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Abstract

This chapter examines the flow of swirling liquid in a duct. In many cases, circumferential
velocity in the cross-section of a cylindrical duct is a remarkably linear function of radius
up to the proximity of the duct wall. This is similar to the behaviour of a twisting solid
shaft and the analogy leads to a solid body model for swirl flow in ducts. Helically profiled
lobate duct walls provide a twisting torque, while wall friction in simple circular ducts
causes swirl to decay. The liquid counterpart of the solid body is represented as a first-
order system in downstream distance because of the way torque is transmitted by duct
walls rather than by shaft stiffness as in the solid case. The effect of the inertia of the
rotating and twisting cylinder is unchanged from its solid counterpart, and damping is
related to the viscosity of the liquid acting over the annulus between the rotating liquid
cylinder and the duct wall. The shear stress in the liquid is shown to be linearly related to
the intensity of the swirl. The generation of swirl is briefly described with reference to
lobate designs, their development of shape and helix.

Keywords: swirl, solid-liquid pipeflow, slurry transport, computational fluid dynamics

1. Introduction

Why impart swirling flow to a stream of fluid? Spanner, a much respected naval architect,

invented a helical lobate tube which increased the efficiency of heating of water in the boilers

of ships [1, 2]. Importantly, his design could be manufactured economically by drawing

cylindrical tube through special dies (see Figure 1).

For particle-bearing liquids, swirl puts particles into suspension at lower axial velocities than

would be the case for a cylindrical duct. Once in suspension, particles (or debris for down-

stream collection) remain in full or partial suspension long after the swirl has decayed to

negligible proportions.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Lower axial velocity implies much lower pumping power: a strong economic reason to swirl

the flow in the first place. The efficacy of swirl generation in pumping particulate liquids,

particularly river slurries, has been recognized for many years. The Gordon patent for a duct

with internal vanes to encourage swirl was published in 1899 [3].

Economic benefits are not the only reasons for studying swirl. In some instances, enhanced

swirl is required irrespective of increased pressure losses and pumping power requirement.

The data in this chapter originate from several sources. Much of it comes from validated

computational fluid dynamics (CFD) code using RANS (Reynolds-averaged Navier Stokes

equations). The basis of these equations is ‘Reynolds decomposition’, whereby an instanta-

neous quantity is decomposed into time-averaged quantities and fluctuating quantities. In

cylindrical polar co-ordinates (r,θ,z), the time-averaged velocities are u, v and w and the

fluctuating velocities are u0, v0 and w0. In essence, the fluctuating quantities can be assumed to

have a temporal mean of zero. This makes for an increase in the number of unknowns because

the cross products (u0u0 , v0v0 , w0w0 , u0v0 , u0w0 , and v0w0 ) have to be determined.

RANS turbulence modelling techniques are often classed by the number of equations used to

model the flow field. Early results were obtained using two-equation k� Eð Þ and k� ωð Þmodels,

where k represents the turbulent kinetic energy, E represents the rate of dissipation of turbulent

energy and ω represents the specific rate of dissipation of turbulent kinetic energy into internal

thermal energy. As greater computer power became available, the six-equation Reynolds stress

model (RSM) became the method of choice for swirling flows. There are variations in RSM

solutions. The CFX RSM-ω [5] has been used since it can give more accuracy near the wall.

2. Characterizing swirl

Firstly, I should explain what I mean by ‘swirl’ and then define precise ways to assess it. In

turbulent pipe flow, there are many eddies and circulations cascading from the large to the

Figure 1. Three-lobe boiler tube after Spanner, 1939, 1945. Reproduced courtesy of Transport and Sedimentation Confer-

ence, Wroclaw University of Environmental and Life Sciences, Poland.
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small. Kolmorogov [6] showed that most of the kinetic energy in the flow is contained in large-

scale structures. Energy ‘cascades’ to smaller scales by an inviscid mechanism until it is small

enough for viscous dissipation to take place. I define swirl as large-scale, one-way circulation

surrounding the geometric centre of the duct.

With a definition of swirl in place, I now need to explain the mathematical measures of this

behaviour. Is it useful, strong or weak, efficient or profligate in its expenditure of pipeline

pressure? The first and most obvious measure is the circumferential velocity, sometimes

referred to as tangential velocity, wmax, taken at its maximum in the cross-section. Useful in

itself, this direct measure is important in application to downstream devices—cyclones or

pumps for example.

Circumferential velocity as a measure of swirl takes no account of the axial velocity required to

generate or maintain it. In contrast, the swirl angle, incorporating the axial velocity, indicates

the angular deflection of the flow and can be clearly seen in transparent pipe sections (see

Figure 2). Tonkin [7] used these images to infer tangential velocity for a series of particle

concentrations and axial velocities.

The swirl angle, θS, is given by

θS ¼ tan �1 wmax

um
(1)

where um is the mean axial pipe velocity.

Measurement transducers can be corrupted by swirling flow, and International Standard ISO

5167 specifies a maximum swirl-angle limit of 2� at or near transducer stations.

The swirl angle does not take account of the angular momentum given to the flowing liquid.

The ratio of angular momentum flux to the product of pipe radius and axial momentum flux is

known as the swirl intensity or swirl number, Ω. (Note that a simple ratio of angular to axial

Figure 2. 1.4% by volume coarse sand in water, axial velocity 1.7 m/s showing swirl angle. Image from Tonkin [7] with

thanks.
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momentum would not be dimensionless.) There are several versions of this definition and the

version defined in Eq. (2) allows for variations in the axial velocity with radial displacement.

Ω ¼
2πr

R R
0 uwr2dr

R� 2πr
R R
0 u2rdr

¼

R R
0 uwr2dr

R
R R
0 u2rdr

(2)

where R is the pipe bore radius (of the cylindrical delivery pipe), u is the axial velocity at radius

r, and w is the circumferential velocity at radius r.

Swirl number gives a simple way to classify swirl for computational calculation methods. If

Ω < 0:5, two-equation methods (such as k� Eð Þ and k� ωð Þ) are generally considered ade-

quate. If Ω ≥ 0:5, the six-equation RSM is preferred despite the increased computational cost.

Swirl intensity and swirl angle are closely related measures and in many cases an almost linear

relation exists between them.

Pressure loss is an inevitable consequence of swirl generation and it is important to use that

pressure effectively. Ganeshalingam [8] developed a dimensionless group, swirl effectiveness, S,

given by

S ¼
Ω

ΔP
1
2ru

2

(3)

where ΔP is the pressure loss over a length of duct and r is the fluid density.

This measure has proved invaluable in optimizing Spanner-type duct designs.

Another pressure-related metric for use when a Spanner-type duct generates swirl is the

pressure loss for an equivalent length of smooth circular tube. The well-known Darcy-

Weisbach equation can be used to calculate this:

∆Ps ¼ f
L

D

ru2

2
(4)

where f is the friction factor for a smooth duct, L is the duct length and D is the duct diameter.

A simple ratio can be used to gauge the magnitude of the pressure loss suffered as a result of

the use of the duct:

Pressure penalty factor ¼
ΔP

∆Ps
(5)

3. The solid body model

In many cases of developed swirling flow, the swirl angle, θ, is found to be almost constant over

most of the cross-section. Figure 3 shows a tangential velocity profile for a nominal axial velocity
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of 2 m/s. The near linearity over approximately 84% of the bore also indicates that angular

velocity, ω, is similarly constant in this range. Constant angular velocity is a characteristic of a

solid rotating shaft and this concept suggests a simple mechanical analogy of the solid body

model which can be used to describe swirling flow.

Damping friction (directly proportional to tangential velocity) clearly has little effect in the

central 84% of Figure 3. The peripheral 16% of the velocity profile indicates gathering damping

friction as the radius increases. At the outer radial extremity, the circumferential velocity falls

to zero in accordance with the no-slip principle of Newtonian mechanics. This outer damping

annulus is characterized by a dimensionless distance from the wall, with yþ defined as

yþ ¼
u∗y

ν

(6)

where u∗ is the friction (shear) velocity¼

ffiffiffiffiffi

τW

r

q

, τw is the wall shear stress, y is the distance to the

wall and ν is the kinematic viscosity.

In turbulent pipe flow, close to the wall, is a laminar sub-layer of width yþ � 5. At greater

distances, up to about yþ � 35, a buffer layer gradually develops the laminar sub-layer into

fully turbulent flow. This is much smaller than the outer 16% of Figure 3 and later results will

show that the solid body starts at approximate distance yþ � 72 for an axial velocity of 2 m/s.

The distance is strongly influenced by the axial velocity. For axial velocities between 1 and 4 m/

s in an industrial steel pipe of bore 50 mm, the distance to the wall can be expected to vary

from about 25% to about 10% of the duct radius.

Figure 3. Circumferential velocity, w, downstream of a three-lobe swirl-inducing duct similar to Spanner’s design. Data

from Raylor with thanks.
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The simplified system dynamics of the analogy of a solid-liquid cylinder are described by three

elements: the inertia of the shaft and any rotating components such as a flywheel, the stiffness of

the shaft transmitting torque down the shaft and the damping of the speed of rotation. Straight

away the stiffness of the shaft can be eliminated from the model. By definition, liquids do not

have stiffness and they adapt to the shape of the containment without coercion. We are left

with a shaft, length one pitch (for one 360� rotation), subjected to a torque M rotating at

temporal rate dθ/dt.

M ¼ J
d2θ

dt2
þ c

dθ

dt
(7)

where J is the polar second moment of mass of the cylinder and c represents a damping

coefficient dependent upon the area of the shearing surfaces. The torque moment M can be

positive for a Spanner-type pipe or can approach zero for a frictionless cylindrical tube.

In the model, the coefficient of damping, c, is provided by the viscosity of the liquid. Consider

fully developed swirling flow in the core of a cylindrical duct (Figure 4). In the example above

(mean axial velocity = 2 m/s), there is a zone of approximate width y+ = 72 in which all the

Figure 4. Fully developed swirling flow in a cylindrical duct.
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damping occurs. Note that if the swirl is generated by a Spanner-type duct, there will be other

shearing surfaces in the core flowwhere the rotating annuli meet the as yet non-rotating central

portion. This is sometimes referred to as a wall-jet profile (Steenbergen and Voskamp [9]).

In order to quantify the damping coefficient, c, I concentrate on the viscous part of Eq. (7). Put

another way, I assert d2θ
dt2

! 0 for the time being.

Mviscous ¼ c
dθ

dt
(8)

Newton’s law of viscosity gives

τ ¼ μ
du

dy
� μ

ri
dθ
dt

R� rið Þ
(9)

Torque is applied at the outer radius as wall friction or reaction from the pipe profile, so

Mviscous

2πRL
¼ μ

ri
dθ
dt

R� rið Þ
(10)

Comparing (10) with (8), we obtain the coefficient of damping per unit length.

c

L
¼ μ

2πRri
R� rið Þ

¼ μ
2πR R� yð Þ

y
(11)

where y is the distance from the wall of the duct.

The next major challenge to the solid body model is the transmission of torque. In a solid shaft,

the torque is transmitted by its stiffness, but stiffness has been discounted as a factor in liquids.

In the case of a profiled swirl tube, the torque comes from the interaction of the axial flow with

the walls of the tube, an interaction the author describes as the driving function. This becomes

clear when Eq. (7) is rewritten so that the dependent variable becomes axial distance along the

cylinder (z). Putting G = twist gradient dθ/dz

M ¼ J
d2θ

dz2
dz

dt

� �2

þ c
dθ

dz

dz

dt

� �

¼ J
dG

dz
u2 þ cGu (12)

Dividing throughout by cu

M

cu
¼ GD zð Þ ¼

Ju

c

dG

dz
þ G (13)

Note that the group of variables at the left-hand side of Eq. (3) GD zð Þ ¼ M
cu has the same

dimensions as G and is the driving function, i.e.

Tu
dG

dz
þ G ¼ GD zð Þ (14)

Swirl-Inducing Ducts
http://dx.doi.org/10.5772/intechopen.78959

83



where the time constant

T ¼
J

c
(15)

The complementary function, or transient Gcf zð Þ, is the solution to Tu dG
dz þ G ¼ 0. This has the

form

Gcf zð Þ ¼ Be�
z
Tu (16)

The solution to Eq. (14) has another (steady-state) part, the particular integral (PI), Gpi(z), which

depends on the driving function GD(z). The total response is a combination of these two

components

G zð Þ ¼ Gcf zð Þ þ Gpi zð Þ (17)

There are a series of driving functions of interest and I shall start with the simplest: the decay of

swirl angle downstream of swirling flow from, for example, a pump output or double elbow.

The driving function GD(z) in this case is a negative step change from the initial swirl angle to

zero.

When z = 0, G(z) = Go, the initial swirl gradient. Eq. (16) gives

B ¼ Go i:e: G zð Þ ¼ Goe
� z

Tu (18)

Halsey [10] studied the swirl in clean water following a double elbow. His work was aimed at

measurement devices for which swirling flow is disruptive. ISO 5167 specifies a 2� swirl-angle

limit for measurement purposes and Halsey came up with an empirical law for its decay as

follows

θ ¼ θoe
�

1:5fz
D (19)

where θo is the swirl angle at commencement, θ is the swirl angle at a downstream distance z, f

is the friction factor and D is the diameter of the bore. Steenbergen and Voskamp [9] arrived at

an almost identical equation in terms of swirl intensity, Ω, instead of swirl angle.

Ganeshalingam’s work [8] achieved close agreement with these models and a simulation

exercise (below) confirms the relationships.

Differentiating (19) gives

dθ

dz
¼ G zð Þ ¼ θo

�1:5f

D

� �

e�
1:5fz
D (20)

when z ¼ 0, Go ¼ θo
�1:5f
D

� �

, so for the Halsey model

G zð Þ

Go
¼ e�

1:5fz
D (21)
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Equating exponents in Eqs. (18) and (21), we have a first estimate of the time constant Τ for

decay of swirl and the length of the swirling wake Τu

�
z

Tu
¼ �

1:5fz

D
from which T ¼

D

1:5fu
and Tu ¼

D

1:5f
(22)

The solid body model gives us T ¼ J
c. The polar moment of inertia, J, of a solid cylinder, density

r, per unit length (L) is given by

J

L
¼

1

2
rπ

D

2

� �4

(23)

From this, and the time constant T, a value of c/L can be deduced which can be used with

Eq. (11) to estimate the distance, y, of the solid body from the wall of the duct.

It is not possible to specify the total extinction of swirl. For some purposes, the point of 95%

reduction in swirl angle (L95) after a downstream distance of 3Τu should be a useful approxi-

mation. If swirl is a desirable property (to keep solids in suspension for example), the half-life

distance (L50 ¼ 0:6931� Tuð Þ) is a more appropriate concept. Table 1 tabulates these calcula-

tions for a series of axial velocities and indicates that the level of swirl at Reynolds number of

100,000 in an industrial steel pipe with friction factor 0.022 can be assumed to have decayed to

half its initial value after about 21 diameters using the solid body model.

It is generally accepted that a y+ value of about 35 indicates the edge of the buffer layer next to

the wall. The range of values of y+ significantly greater than this value suggests that there is an

annulus of turbulent flow between the buffer layer and the solid body.

The half-life distances L50 are approximately constant for axial pipe velocities in the range [1.0,

4 m/s]. This is an important observation for designers of pipe systems in which the axial

velocity might vary.

u Re f T L50 c/L y y+

m/s — — s m Nms/m m —

1 50,000 0.024 1.37 0.95 0.00045 0.0065 82.3

1.5 75,000 0.023 0.97 1.00 0.00064 0.0050 76.8

2 100,000 0.022 0.75 1.04 0.00082 0.0040 71.8

2.5 125,000 0.022 0.61 1.06 0.00101 0.0034 67.5

3 150,000 0.022 0.52 1.07 0.00119 0.0029 63.9

3.5 175,000 0.021 0.45 1.08 0.00137 0.0026 60.8

4 200,000 0.021 0.39 1.09 0.00156 0.0023 58.0

Clean water: pipe diameter,D = 0.05 m; roughness height, ε = 0.000046 m; relative roughness, ε/D = 0.00092; polar moment

of inertia per m, J/L = 0.000614 kgm2/m.

Table 1. Solid body model: industrial steel pipe transporting clean water.
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3.1. Wall shear stress in the solid body model

Starting from an analysis by Kitoh [4], the tangential momentum equation for axi-symmetric

flow gives an equation for circumferential shear stress at the wall in the decay of swirl in a

circular pipe.

τrθ ¼ rvwþ
r

R
2

Z

R

0

r
2 ∂

∂z
uwþ u0w0 � ν

∂w

∂z

� �

dr (24)

Now uw≫ u0w0 � ν
∂w

∂z

� �

and putting rvw ! 0, Eq. (24) for the wall can be written

τw ¼
r

R
2

Z

R

0

r
2 ∂

∂z
uwð Þdr (25)

where τW is the circumferential wall shear stress.

Leibnitz’s rule for the differentiation of integrals allows the change of order of integration and

differentiation in Eq. (25):

τW ¼
r

R
2

d

dz

Z

R

0

r
2
uwdr (26)

For a constant Reynolds number, the axial velocity u ¼ um is constant and the axial momentum

can be simplified to a constant quantity:

2πr

Z

R

0

u
2
rdr ¼ 2πru2

m

Z

R

0

rdr ¼ 2πru2
m

R
2

2
¼ πrR

2
u
2
m

(27)

This allows the simplification of swirl intensity to

Ω ¼
2πr

R

R

0 r2uwdr

R� πrR
2
u2
m

¼
2
R

R

0 r2uwdr

R
3
u2
m

(28)

and substituting for Ω in Eq. (26)

τW ¼
r

R
2

d

dz

Z

R

0

Ωu2
m
R
3

2

� �

dr ¼
1

2
ru

2
m
R
dΩ

dz
(29)

i.e.
τW

1
2 ru

2
m

¼ R
dΩ

dz
¼

1

2

dΩ

d z

D

(30)

Note that since dΩ

d z

D

is always negative in decaying swirl flow, values of resisting shear stress τW

must be given a negative sign.

Returning to the analogy of a solid body for the flow, one might reasonably expect a linear

relationship between circumferential stress and circumferential strain (swirl intensity or swirl
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angle) for a given Reynolds number. This can be tested with a straightforward simulation

experiment.

The simulation experiment (below) gives Ω ¼ Ω0e
�0:0338 z

Dð Þ for the object 50-mm smooth tube.

Factoring in the measured mean friction factor yields Ω ¼ Ω0e
�ξf z

Dð Þ where ξ ¼ 1:711.

The imposition of pipe roughness considerably increases the friction factor, f. For an axial

velocity of 1.64 m/s in a commercial steel pipe (ε = 0.000046 m), friction factor is sharply

increased to 0.0228. If the stress-strain assumption still holds, substituting this increased

friction factor in Eq. (31) yields �1:483f �Ω ¼ dΩ
d z
D
. The constant ξ ¼ 1:483 is very close to that

proposed by Steenbergen and Voskamp who achieved ξ ¼ 1:49� 0:07 for a larger range of

values 0 ≤Ω ≤ 0:18 [9].

SIMULATION EXPERIMENT: swirl decay in a cylindrical tube

Figure 5 shows the results of a simple RANS simulation for the flow of clean water through a

50-mm diameter smooth circular tube using the Reynolds stress model (�ω version) [5]. The

entry plane is furnished with a mean axial velocity of 1.64 m/s and an initial circumferential

velocity of 0.72 m/s at the wall and zero at the centre of the tube. The boundary conditions

including the law of the wall are allowed to develop over an axial length of 10.0 m. The solid

body model implies that wall friction will have reached 95% of its effect on the flow after 3Tum

and 99% after 5Tu m.

Reynolds number Re ¼ ruD
μ ¼ 997� 1:64� 0:05

0:001 ¼ 81; 754

Friction factor (Blasius equation): f ¼ 0:3162� Re�0:25 ¼ 0:0186

Time constant (Eq. (22)) T ¼ D
1:5fu ¼

0:05
1:5�0:0186�1:64 ¼ 1:09 s

Effective range downstream: 9:5 m ≤ z ≤ 9:98 m

Figure 5. Dimensionless wall shear stress plotted against swirl intensity.
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For the solid body model this is 5:30Tu ≤ z ≤ 5:57Tu

Measured mean friction factor over range: 0.0197

In this range, the regression law applied to the CFD data is very precise (r2 ¼ 0:99999Þ.

Ignoring the small intercept as an enabling assumption,

�0:0169Ω ¼
1

2

dΩ

d z
D

(31)

Ω ¼ Ω0e
�k z

Dð Þ (32)

where k = 0.0338 is a constant of proportionality and Ω0 is the swirl intensity at outset.

Note the significant difference in time constant for smooth pipe when compared to commercial

industrial steel pipe because of the increased value of the multiplier ξ. In the example, the time

constant is reduced from 1.09 (smooth pipe) to 0.905 s (industrial steel pipe).

Since the swirl angle is linearly related to swirl intensity in most cases, it follows that Halsey’s

correlation [10] also fits the data.

4. Generating swirl

Previously, we have seen that a solid body model can be applied to the simple case of swirl

decaying downstream. In these cases, the driving function is simply a step to zero: GD zð Þ ! 0.

We now come to more complex situations where the goal is to generate swirl for a specific

purpose. Before addressing this problem, we must first consider the cross-sectional shape of

the duct to be twisted.

The contours of duct walls should impart torque to the flow while minimizing pressure loss.

By designing using this criterion, pressure costs are used in an effective way. Here, Ganesha-

lingham’s dimensionless group, swirl effectiveness, S, can be used to evaluate the effectiveness

of swirl generation.

S ¼
S

1
2 ru

2
(33)

4.1. Lobate designs

The boiler tube patented by Spanner and illustrated in Figure 1 has only three lobes. Raylor

[11] idealized the lobe profiles to form semicircular shapes for his CFD modelling to test the

design for the transportation of particle-bearing liquids. The computer modelling was

underpinned by experimental work on an extant boiler tube. Later work by Ganeshalingam

showed that a four-lobe duct (or a 2-lobe duct) was more efficient when compared on the basis

of swirl effectiveness.
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In Figure 6, after Ariyaratne [13], it can be seen that the contours of tangential velocity adopt a

more circular pattern in the four-lobe variant and that an efficient circulating core flow is

produced in consequence.

Simply equating the area of the four-lobe duct to πR2, the upstream area, the ratio of the lobe

radius, R4, to the upstream radius can be derived:

R4

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2πþ 4

r

¼ 0:5527 (34)

R4 and sub-multiples have been used in other speculative swirl-duct designs so that lobe sizes

can be compared across designs.

4.2. Response of the solid body model to a constant-pitch swirl duct

I first consider a four-lobe swirl duct with constant pitch:diameter ratio of 8:1 simply

connected in line after a cylindrical duct. The driving function for this is a positive step or

Heaviside function in swirl gradient dθ
dz. If the imposed value of swirl gradient is G0, this can be

tried as the particular integral in Eq. (17):

G zð Þ ¼ Gpi zð Þ þ Gcf zð Þ ¼ G0 þ Be�
z
Tu (35)

The constant B can be easily obtained by considering the boundary condition G(0) which yields

B ¼ �G0. So, the solution for this case is satisfied by

G zð Þ ¼ G0 1� e�
z
Tu

� �

(36)

Figure 7 illustrates the response of a system comprising a four-lobe Spanner-type duct with

cross-sectional area equal to a cylindrical upstream main of diameter 50 mm carrying clean

Figure 6. Contours of tangential velocity in three-lobe and four-lobe swirl pipes. Pure water with an axial velocity 2 m/s.

Source: Jones and Ariyaratne [12]; reproduced courtesy: AIChE Journal.
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water at an axial velocity of 2 m/s. The ordinates are tangential velocities at a radius of 0.7R.

From these ordinates, the response of G(z) can be deduced given that the twist gradient of the

duct is 15.71 radians/m. Fitting Eq. (36) to these data yields Tu = 0.1 m. In the first-order system,

63.2% of the final value is reached after Tu metres.

The length of the wake (the point at which swirl has decayed by 95%) is 3Tu. Hence the

standard length of this four-lobe Spanner-type duct with axial velocity 2 m/s is 300 mm.

Note the apparent anomaly between the calculated constant Tu for the swirl generation case

(0.1 m) and that for the swirl-decaying case from Table 1 (1.5 m), a multiplicative factor of 15.

The time constant of the model must be identical whatever driving function is applied so the

only way in which this phenomenon can be explained is by studying the changes in the

geometry of the rotating core for the generation case. The circumferential velocity distribution

for swirl generation is a wall jet [9] in which circumferential velocity is concentrated towards

the outer perimeter of the core flow. Effectively, the solid body in this case is not a solid

cylinder, but more like a cylindrical tube. Thinking of the time constant of the system (T ¼
J
c),

the polar moment of inertia, J, is significantly reduced from that of a solid cylinder while the

shearing surfaces are significantly greater than those of a solid cylinder, increasing the

damping coefficient c.

4.3. Cross-section development for lobate ducts

The example of a fixed-pitch duct is useful in that it gives a standard length for swirl pipe

designs. However, a lobate swirl duct cannot be added directly to a cylindrical pipe without

incurring wasteful pressure losses. A better solution is to allow the shape to develop in a

sigmoidal fashion. A family of sigmoidal coefficients is given by

Figure 7. Response of tangential velocity in a Spanner-type swirl-inducing duct of diameter 50 mm carrying clean water

at 2 m/s. Radial position is 0.7R. Reproduced courtesy of Transport and Sedimentation Conference, Wroclaw University of

Environmental and Life Sciences, Poland.
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(37)

and illustrated in Figure 8.

For a Spanner-type lobate duct, the sigmoidal function can be used to schedule the growth of

lobe area, the expansion of the duct or, usually, the development of the radius of the lobe to its

final value. In this case, the factors are

β
L� z

L

� �

for entry, 1� β
L� z

L

� �� �

for exit (38)

The exponent n governs the steepness of the sigmoidal curve. If n > 0.5, the initial gradient is

effectively zero, giving a gradual increase in shape.

Originally, a Three-Zone development was proposed by Jones and Ariyaratne [12] whereby the

entry section was a beta transition with n = 2, followed by a fixed-pitch section, followed again

by an exit transition with n = 0.5. This was certainly an improvement on the system without

transitions, but the fixed-pitch section constrained the angular acceleration of the liquid in the

duct. Later designs embodied a continuous development of shape and helix. The symmetric

development had an increasing beta function to the central point of the duct followed by a

decreasing beta function to the outlet. The asymmetric development had an increasing beta

function to a point two-thirds along the length of the duct and a decreasing beta function for

the latter third. The asymmetric development gave slightly better swirl intensity results than

the symmetric development.

Figure 8. Coefficients for the development of cross-section shape.
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4.4. Helix development

Raylor [11] showed that advantages accrued from the gradual angular acceleration of twist in a

profiled tube. In recent work, this has been combined with the asymmetric beta function to

create a duct with developing cross-sections and acceleration of twist throughout the tube.

Inserting the driving function for this case we obtain

Tu
dG

dz
þ G ¼ λzþ G0 (39)

where λ is the rate of increase of G along the duct, and G0 is the starting value.

Eq. (16) gives the complementary function as in the previous cases

Gcf zð Þ ¼ Be�
z
Tu (40)

Design variables Performance

Upstream diameter 50 mm Axial velocity 1.5 m/s

Length 300 mm Reynolds number 74,775

Cross-section 2-lobe Friction factora 0.0191

Lobe radius 13.8 mm ΔP∗∗ ¼ 333.25 Pa

Shape development Asymmetric 2:1 Cylindrical tubec

ΔPs ¼

128.6 Pa

Entry sigmoid n = 2 Pressure penalty 2.59

Exit sigmoid n = 2 Swirl intensity at outlet planeb (swirl number) 0.0716

Total twist 180� Swirl effectivenessb 0.241

Helix development λzþ G0
aBlasius equation for smooth tubes:

f ¼ 0:3162� Re�0:25

G0 ¼ 0.0 bRSM-ω [5]

λ ¼ 69.81 rad/m/m cDarcy-Weisbach equation: ∆P ¼ f L
D

ru2

2

Table 2. Design data sheet for a two-lobe swirl inducing duct (lobe radius ¼ 1� R4).

Swirling Flows and Flames92



The particular integral (PI) is obtained by trying G zð Þ ¼ PzþQ in [4] and equating to the ramp

function GD zð Þ ¼ λzþ G0

TuPþ PzþQ ¼ λzþ G0 (41)

Comparing coefficients we have the solution for the PI

Gpi zð Þ ¼ λz� Tuλþ G0 (42)

Hence, the complete solution (PI + CF) is given by

G zð Þ ¼ Gpi zð Þ þ Gcf zð Þ ¼ λz� Tuλþ Be�
z
Tu þ G0 (43)

Applying the boundary condition G 0ð Þ ¼ G0 gives B ¼ Tuλ� G0:

So

G zð Þ ¼
dθ

dz
¼ λz� Tuλþ Tuλ� G0ð Þe�

z
τu (44)

Eq. (44) specifies the response of the solid body model to the ramped driving function in

Eq. (39). A two-lobe design is illustrated in Table 2. The design is a modestly twisting tube

but pressure losses are considerably larger than those expected in a smooth straight duct for

the same duty (using the Darcy-Weisbach equation for this prediction). Increasing the amount

of twist and increasing the number of lobes to four can improve the performance of the tube at

the expense of increased pressure loss.

5. Conclusion

The purpose of this chapter has been to examine the technical aspects of swirling flows and to

facilitate the design of ducts for specific purposes. Swirling flow is a complex, while stunningly

beautiful, phenomenon and my work has been guided by the need to reduce its complexity for

the designer. The emphasis has been on Spanner-type profiled tubes, but this is by no means

the only way to generate swirl. The fascinating medical prospect that small amplitude helically

coiled pipes might be used as bypass grafts to prevent occlusion by thrombosis has been the

subject of scholarly study [14, 15].

The efficacy of the first-order solid body model was demonstrated by the simulation of flow

through a 10.0-m cylindrical tube. The prediction that the downstream data taken after a

distance of 3Tu would be representative of fully developed flow was amply demonstrated.

Swirling flows are a little more difficult to predict than by using a simple exponential decay

formula, but the solid body model introduced in this chapter is a simple and useful tool to

apply to the design task.
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