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Abstract

Due to their high energy storage capacity, latent heat storage units using phase change
materials (PCMs) have gained considerable attention over the past three decades. The heat
exchange of a PCM with the surrounding medium is managed by the thermal energy
equation (solidification/melting) with different complex boundary and initial conditions.
In this study, we propose to solve numerically this equation applied to a PCM by the finite
difference method. To understand the storage phenomenon of solar energy in the form of
latent heat in PCM, initially found under cooling at 18�C, we studied the fusion in a
specific configuration corresponding to a tubular exchanger with five circular horizontal
fins. In this perspective, we propose in this work a numerical investigation based on an
enthalpy formulation to study the melting of a PCM in a finned heat exchanger. This
numerical approach gives simultaneously the temperature distributions in the PCM stor-
age system and temporal propagation of the melting front during the melting of the PCM
when it is exposed to a hot airflow. Also, we give in this study the transient evolution of
the longitudinal air temperature profiles.

Keywords: numerical investigation, melting, PCM, latent heat, natural convection

1. Introduction

Every latent heat thermal energy storage (LHTES) should include three main components: an

appropriate PCM in the required temperature range, a container for the stocking substance,

and an appropriate carrying fluid for an effective heat transfer from the heat source to the heat

storage. Moreover, the PCMs require an important heat exchange area because of its low

thermal conductivity.
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One method is to increase the heat transfer surface area by employing finned surfaces [1–3].

Many numerical and analytical models of PCM solidification and PCM melting in finned

PCM-air exchangers have been published in order to evaluate their performance.

Rostamizadeh et al. [4] developed a numerical model of energy storage in a rectangular

container of PCM based on an enthalpy formulation, and the effect of PCM thickness on

temperature distribution and melting fraction was investigated. Thus, these researchers

established that 5 mm is the best thickness of the PCMs. Besides, the study results show that

the PCM mass and the melting time verify a linear relationship. Ismail et al. [5] analyzed a

numerical and experimental study on the solidification and the melting of PCM around a

vertical axially finned isothermal cylinder. The model is based upon the pure conduction

mechanism of heat transfer. From the given results, it can be noticed that the fin thickness does

not have any important influence on the time of solidification; indeed, the time for full solidi-

fication and the solidification rate are strongly affected by the fin length and the number of

fins. The difference of temperature has a reverse impact on the solidification of PCM, and the

full solidification time tends to decrease when the temperature difference increases. Seck et al.

[6] studied the evolution of the melting front of a plate of paraffin (52–54) submitted to

sunshine rays in order to design a less voluminous and more efficient heat storage system.

The results have shown that the natural convection plays a major role in the kinetics of front

propagation. Hence, to numerically reproduce the temporal evolution of the interface through-

out the fusion process, the developed natural convective phenomenon should necessarily be

taken into account during the melting process. El Qarnia et al. [7] have presented a numerical

model of PCM melting in a rectangular cavity heated with three protruding heat sources

mounted on a vertical conducting plate. They have carried out numerical investigations for

studying the influence of different key parameters on the thermal performance of the PCM-

based heat sink. They have developed two correlations, one for the appropriate melt fraction

and the other for the maximum working time. The proposed approach can be useful for the

design of PCM-based cooling systems.

The present paper presents a numerical investigation of the melting of PCM (paraffin RT27) in

a finned tube thermal storage for air conditioning systems taking into account the presence of

natural convection. The first part includes the presentation of a numerical model based on the

continuity, momentum, and thermal energy equations, treated by the finite volume method.

The main objective of this numerical approach is to investigate the temporal evolution of PCM

melting and the melting front with the evolution of the liquid fraction, as well as the longitu-

dinal profiles of the heat transfer fluid (HTF) in the duct.

2. Computational domain and mathematical formulation

In the present paper, the studied configuration is a PCM-air heat exchanger with three coaxial

cylinders (Figure 1). The radius of the inner cylinder is R0 = 8 cm, that of the middle is

R1 = 13 cm, and that of the outer is R3 = 17 cm. The thickness of all tubes is 3 mm, and the

length of the system is 1.2 m. As shown in Figure 1, the space between the inner and middle
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cylinders is filled with PCM (RT27). In the first-pass flow, the heat transfer fluid (HTF) passes

through the central tube, and in the second pass-flow, it flows in the reversal direction in the

annular space before exiting the PCM-air heat exchanger module by the same input side. The

mass flow rate of air is 0.08 kg.s�1. The fins are made of aluminum with a constant thickness of

3 mm. The thermophysical properties of the solid and liquid PCM are listed in Table 1.

The problem is 2D since it has a symmetry of revolution, and hence the computational domain

(the hatched area in Figure 1) becomes 5 cm in width H and 1.2 m in length L.

2.1. Modeling of the heat transfer to the airflow circling in the axial duct and the annular

space

The heat transfer to the HTF-governing equation is given as follows:

rair Cpair

∂Tair

∂t
þ wair

∂Tair

∂z

� �

¼ ST (1)

For the first passage of air,

ST ¼
2 hi TPCM � Tairð Þ

R0
=hi ¼ 166 W m�2�C�1 (2)

Figure 1. Studied configurations and computational domain.
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For the second passage of air,

ST ¼
2 R1 ho TPCM � Tairð Þ

R2
2 � R2

1

=ho ¼ 114 W m�2�C�1 (3)

2.2. Numerical modeling of heat transfer in the PCM domain

The natural convection of a transient laminar PCM flow in the PCM container has been studied

numerically. Considering constant properties, except the density difference (Boussinesq approxi-

mation), and using the enthalpy method, the continuity, momentum, and thermal energy equa-

tions for the PCM can be written as follows:

2.2.1. Continuity equation

1

r

∂ ruð Þ

∂r
þ

∂w

∂z
¼ 0 (4)

2.2.2. Momentum equations

The momentum equations incorporate sink terms to take into account the changing phase of

the PCM. The condition that all velocities in solid regions are zero is considered using an

enthalpy-porosity approach [9].

∂U

∂t
¼ � div V

!
U� ν grad

!
U

� �

�
1

r

∂P

∂r
� ν

1

r

2 ∂V

r∂θ
þ
U

r

� �

þ
V2

r
�

1

r
c

1� fð Þ2

f3 þ b
U

(5)

∂W

∂t
¼ � div V

!
W� ν grad

!
W

� �

�
1

r

∂P

∂z
þ g β T� T0ð Þ �

1

r
c

1� fð Þ2

f3 þ b
W (6)

RT27

Melting interval [�C] [27–27,5]

Latent heat [kJ.kg�1] 179

Density [kg.m�3] Solid 870

Liquid 760

Specific heat [kJ.kg�1.�C�1] Solid 2.4

Liquid 1.8

Thermal conductivity [W.m�1.�C�1] Solid 0.24

Liquid 0.15

Thermal volumetric expansion coefficient [kg.m�3.�C�1] 8.5 � 10�4

Kinematic viscosity [m2.s�1] 1.5 � 10�6

Table 1. Thermophysical properties of the PCM RT27 [8].
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where Su is constituted by two terms: the first of which corresponds to the melting sink term,

and the second is the thermo-convective generation term. Furthermore, Sw is the extinction of

“W” component due to the melting of PCM.

2.2.3. Energy equation

r Tð Þ Cp Tð Þ
∂T

∂t
¼ �div r Tð Þ Cp Tð Þ V

!
T� λ Tð Þ gr

!
ad T

� �

(7)

where [10]

r Tð ÞCp Tð Þ ¼

rsCps T ≤Tsd

rlCpl T ≥Tliq

rmixL

Tliq � Tsd
Tsd ≤T ≤Tliq=rmix ¼ frl þ 1� fð Þrs

8

>

>

>

<

>

>

>

:

(8)

λ Tð Þ ¼

λs T ≤Tsd

λl T ≥Tliq

λl � λs

Tliq � Tsd
T� Tliq

� �

þ λl Tsd ≤T ≤Tliq

8

>

>

>

<

>

>

>

:

(9)

The liquid fraction “f” can be analyzed by the following equation:

f ¼
T� Tsd

Tliq � Tsd
(10)

2.3. Initial and boundary conditions

For the velocity components, the nonslip boundary conditions on all solid walls are imposed.

The thermal limiting condition imposed on the interfaces between the PCM envelope and the

air evolving in the tubular exchanger results from the application of the continuity rule. Thus,

a conducto-convective mixed condition is applied on both sides of the PCM container. During

the first passage of air, the heat transfer between the PCM and the HTF through the wall of the

PCM container is written as follows:

hi TPCM � Tair zð Þð Þ ¼ λ
∂T

∂r

�

�

�

�

r¼R0

(11)

During the second air passage,

ho TPCM � Tair zð Þð Þ ¼ �λ
∂T

∂r

�

�

�

�

r¼R1

(12)

As initial conditions, it is assumed in the charging mode (melting) that the storage unit and the

air in the duct are initially at a uniform temperature of 45�C and the temperature of the inlet air

is 18�C.
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2.4. Resolution method

In the present study, a finite volume method for the numerical solution of 2D unsteady natural

convection flow and energy Eqs. (5)–(7) is used [1]. Thus, the domain including the PCM is

divided into a convenient number of control volumes (NR = 40; NZ = 300).

The staggered grid method is employed to accurately control mass conservation and heat

transfer on all control volumes, and an exponentially fitted spatial discretization scheme is

used. Furthermore, the equation is solved by the alternating direction implicit (ADI) technique,

in which the Crank-Nicolson scheme is used for the time discretization, and the SIMPLER

algorithm for the treatment of the pressure-velocity coupling.

Numerical results are obtained by developing a specific code using the FORTRAN language.

3. Validation of the numerical approach

The performance of the proposed method is verified with the experimental data performed by

Longeon et al. [11]. This was done by simulating, under the same operating conditions, the

melting process of the paraffin RT35 used as PCM, with the thermophysical properties as listed

in Table 2.

The PCM storage system is composed of two concentric cylinders (Figure 2): the first one with

an inner diameter of 44 mm is made of Plexiglas, and the other with an inner diameter of

15 mm is made of stainless steel. The length of the whole system is 400 mm. The HTF flows

into the inner tube, and the PCM fills up the annular space. As it is shown in Figure 2, the

thermocouples are distributed on section B.

It is found that the temperature evolution does not depend on angular position, indicating that

the heat exchange can be modeled with a 2D approach. In Figure 3, which gives the tempera-

ture evolution with time at two radial positions (a and b), our numerical results are compared

with those determined experimentally by Longeon et al. [11]. A good agreement between

numerical and experimental data can be noted. In fact, in both positions, the same shape

tendency with a rapid decrease of the temperature at the beginning followed by a slow rating

Melting point [�C] 35

Latent heat [kJ.kg�1] 157

Density [kg.m�3] Solid 880

Liquid 760

Specific heat [kJ.kg�1.K�1] Solid 1.8

Liquid 2.4

Thermal conductivity [W.m�1.K�1] 0.2

Kinematic viscosity [m2.s�1] 3.3 � 10–6

Table 2. Thermophysical properties of RT35 [11].
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Figure 2. Scheme of the experimental loop and thermocouple positions in the test section [11].

Figure 3. Comparison of the experimental results and our numerical solution.
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decrease characterizing the phase change process can be noted. The average deviation between

our numerical simulation and the experimental data of Longeon et al. [11] is approximately 5%.

This deviation is very acceptable for this type of study [12].

4. Results

4.1. Temporal evolution of temperature and velocity fields

Figures 4 and 5 present the distinctive temporal evolution of the distribution of the tempera-

ture and current lines. The analysis of the thermal fields has shown that the temperature is

higher in the inner part near the central tube and the fins. The peripheral part is also warm, but

to a lesser degree, because this surface is exposed to less warm air, since it has lost some of its

sensible heat during the first passage. In the early stages of the fusion, very little free space

exists for the flow. Hence, the homologous mappings given the current lines and the isotherms

have revealed that the liquefaction front is parallel to the tubes and the fins, which confirms the

conduction predominance.

As a result of the free convection movements which have become increasingly strong in molten

paraffin, the volume is mainly extended over the entire height of the warmer central tube.

Figure 4. Temporal evolution of the temperature field and with corresponding current lines.
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While mounting along the air-heated tube, the molten paraffin progressively accumulates the

heat of the central tube and comes against the fins before diverting toward the interior of the

domain. Then, it descends along the solid-liquid interface by gradually releasing the accumu-

lated heat, till reaching the bottom of the liquefied PCM cavity. The same phenomenon is

observed on the temperature profiles near the outer tube. The observation of the temperature

evolution in the figure reveals that the conduction phenomenon predominates on the opposite

side of the tubes.

For all heat storage times, a comparison of the temperature levels in the zones located between

two consecutive internal fins shows higher temperature levels in the upper zones.

Figure 6 shows the longitudinal profiles of the air evolving in the exchanger. In storage mode,

the air entering the exchanger at 45�C is cooled in the first passage and then in the second

passage by providing its PCM-sensible heat, initially at 18�C. This gradually leads to:

• preheating the PCM to 18�C at its melting point (27�C);

• liquefying the PCM in the temperature range 27–27.5�C; and

• overheating the liquefied PCM.

These exchange natures are presented in Figure 7, in which the temperature evolution values

of the air leaving the exchanger as a function of time are plotted. Indeed, in the time interval

Figure 5. Temporal evolution of temperature fields in heat storage mode (five circular fins).
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between 5 and 40 min, an almost constant output temperature can be observed, indicating a

heat supply that is equally constant during the phase of state change.

4.2. Temporal evolution of the melting front

Figure 8 shows the temporal evolution of the melting front during the energy storage. After a

very short time (about 1 min), we have already observed that the fusion initiates at the wall of

the central tube, heated to a temperature higher than that of the material liquefaction by the

HTF.

During the PCM melting, three successive transfer regimes can be noted in the transmission

mode of the heat: in the first moments, the zone occupied by the liquid phase has a very small

Figure 6. Temporal evolution of the longitudinal air profile in the duct.

Figure 7. Temporal evolution of the air temperature at the outlet air duct.
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width, so there is practically no convection heat transfer. Consequently, the liquid-solid interface

moves parallel to the tubes and the fins under the unique action of conduction. At this stage, the

morphology of the melting/fusion front is presented as a flat surface. Then, when the width of

the liquid phase gives birth to convection, the regime is called mixed and corresponds to a

combination of natural convection and conduction. This results in a higher melting rate in the

solid part; the shape of the interface is thus modified. Finally, when the liquid phase has become

wide enough to allow a full development of the convective movements, the convective regime is

reached, in which the main part of the heat transfer inside the liquid phase is due to the natural

convection. The solid-liquid interface then is slightly deformed, and the natural convection will

be the main motor for the enhancement of the melting front inside the PCM enclosure.

Figure 8. Temporal evolution of the melting front of the storage mode.

Figure 9. Transient evolution of liquid fraction.

Numerical Investigation of PCM Melting in a Finned Tube Thermal Storage
http://dx.doi.org/10.5772/intechopen.76890

19



These transfer regimes are clearly seen in Figure 9, in which the evolution of the liquid fraction is

shown, indicating the melted volume according to the total volume, as a function of time.

Initially, there was a low growth rate corresponding to the conductive regime. Between roughly

20 min and 30 min, the growth rate becomes more important, underlining the contribution of

thermo-convective transfer. Starting from 35 min, the liquefaction rate becomes more important,

highlighting the dominance of the thermo-convective effects. The total liquefaction ends after

45 min.

5. Conclusion

In the present work, we have studied the melting of the PCM (Paraffin RT27) in a tubular

PCM-air heat exchanger. We have concluded that in the storage mode, the complete PCM

melting time was found to be substantially shorter (about one-fourth of the time) compared

to that recorded for solidification during the destocking [10]. Indeed, in contrast to what

happens during solidification involving an increase in the thermal resistance to the wall due

to the formation of a solid PCM layer, the initiation of liquefaction on the side of the hot walls

promotes the formation of thermo-convective loops which are intensified during the fusion.
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