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Chapter

Role of Aryl Hydrocarbon-
Ligands in the Regulation of 
Autoimmunity
Hana’a Burezq

Abstract

The aim of this study is to show the effects of activating aryl hydrocarbon 
receptor (AhR) by specific ligands, on the expression of responsive genes. Specific 
AhR-ligands were reported to play an important role in immune regulation. This 
chapter will focus mostly on the effects of activating AhR with different ligands on 
autoimmunity. Findings showed the possibility of using the AhR to treat inflam-
matory and autoimmune diseases in mice. AhR ligation with specific ligands can 
affect T cell differentiation, through activation of CD4+Foxp3+ regulatory T cells 
and downregulation of the pro-inflammatory T helper 17 cells. The results showed 
the effects of specific AhR-ligands on the production of pro-inflammatory and/
or anti-inflammatory T cell subsets, the potential to use AhR-ligands in regulat-
ing the inflammation of organ/tissues in various diseases, suggesting that specific 
AhR-ligands could be used for immune regulation in pathogenesis of autoimmune 
diseases of human and mice.

Keywords: aryl hydrocarbon receptor, T helper 17, T regulatory cells, autoimmune 
disease, immune regulation

1. Introduction

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription fac-
tor that mediates a variety of cellular events in many tissues [1]. AhR expression 
was found in many vertebrates such as rats and mice including fish. Therefore, it 
was suggested that AhR has a widespread biological function in animals, but its 
physiological role is not yet fully known. When AhR binds to xenobiotic ligands, 
the AhR regulates the expression of many genes including those encoding for 
cytochrome P450 enzymes. The activation of AhR was linked to variations in cell 
proliferation, apoptosis, tumor promotion, immune function, development, and 
reproductive functions [1, 2]. Many studies reported that the phenotype of AhR-
deficient mice points to possible physiological functions of the receptor in liver, 
heart, ovary, vascular, and immune systems [2, 3]. The signaling pathway of AhR 
starts when AhR-ligand enters the responsive cell and binds with high affinity 
to the cytosolic AhR. The receptor exists as a multi-protein complex, containing 
two molecules of the chaperone heat shock protein of 90 kDa, the X-associated 
protein-2, and a 23-kDa co-chaperone protein [4]. The AhR undergoes confor-
mational changes exposing a specific nuclear localization sequence which results 



Immune Response Activation and Immunomodulation

2

in the translocation of the complex into the nucleus [5]. The ligand:AhR will 
then be released from this complex and bind to a related nuclear protein called 
AhR nuclear translocator (ARNT), which converts the AhR into its high-affinity 
DNA-binding form [6]. The ligand:AhR:ARNT complex binds to its specific DNA 
recognition site, the dioxin response elements (DREs), resulting in stimulation 
of the transcription of cytochrome P450 (CYP1A1) and other AhR-responsive 
genes. Once the AhR-ligand binds to its receptor, the AhR:ligand complex will 
translocate into the nucleus. The ligand:AhR will then be released from this 
complex and bind to ARNT, which converts the AhR into its high-affinity DNA-
binding form, and then the ligand:AhR:ARNT complex will bind to the DRE, and 
as a result, transcription of cytochrome P450 and other AhR-responsive genes 
will start.

The present chapter highlights the effects of some AhR-ligands both exogenous 
and endogenous, on the secretion of pro- and/or anti-inflammatory cytokines 
which control the production of different T helper cell subsets, and consequently 
affects inflammation, and autoimmunity.

2. Categories of AhR-ligands

There are two major categories of AhR-ligands: exogenous and endogenous 
ligands. Exogenous ligands are those that are synthetic (formed as a result of non-
biological activity) and/or naturally occurring dietary AhR-ligands. Endogenous 
ligands are those formed in biological systems as a result of natural processes in the 
body [7].

2.1 Exogenous AhR-ligands

2.1.1 Synthetic AhR-ligands

The synthetic AhR-ligands are in general high-affinity ligands and include 
halogenated aromatic hydrocarbons (HAHs) such as poly-halogenated dibenzo-
p-dioxins. Synthetic ligands include also polycyclic aromatic hydrocarbons (PAHs) 
such as benzathracenes and related compounds [8]. HAHs represent the most 
potent type of AhR-ligands, with binding affinities in the pM to nM range. In 
contrast, PAHs bind to the AhR with lower affinity in the nM to μM range. The 
dioxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a member of the HAH 
group, is considered as one of the most potent AhR agonists known. The potency 
of TCDD is about 1000-fold greater than that of PAH compounds [9]. It was 
observed that aryl hydrocarbon receptor-deficient mice, loss of responsiveness to 
TCDD and related chemicals [10]. Many genes are regulated by the AhR, especially 
those encoding xenobiotic metabolizing enzymes, such as cyp1a1. The induction of 
cyp1a1 is AhR-dependent response that has been observed in most species [11].

The physiological role of the AhR remains a key question, and to date no 
high-affinity endogenous ligand has been identified. The detailed analysis of 
AhR-ligand binding has mainly focused on the structurally related HAHs and 
PAHs. However, recent studies have demonstrated the ability of a structurally 
diverse range of chemicals to bind and/or activate AhR-dependent gene expres-
sion [12, 13].

These results suggest that AhR has a ligand-binding site with special charac-
teristics. The identification and characterization of variety of naturally occurring 
AhR-ligands has started to redefine our ideas as to the structural specificity of 
AhR-ligand binding.
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2.1.2 Naturally occurring dietary AhR-ligands

The major source of exposure of animals and humans to AhR-ligands both 
synthetic and natural comes from the diet. A number of studies have described 
and characterized a variety of naturally occurring dietary chemicals that can 
directly activate and/or inhibit the AhR signaling pathway. Many studies have 
documented a variety of naturally occurring dietary chemicals that can act 
as agonist/antagonist to AhR. It was reported that extracts of vegetables or 
vegetable-derived materials could induce CYP1A1 activity, the hallmark of 
AhR activation [14]. The ability of several dietary plant compounds, including 
7,8-dihydrorutacarpine, indole 3-carbinol (I3C), indolo [3,2-b]carbazole (ICZ), 
dibenzoylmethanes, curcumin, quercetin, carotinoids (e.g., canthaxanthin and 
astaxanthin), pro-carotinoid, and β-apo-8’carotenal, to competitively bind to the 
AhR and stimulate AhR-dependent gene expression was also reported [15, 16]. 
Flavonoids are the largest group of naturally occurring dietary AhR-ligands which 
include flavones, flavanols, flavanones, and isoflavones. Flavonoids are found in 
dietary vegetables, fruits, and teas. These chemicals have strong antioxidative 
activity, anticarcinogenicity, and the ability to inhibit several enzymes such as 
protein kinases and cytochrome P450 [10, 17]).

Quercetin (3, 3′4′,5,7-pentahydroxy flavonol) is an AhR-ligand which could 
have both agonist and antagonist activity to AhR depending on the cell context 
and the experimental conditions [10]. The continuous administration of quercetin 
following TCDD exposure in C57Bl/6J mice prevented the reduction in body weight 
due to dioxin exposure [18], and quercetin treatment for 30 days was found to 
reduce hepatomegaly. Moreover, treating endothelial cells with 100-μM quercetin, 
following the treatment with the AhR-ligand polychlorinated biphenyls, was 
found to significantly reduce cyp1a1 mRNA level [19]. In addition to the ability of 
flavonoids to interact with the AhR, many of these flavonoids are also substrates of 
the CYP1A1 enzyme [20]. Flavonoid levels in human blood are usually in the μM 
concentration range, and this amount was reported to be sufficient to either inhibit 
or activate the AhR [21]. These findings suggest that quercetin could antagonize 
AhR causing significant suppression in the production of cyp1a1.

Curcumin [1,7-bis(4-hydrosy-3-methoxyphenyl)-1,6-hepta-diene-3,5-dione] 
is a naturally occurring dietary ligand of AhR. It is the main component (70–75%) 
of turmeric herb (Curcuma longa). Curcumin has a powerful anti-inflammatory, 
antioxidant, and antimicrobial activities [22, 23]. It has this ability because it 
can act through many cellular pathways including many transcription factors, 
hormones, growth factors, and their associated receptors. Also, curcumin is a 
powerful antitumor agent, due to its ability to dissociate the AhR/ARNT complex 
inside the nucleus [24]. The administration of curcumin suppresses cyp1a1 and 
1b1 mRNA, induced by TCDD treatment. TCDD was reported to enhance AhR/
ARNT-mediated cyp1a1 induction, and the expression of indoleamine-2,3-di-
oxygenase (IDO), which could enhance malignant transformation. In contrast, 
curcumin was observed to attenuate AhR/ARNT-mediated CYP induction by 
TCDD; thus, this mode of action may be the reason why curcumin could prevent 
malignant transformation, suggesting that curcumin could be used as a chemo-
preventive or anticancer agent.

Thus, plant-derived materials and extracts contain AhR-ligands or products that 
can promptly be converted into AhR-ligands. They are perhaps the largest class of 
natural AhR-ligands to which humans and animals are exposed. These chemicals 
are capable of binding to AhR as ligands, and suppress the transformation of the 
receptor by simply inhibiting the phosphorylation of AhR and Arnt, by protein 
kinase C, which is responsible for this process.
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2.2 Endogenous ligand/indoles

Recent studies reported that exposing tissue culture media to UV light enhances 
the induction of AhR-hydroxylase, an enzymatic activity usually associated with 
CYP1A1 requiring tryptophan for this response [25]. Many studies showed the 
ability of UV light to induce CYP1A1 in the skin and liver of rats and mice [26], 
suggesting that a diffusible AhR-ligand was generated in the skin. Thus, FICZ and 
other photooxidation products of tryptophan may actually be novel chemical mes-
sengers of light [25]. The ability of other endogenous indoles and indole metabolites 
to bind to the AhR has also been reported [27]. These studies demonstrated that 
tryptophan and naturally occurring tryptophan metabolites (tryptamine and indole 
acetic acid) can bind to and activate the AhR and AhR-dependent gene expression 
in both yeast and mammalian cells in culture. Tryptamine was also shown to be a 
relatively potent competitive inhibitor of CYP1A1-dependent enzymatic activity, 
suggesting that it may be a substrate for this enzyme [28]. More recently, it was 
observed that kyneurinine, additional metabolic breakdown products of trypto-
phan, could activate the AhR signaling pathway [29]. Because these chemicals are 
relatively weak ligands and only found at low concentration in cells, they are likely 
not endogenous activators in normal physiological conditions. However, if cellular 
concentrations of some tryptophan metabolites (i.e., tryptamine) are significantly 
elevated to 700 nM, for example, in this case, these ligands could activate the 
AhR receptor [30]. The solar spectrum is composed of various wavelength radia-
tions having specific effects on skin. UV with the wave length between 295 and 
215 nm is responsible for most sunburn and DNA damage. UV with the wavelength 
315–400 nm could cause immune suppression. The visible light with the wavelength 
400–700 nm was reported to enhance the production of reactive oxygen species and 
cause damage to macromolecules, whereas infrared induces heat damage and also 
alters mitochondrial integrity in skin cells, resulting in the generation of reactive 
oxygen species. All the wavelengths in solar spectrum together contribute to skin 
aging and wrinkling [27]. These findings can change the way we think about skin 
aging. UV-B was recently shown to interact with AhR in a reaction involving the 
formation of a tryptophan-derived photoproduct (FICZ) [26, 29]. In other words, 
the free amino acid tryptophan in skin cell cytoplasm can act as a chromophore to 
absorb UV-B energy and the resulting photoproduct activates AhR signaling, sug-
gesting that to achieve effective dermo-protection, AhR must be blocked to neutral-
ize some adverse effects of environmental factors.

3. Cytokines controlling T helper 17 and T regulatory cells polarization

3.1 T helper 17 subset (Th17)

There are specific cytokines which are important for the differentiation of 
naïve T cells into the T helper 17 subset. IL-6 and TGF-β together are important for 
the development of this population [31]. The blockade of IL-6 through anti-IL-6 
antibody was found to inhibit the development of Th17 cells [32]. Furthermore, 
the addition of IL-1β to culture medium was reported to enhance the development 
of the Th17 subset. IL-1 receptor knockout mice showed a significant defect in the 
Th17 population [33]. IL-1β was found to enhance expression of the transcrip-
tion factors orphan nuclear receptor (ROR-γt) and interferon regulatory factor-4 
(IRF-4), which are responsible for the development of the Th17 subset [34]. The 
Th17 subset could secrete a variety of cytokines including IL-17A, IL-17F, IL-21, and 
IL-22, which have a pathogenic effect in certain autoimmune mouse models [35]. 
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Moreover, IL-23 which is secreted by antigen-presenting cells (APCs) after patho-
gen recognition is important for the maintenance of the Th17 population [31]. These 
data suggested that the Th17 subset is a very sensitive subset requiring specific 
cytokines for development and maintenance.

3.2 T regulatory subset (Treg)

The presence of IL-10 and TGF-β was reported to skew the development of 
naïve T cell toward the development of T regulatory cells (Treg) [36]. The main 
function of Treg is to suppress the immune response, and to inhibit the produc-
tion of pro-inflammatory cytokines such as IL-2 and IFN-γ. The development of 
this population could be inhibited in the presence of IL-1β and IL-6 [37]. Treg 
cells are characterized by the expression of CD25 and the forkhead box p3 (Foxp3) 
transcription factor [38]. The decreased production of pro-inflammatory cytokines 
such as IL-6 and IL-1β could help in skewing the differentiation of naïve T cells 
toward the development of the Treg subset.

4. Role of Th17 in autoimmunity

In some cases, the immune system attacks our own tissues, causing autoim-
munity. IL-17-producing cells play important roles in the development of different 
autoimmune diseases including rheumatoid arthritis (RA), an inflammation dis-
order which attacks the synovial joints and multiple sclerosis (MS), characterized 
by inflammation of the myelin sheath, resulting in de-myelination. It was reported 
that IL-17-knockout mice were protected against these autoimmune diseases [39]. 
In contrast, a high level of IL-17 was detected in the serum of patients with MS, RA, 
and systemic lupus erythematous (SLE). This suggests that Th17 cells expressing 
high levels of ROR-γt and IL-23R could be one of the causes of these diseases [40]. 
In addition, it was also reported that the Th17 subset increases the severity of EAE, 
diabetes, and RA [41, 42].

5.  Effects of AhR-ligands on the production of Th17/Treg subsets and 
autoimmunity

Differentiation of Th17 cells depends on the presence of interleukin (IL)-6 and 
transforming growth factor (TGF)-beta, and it could be regulated by the activation 
of AhR [43]. The differentiation of Th17 cells could be enhanced by endogenous 
AhR agonists found normally in culture medium. The RPMI culture medium could 
support very low levels of Th17 polarization, because it lacks the presence of these 
ligands. In contrast, Iscove’s modified Dulbecco’s medium (IMDM) is known to be 
rich in aromatic amino acids, such as tryptophan, histidine, and phenylalanine, 
that were thought to be the precursors of endogenous AhR-ligands and therefore 
significantly increase the development of Th17 cells [43]. In addition, treating naïve 
CD4+T cells with the AhR-ligand FICZ in Th17 cell polarizing conditions helps in 
skewing the differentiation of naive CD4+T cells, in vitro, toward the development 
of the Th17 population, and as a result, significant amounts of IL-17a, IL-17f, and 
IL-22 cytokines will be secreted. In contrast, a significant reduction in the develop-
ment of Th17 cells was observed in AhR knockout mice, suggesting that the devel-
opment of the Th17 cells was AhR dependent [35].

The activation of AhR with different AhR-ligands can regulate Treg/Th17 
balance in mice. A significant increase in Treg population was noticed when AhR 
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is activated with TCDD. In addition, suppression in the severity of EAE disease by 
a TGF-β1-dependent mechanism [44] was seen. Moreover, C57Bl/6J mice carrying 
the d allele of the Ahr gene (Ahrd mice) were characterized by a reduced affinity of 
about 10–100-fold for AhR-ligands due to a mutation in its ligand-binding site, and 
treating Ahrd mice with (1 μg/mouse) TCDD, had no significant effect on the sever-
ity of EAE and the development of Treg cells [44]. In contrast, when AhR binds to 
FICZ, the activation of the receptor will interfere with the differentiation of Treg 
development, and cause a significant induction of the Th17 subset and worsen 
EAE disease which suggests that AhR regulates Treg/Th17 subset differentiation 
in a ligand-specific manner [44]. These data suggested that different AhR-ligands 
have different effects on the production of pro- or anti-inflammatory T helper cell 
subsets, by controlling the production of different cytokines in the surrounding 
environment.

6. Effects of I3C and indirubin on immunoregulation

Indole-3-carbinol (I3C) (AhR-ligand) is found in cruciferous vegetables. 
Indirubin (IO) is another AhR-ligand, and is one of the components of the tradi-
tional Chinese medicine Danggui Longhui Wan. Although both of them are AhR-
ligands, neither of these compounds bind the AhR as potently as TCDD. I3C and IO 
have anticancer properties, because they could inhibit cyclin dependent kinases that 
leads to cell cycle arrest in various cell lines. Moreover, both AhR-ligands were used 
to treat cancer. I3C has been used for the treatment of both breast and prostate can-
cer [45], while IO has been traditionally used for the treatment of chronic myelo-
cytic leukemia [46]. I3C could downregulate the production of pro-inflammatory 
cytokines in macrophages [47, 48], whereas IO was reported to suppress these 
mediators in splenocytes and microglial cells [49].

A study was conducted to evaluate the effects of I3C and IO on specific immune 
cell populations, such as murine bone marrow-derived DCs, and the effect of these 
AhR-ligands was tested in vivo. The results showed that I3C and IO have immuno-
suppressive effects on DCs, which could promote a regulatory environment, thus 
could be useful to suppress chronic inflammatory diseases and/or autoimmunity 
in vivo. In addition, activating DC with lipopolysaccharide (LPS), after treating 
the cells with both AhR-ligands, suppresses the production of pro-inflammatory 
mediators including tumor necrosis factor-α (TNF-α), IL-1β, IL-6, IL-12, and nitric 
oxide but increased IL-10 levels. The DC treated with AhR-ligands was reported to 
upregulate some immune-regulating genes such as ALDH1A, IDO, and TGFB [50].

Both AhR-ligands were reported to suppress the levels of nuclear factor-kappa 
B (NF-кB), but only I3C suppressed the LPS-induced activity of RelB transcription 
factor encoded by the RELB gene. Finally, when naïve T cells were cultured with 
DCs treated with AhR-ligands, the increased production of CD4+Foxp3+ (Treg 
cells) [50] was seen.

The above observations suggest that I3C and IO have immunosuppressive and 
anti-inflammatory effects on DCs. Since these ligands are significantly less toxic 
than TCDD, these natural products may become useful therapeutics for the treat-
ment of autoimmune and inflammatory diseases [50].

7. Effects of curcumin on Treg/Th17 balance and autoimmunity

The protective effect of curcumin was evaluated using ovalbumin (OVA)-
induced allergic inflammation in mouse model of allergic asthma. This mouse 
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model was established by ovalbumin. Mice were treated with different doses of 
curcumin (50, 100, and 200 mg/kg), and then the level of Treg/Th17-secreted 
cytokines was measured by enzyme-linked immunosorbent assay (ELISA). In addi-
tion, the percentages of Treg and Th17 were measured using flow cytometry assay. 
Results showed that curcumin caused a significant suppression in the production of 
Th17 subsets, and the secretion of IL-17 cytokines. In contrast, the AhR-ligand cur-
cumin significantly enhanced the production of CD4+CD25+ T cell subsets. These 
findings suggest that curcumin could be used as therapeutic agent for patients with 
allergic asthma, because of its ability to significantly affect Treg/Th17 balance [51].

Curcumin plays an important role in multiple sclerosis (MS) autoimmune disease. 
It is characterized by some pathophysiological features such as breaching of blood-
brain barrier (BBB) and injury to axons and myelin sheaths. Th17 cells play an impor-
tant role in the pathophysiological process of MS. Curcumin is well known as active 
anti-inflammatory and neuroprotective agent if used prophylactically. Curcumin 
could inhibit neuroinflammation through multiple mechanisms in MS. First, CNS 
antigens will be captured by DC, and then the antigen will be presented to T cells, 
which will help in initiating inflammatory response [52]. This action will be followed 
by the secretion of different pro-inflammatory cytokines and enhancement of pro-
duction of Th17 cells in circulation. The blood-brain barrier (BBB) usually expresses 
IL-17R and IL-22R receptors and the expression of these receptors will bridge the gap 
between Th17 and BBB tight junction that results in the disruption of tight junctions. 
This action will enhance the transmigration of Th17 across the BBB followed by the 
enhanced secretion of granzyme-B which in turn is found to initiate the killing of 
neurons. In contrast, curcumin treatment was found to inhibit the production and 
expansion of Th17 subsets in circulation. In addition, curcumin was reported to 
increase the expression of ZO-1 protein, an important tight junction protein, suggest-
ing that curcumin can reduce neuroinflammation in MS autoimmune disease [52].

8. Discussions

How might different AhR-ligands, all with the ability to stimulate AhR-
dependant gene transcription and promote Th17 cell development, promote 
either concomitant increases in Treg cells and lessen autoimmunity, or suppress 
Treg cell development and increase autoimmune activation? The presumed main 
function of AhR-induced transcriptional responses is to induce cytochrome P450 
(e.g., CYP1A1) for detoxification of the detected aryl hydrocarbon. Indeed, FICZ 
is rapidly metabolized in a CYP-mediated reaction, within 1–3 hours [53] with a 
corresponding drop in AhR activation [54]. Thus, a transient AhR activation, even 
though promoting Th17 development and expansion, may ultimately terminate and 
allow Treg populations to emerge and dominate. In contrast, sustained AhR signal-
ing might promote Foxp3 suppression and conversion of Treg to Th17 and Th1 cells.

Dietary AhR-ligands have also been suggested to act in an antagonistic manner to 
TCDD-induced AhR activation [55]. Additionally, although curcumin is able to act as 
a substrate for CYP1A1-mediated catabolism, it could partially decrease the accu-
mulation of CYP1A1 mRNA [55] and antagonize CYP1A1 activity [56]. Therefore, 
interference with full AhR function, or metabolism of the inducing AhR-ligand or 
other endogenous ligands may be important in determining whether AhR-ligands 
result in regulatory and/or effector T cell development. Alternatively, certain AhR-
ligands may induce distinct gene expression profiles [57], some of them promoting 
Th17 at the expense of Treg and others allowing the emergence of Treg.

The activation of AhR in DCs by some ligands may increase tolerogenic media-
tors, such as IDO, which promote Treg development. In support of this mechanism, 
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IDO expression was found to be increased in DCs by TCDD or FICZ [38]. The con-
version of Treg to Th17 and Th17 to Th1 profiles has been reported and reprogram-
ming of subsets might be possible by additional cytokine provision, such as IL-23, 
IL-6, or removal of reinforcement factors, such as IL-23 or AhR-ligands [38]. The 
reported ability of IDO products (i.e., tryptophan metabolites) to suppress ROR-γt 
and induce Foxp3+Treg cells [58] may indicate Th17 to Treg conversion, or shift 
to an IL-10-producing subset might result during exposure to some AhR-ligands. 
Since some AhR-ligand treatments lead to Th17 responses in the absence of Treg 
responses, allowing enhanced autoimmunity, this suggests that these ligands may be 
useful to promote antitumor immunity. It also raises the possibility that the antican-
cer effects of curcumin and quercetin may be due to their ability to promote potent 
effector T cell subsets in addition to suppressing some chronic inflammatory states. 
Another potentially beneficial use of AhR-ligands that have the ability to increase 
Treg populations is for the prevention or treatment of autoimmune diseases.

Experimental evidence has shown that flavonoids could be used to treat many 
diseases including cancer [59, 60]. The administration of curcumin was found to 
block the formation of lesions and tumors in C57Bl/6J mice after implanting murine 
melanoma B16F10 cells in their neck and brain. Furthermore, curcumin treatment 
was observed to significantly inhibit the proliferation of PC-3 prostate tumor cells.

The proposed mechanism for this effect of curcumin was its ability to sig-
nificantly suppress NF-ĸB and AP-1 signaling pathways in tumor cells [61, 62]. 
Curcumin was given orally at concentrations in the micro-molar range; however, 
results showed that the concentration of curcumin was in the nano-molar range in 
the plasma [63, 64], due to the extensive metabolism of curcumin in the intestine 
and liver, which prevents the maintenance of high concentration of curcumin in 
the plasma and tissues after taking it orally [65, 66]. The curcumin is effective on 
the cancer cells at high concentration which is difficult to be maintained for several 
hours even in the gastrointestinal tract [63]. This suggests that the potential of using 
curcumin for cancer treatment is limited when given orally and the intraperitoneal 
injection may be more effective.

In contrast, other studies have shown that high concentrations of curcumin were 
found to enhance chromosome malformation in different cell lines. The curcumin 
could cause DNA damage both in vivo and in vitro and increase the incidence of thy-
roid gland follicular cell hyperplasia and carcinogenic activity in the small intestine 
[67–69]. This was proposed mainly due to its ability to increase the production of 
reactive oxygen species (ROS) [70]. Other studies have shown that curcumin has the 
ability to suppress cytochrome P450 enzyme, glutathione, S-transferase, and UDP-
glucuronosyltransferase, causing toxicity due to the increased level of drugs in the 
plasma [71]. Although lower concentrations of curcumin could enhance antioxidant 
activity, high concentrations of curcumin have shown pro-oxidant effects [63, 72].

Similarly, quercetin is known as an antioxidant, anti-inflammatory, and antimi-
crobial compound at low doses [73, 74]. In contrast, quercetin can enhance the pro-
duction of ROS at higher concentrations [75]. ROS production by quercetin was found 
to kill some cancer cells, and quercetin complexes with bioactive compounds and 
metal ions such as lanthanum was reported to have powerful cytotoxic and antitumor 
properties at a concentration in the range of 100–1000 mM and the exposure time of 
tumor cells was around 3 hours. A quercetin/lanthanum complex was found to have a 
genotoxic effect on human cervical carcinoma cells due to ROS production [76].
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