell development [24]. Local lung cytokines, such as 

TSLP [29] or VEGF [5], play critical nonredundant roles in making lung cDC immunogenic 

toward inducing Th2 responses to subsequent allergen exposures. The main direction in 

DC-based immunotherapy of asthma is targeting a pro-allergic lung cDC function and mak-

ing cDC tolerogenic, Treg cell-inducing cells [24]. Targeted activation of Treg cell-inducing 

pDC represents another direction in DC-based asthma immunotherapy [24]. Similarly to the 

mechanisms of lung-associated allergies, in the diseases associated with intestinal allergic 

inflammatory reactions, such as food allergy and inflammatory bowel disease, gut lamina 
propria CD103+ cDC sample Ag and migrate into local lymph nodes, stimulate Treg cells 

from gut-associated lymphoid tissues to induce and maintain tolerance to food antigens [30]. 

The main two directions in DC-based therapy for food allergy are based on the induction 

of oral tolerance to a specific food allergen by: (1) directly activating Treg cell-stimulatory 
mucosal CD103+ cDC, and (2) gastrointestinal pDC-mediated tolerance through de novo gen-

eration of iTreg cells [31].
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6. DC and cancer

Tumor Ag-loaded DC present a basis for DC vaccine in cancer. Currently, three ways to obtain 

such DC have been used in pre-clinical practice and clinical trials, namely: (1) The in vitro 

PBMC stimulation with Ag and GM-CSF (PBMC contain other cell types besides DC); (2) DC 
direct isolation from blood (approximately 1% of total PBMC) and their in vitro direct stimu-

lation; (3) the in vitro expansion and activation of DC precursor cells (monocytes or CD34+ 

bone marrow-derived hematopoietic progenitor cells) followed by Ag loading, and the use 

of them as a vaccine [32]. The immunogenicity of such vaccines is highly dependent on DC 

subtype and activation level. Therefore, additional DC stimuli are currently being evaluated 

in order to potentiate DC activity and ability to induce the desired Th1 and/or CTL anti-tumor 
response. These stimuli include: (1) TLR agonists; (2) a combination of poly-IC with TNFα, 

IL-1β, IFNγ, and IFNα; and (3) a genetic engineering of DC by mRNA electrocorporation (such 

as TriMix) [32]. The discussed chapter here also describes in detail the in vitro culture condi-

tions for an effective DC anti-cancer vaccine formulation.

7. DC and bone biology

Normally, DC are absent in bone tissues (reviewed in [33, 34]). However, numerous DC were 

found in synovial and periodontal tissues surrounding bone tissue during inflammation. 
Both, immature CD1α+ cells expressing RANK (receptor activator of NF-kB) and RANKL, 

and mature RANK-expressing DC-LAMP+ DC were identified in synovial tissues of patients 
with rheumatoid arthritis. RANKL is an absolutely necessary factor for osteoclasts (OC) dif-
ferentiation and for their role in bone-absorption. Moreover, the in vitro studies using differ-

ent DC culture conditions have shown that DC can also serve as octeoclast’s precursor cells. 

When immature CD11c+CD11b-DC were exposed to an Ag stimulation as a maturation factor 

and interacted with CD4+T cells using RANK-RANKL ligation, they develop into so called 

“dendritic cell-derived osteoclasts (DDOC)”, which were phenotypically CD11c+MHC-
II+TRACP+(tartrate-resistant acid phosphatase) CT-R+(G protein-coupled receptor that binds 
the peptide hormone calcitonin) cells. This is rather an alternative pathway in OC differentia-

tion in addition to a classical OC developmental pathway from monocyte precursors. It is well 
established now that OC are multi-nucleated bone-eating cells, and the excessive production 
of such cells can lead to a bone loss. DC can also participate in bone homeostasis through their 

secretion of multiple osteoblast’s inhibitory (IL-27) or activating (RANK, IL-1, IL-6, and IL-23) 

factors, or through activation of certain arms of T cell immunity, which, in their turn, secrete 

cytokines directly or indirectly involved in bone formation process [34].

8. DC in autoimmunity

Genetic alteration occurring in several types of immune cells, including DC, could lead 
to the appearance and persistence of self-Ag reacting T and B lymphocytes, which is a 

hallmark of autoimmune diseases. Most studies on the role of DC in autoimmunity were 
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done in mice. It has been shown that autoimmune diabetes type 1 prone NOD (nonobese 
diabetic) mice have lower number of CD8α+ DC, which are dysfunctional in Ag cross- 

presentation (reviewed in [35]) that reduces the cross-tolerance. The Batf3−/− mice, which lack  

these cross-presenting DEC205+CD8α+ DC, do not develop diabetes. The other tolerogenic 

type of DC in mice is characterized by CD11b and DCIR2 (Clec4A4/DC immunoreceptor 2) 
expression. DC are tightly involved in pathogenesis of another autoimmune disease, mul-

tiple sclerosis. The study in mice have demonstrated a reduced EAE severity in functionally 

pDC-depleted mice (pIII+IV−/− mice, which lack MHCII expression on pDC cell surface). 

Thus, it is believed that pDC induce autoimmune inflammation through type I IFN pro-

duction and tolerance through Treg cell activation. Indeed, there is a strong connection 

of type I IFN levels (or “signature”—elevated expression of type I IFN-stimulated genes) 

(reviewed in [15]). PBMC obtained from patients with systemic lupus erythematosus (SLE) 

can be distinguished from those in healthy volunteers by an overexpression of 18 genes, 

12 of which were IFN type I-regulated. Similarly, IFN “signature” was detected in skin 

of patients with psoriasis, in PBMC and sera of patients with Wiskott-Aldrich syndrome 
(WAS), and in atherosclerotic lesions. However, as it is mentioned above, pDC can also 

induce tolerance, and those two distinct functions of pDC in autoimmunity are particularly 

dependent on Ag nature and timing of exposure (an Ag priming phase or a chronic Ag 

exposure/inflammation phase).

9. Summary

Ralph Steinman was awarded the highest honor for an outstanding scientific discovery, a 
Nobel Prize in Physiology or Medicine, in 2011 in recognition of DC discovery as well as 

the characterization of DC main functions. More recently, several DC-modulating technolo-

gies were developed for their use as vaccines for infectious diseases, cancer, allergy, and 

autoimmune diseases [9, 24, 36]. New insights into molecular characteristics of DC and 

their roles in human diseases continue to be researched, which will lead to a development 

of novel therapeutic strategies aimed at targeting specific DC subsets and/or their products. 
These strategies include the manufacturing of DC with an optimal immunocompetence, 

capable in enhancing the strength of immune effector cells and making the disease-causing  
cells susceptible to immune attacks [32]. Therefore, DC, according to Steinman and 

Banchereau, present an “unavoidable target” in the design of effective treatments for many 
human diseases [24].
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