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Abstract

Thin film technology has a world-wide reputation in the field of thin film deposition 
process and also it paves a way for innovative techniques in large scale applications. 
Modern thin film technology has evolved into a sophisticated way to increase the per-
formance and esthetic value for making new functional devices. One such application is 
search of new materials for thin film solar cells as it provides the solution for the today’s 
concern of energy crisis. Depending on the processing technology solar cells are of vari-
ous types. Among them, silicon wafer solar cells and thin film solar cells are most promis-
ing. Thin film technology has made solar cells more feasible to be employed in terms of 
device design and fabrication. The efficiencies produced by these solar cells still need to 
be improved. For this many investigations for further improvement from CIGS (copper 
indium gallium selenide) solar cell to dye sensitized solar cells and perovskite solar cells. 
Due to toxic nature and environmental impact the use of lead in perovskite solar cells are 
replaced by tin or some materials which would equalize the achieved efficiency of lead. 
Hence the developments in search of innovative materials continue its path in thin film 
solar cells to develop the photovoltaic field by enhancing its efficiency.

Keywords: solar cell, physical vapor deposition, drop casting, interfacial impact, 
efficiency

1. Introduction

Energy is the key factor for any living creature to exist in the universe. With the advent of 
industrialization and increase in population led to a surge in the crisis for energy. The reduc-
tion of our dependence on fossil fuels (oil, coal and natural gas), as well as the evolution 
towards a cleaner future requires the large deployment of sustainable renewable energy 
sources. Among them solar energy is the most abundant and is available throughout the year. 
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Moreover the solar energy has the greatest potential to fulfill the thirst for energy and the 
need for innovation of clean and eco-friendly technologies. In this perspective developing 
solar cells is one of the best approaches to convert solar energy into electrical energy based on 
photovoltaic effect. Depending on the cell material and the processing techniques solar cells 
are of two kinds based on wafer and thin film. Thin film solar cells have the key advantage of 
their dimensionality, having thickness a fraction of other types of solar cells and it is attrac-
tive in terms of cost factor with minimum material usage [1]. However thin film solar cells 
promise to achieve the goal with the low cost and high efficiency from CIGS to dye sensitized 
solar cells and recently with the advent of perovskite based materials for solar cells.

2. Preparation of thin film solar cells

To prepare solar cell there are variety of methods and materials are used, among them thin 
film solar cells are unique. In this chapter the historical background and the emergence of new 
techniques in the growth of thin film solar cells such as CIGS, dye sensitized solar cells and 
perovskite solar cells are presented.

2.1. CIGS thin film solar cells

Copper indium gallium selenide (CIGS) based solar cells are receiving worldwide attraction 
for solar power generation. These materials absorb light at a rate of 10–100 times more effi-
cient compared with silicon-based solar cells, thus the thickness of the films obtained in the 
order of a few microns. The major advantage of this technology is attributed as of low raw 
material usage with less complex procedure for manufacturing. CIGS solar cells exhibit high 
radiation resistance, making them suitable for space applications [2].

CIGS is a promising absorber material and received considerable attention due to its direct 
band gap, high absorption co-efficient and less material wastage. It is an efficient thin film 
solar cell with the efficiency of 22.8% comparable to crystalline silicon (c-Si) wafer based solar 
cells [3]. CIGS thin films can be fabricated by various methods among them physical vapor 
deposition is important.

Thin film deposition by PVD is regarded as a vacuum coating method and is classified into 
two techniques, evaporation and sputtering. The particles are capable of moving in a straight 
path as the system is kept in vacuum and the films are coated by physical means that are 
commonly directional, rather than conformal in nature [4].

2.1.1. Sputtering method

Sputtering deposition is a vacuum based process that is used for CIGS cell fabrication. The 
fabrication process will involve the following steps:

1. Deposition at room temperature for attaining low temperature process and hence reduced 
the cost of equipment.
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2. Introducing Se vapor at any time during the process to avoid potential damage to the bot-
tom Si cell by invoking unwanted species.

3. Cd free buffer layer also targeting an environmentally friendly process [1].

Deposition of CIGS junction on a soda lime glass substrate covered by Mo layer at 1 μm thick 
[1]. The best back contact material for CIGS solar cells was found to be molybdenum since 
it is having high conductivity and relative stability at the high processing temperature. The 
deposition of Mo layer is by means of DC magnetron sputtering technique. The grown films 
play a crucial role in the performance of the CIGS device. During the deposition process, 
parameters such as power, time and pressure should be carefully chosen [5].

The two points to be considered in the CIGS thin films are: (1) the Mo back contact which cannot 
obviously be used in a tandem cell due to its opacity, (2) the CdS layer deposited by the chemical 
bath deposition (CBD) technique, which can impact bottom cell properties. The schematic view 
of the CIGS thin film by sputtering process is shown in Figure 1. The bottom Mo contact uses 
rather a common bilayer structure, a first adhesion layer is magnetron DC sputtered at high 
pressure and a second one is deposited at low pressure to increase the conductivity. A standard 
CdS buffer layer is deposited by chemical bath deposition. Ultimately, it will be replaced by a 
Zn layer deposited using the sputtering technique at room temperature. The top electrode is 
composed of an ZnO/aluminum doped zinc oxide (AZO) bi-layer. The absorber layer process is 
deposited at room temperature using pulsed DC magnetron sputtering and argon plasma [1].

In order to obtain the chemical composition of CIGS absorber, energy dispersive spec-
troscopy measurements (EDS) were carried out under 10 kV mode and it was shown 
in Figure 2. Atomic composition of the obtained film was calculated as: Cu—14.8 at%, 
In—18.35 at%, Ga—2.86 at% and Se—25.95 at%. On the basis of measured values the rela-
tive ratios of Cu/(In + Ga) and Ga/(In + Ga) were found to be 0.7 and 0.13, respectively [5].

Figure 1. Preparation of CIGS thin films by sputtering process.
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A sputtering technique using low temperature processes and without any hazardous gas dif-
fusion at high temperature can then lead to functional devices. Hence sputtering technique 
can be successfully used for the fabrication of CIGS thin films solar cells [5]. SEM cross sec-
tional view of CIGS thin film solar cell is shown in Figure 3.

The stoichiometry of CIGS is very complex thereby making uniform and large-area deposition 
is very difficult. It also indeed of encapsulation which is expensive as it prone to moisture and 
oxygen easily. Also, their reliance on rare elements of tellurium & indium and recycling of 
toxic element like cadmium may limit their potential for large-scale production and it would 
be replaced by some other elements [6].

Figure 2. EDS spectral analysis of the top surface of CIGS absorber layer.

Figure 3. SEM image of CIGS thin film solar cell.
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2.2. Dye sensitized solar cell

Dye-sensitized solar cell (DSSC) has been known as a promising photovoltaic device to 
achieve moderate efficiency at low cost [7]. The principle of DSSC imitates natures novel 
effect of photosynthesis. In DSSCs, the photo-sensitizer captured the incident photons that are 
absorbed on a thin TiO

2
 layer placed on the anode. DSSCs make use of liquid electrolytes to 

transfer ions to a counter electrode thus electric current is produced [8]. DSSCs have attained 
efficiencies of upto 12.3% [9] and attained benefit from their versatile nature and low cost for 
the manufacturing process. The main component of DSSC is TiO

2
 thin film that is convention-

ally prepared by various methods. Among them doctor blade and spin coating methods are 
simple and low cost techniques [10].

2.2.1. Doctor blade technique

Doctor blade or tape casting is one of the widely used techniques for producing thin films on 
large area surfaces. In the doctor blading process, a well-mixed slurry consisting of a suspen-
sion of ceramic particles along with other additives is placed on a substrate and a constant rela-
tive movement is established between the blade and the substrate resulting in the formation of 
a gel-layer when dried [11]. The diagrammatic view of this technique is shown in (Figure 4).

The existence of an optimized thickness of TiO
2
 thin film is inherent for the charge storage 

and transfer to the film so that in DSSC the highest efficiency could be achieved [12]. In this 
method, TiO

2
 paste usually employed as a surfactant material to increase the porosity of TiO

2
 

thin film. The improved performance of DSSC could be ascribed to the compact and crack-
free TiO

2
 thin film prepared by the modified doctor blade method [10].

For the modified doctor blade method, a dense TiO
2
 paste was prepared in a following man-

ner: TiO
2
 powder was blended in a mixture of polyethylene glycol and de-ionized water in 

a plastic bag for 10 min under rolling of a steel pipe. After that, by the way of doctor blade 
method the resulting TiO

2
 paste was coated on TCO glass [13]. Then the film was dried in 

air for 30 min. Then the film surface was covered by a drop of lubricating oil and stabilized 
at 100°C in an oven for reducing cracks. Finally, the film was covered with a flat glass and 
compressed for 30 s. The derived TiO

2
 thin film was annealed at 450°C for 2 h [10]. This 

novel method is also observed to substantially improve the overall conversion efficiency of 
the resulting DSSC which presents strong potential for DSSC module construction [10].

Figure 4. Doctor blade technique.
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Surface morphology of two kinds of TiO
2
 thin films are shown in Figure 5. Even though they 

are looking similar, the variation in the thickness is larger for modified doctor blade thin film 
than the conventional one.

2.2.2. Spin coating method

Spin coating method is one of the most common techniques for the preparation of thin films 
on substrates. Spin coating method is widely used in micro-fabrication, where it can be used 
to create thin films with thicknesses below 10 nm [15]. The advantage of spin coating method 
is its ability to quickly and easily produce uniform films, ranging from a few nanometres to 
few microns in thickness.

The spin coating procedure includes deposition, spin up, spin off, and evaporation. The sub-
strate being covered by depositing the solution which is rotated at high speeds to coat the 
substrate using centrifugal force. The volatile solvent easily evaporates and hence the desired 
film’s thickness is dependent on the concentration of solution, solvent, and spin speeds [16]. 
The film thickness of the order less than 10 nm is useful in the field of micro fabrication and 
photolithography [4]. The flow diagram for the spin coating process is shown in the (Figure 6).

Titanium (IV) isopropoxide (TTIP), ethyl alcohol, nitric acid (HNO
3
) and distilled water were 

used as received without further purification. The synthesis procedure of nanocrystalline 
TiO

2
 thin film can be obtained by mixing titanium isopropoxide with ethanol and the distilled 

water was added drop by drop by continuous stirring about 1 h. The resulting solution was 
peptized using nitric acid and refluxed at 80°C. After that TiO

2
 sol had been prepared and 

coated on conductive glass substrate with the spin rate of 3000 rpm for 30 s. Then followed by 
annealing the TiO

2
 thin films at 450°C [17].

The major challenge of DSSC is that it should withstand its stability under high temperature 
and its low absorption coefficients due to its interfacial recombination. Moreover the cost of 
the ruthenium dye used sets its intrinsic drawback limits its scope to small scale applications. 
Then search for new innovative material pertains to continue its thirst for perovskite related 
materials by the replacement of liquid electrolyte.

Figure 5. FE-SEM images of surface of TiO
2
 thin film prepared by doctor blade method. Ref. [14].
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2.3. Perovskite solar cells (PSCs)

2.3.1. Emergence of perovskite

Perovskite solar cells are in focus of the solar cell development research in recent years due 
to their high efficiency, cost effective fabrication and band gap tuning ability. Perovskite 
compound was first discovered by Gustav Rose in 1839, named after a Russian mineralogist 
L.A. Perovski. The specific crystal structure was first found in an inorganic mineral CaTiO

3
 

(ABX
3
) with a cubic unit cell [18]. The cation A is replaced by a small organic cations such as 

CH
3
NH

3

+, C
2
H

5
 NH

3

+ and HC(NH
2
)+ to create organic-inorganic hybrid materials while the 

cation B with divalent metal ions such as Pb2+, Sn2+ or Cu2+ and the X anions are halides (Cl−, 
Br−, I−) [19]. Perovskite are non-excitonic as no external force is needed for the generation of 
excitons whereas organic photovoltaic and DSSCs are excitonic.

Miyasaka and his co-workers replaced the dye pigment in DSSCs with two hybrid organic-
inorganic halide perovskites, CH

3
NH

3
PbBr

3
 and CH

3
NH

3
PbI

3
 and the efficiency of 3.13 and 

3.81% obtained was not a considerable one [20]. A major breakthrough happened in 2012 when 
Gratzel and Park et al. used Spiro-MeOTAD as the hole transport material (HTM) with effi-
ciency of 9.7%. In 2016 the efficiency of perovskite solar cells was improved to be 22.1% [21].

2.3.2. Interfacial impact on the performance

The perovskite solar cells employs a perovskite absorber between an electron transport-
ing layer on a conducting glass substrate (FTO) and a hole transporting layer with a metal 
back contact on top. The working principle of this device was similar to that of DSSCs. Here 
perovskite material acts as a light absorber and electron transporting layer (TiO

2
) takes part in 

charge separation and electron transport whereas the holes are transferred to hole transport-
ing layer. An ideal selective contact does not deteriorate the light absorbing layer and also does 
not induce degradation of the device. There are also no energy losses when photo-generated 

Figure 6. Flow diagram of spin coating process.
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carriers are injected from the light absorbing material into the selective contact, hence no 
recombination at the interface, and the Fermi level of its corresponding carrier is maintained 
at the interface without any drop. The contact layer must also be balanced with respect to 
perovskite layer as otherwise it would lead to charge accumulation at selective contact and 
leads to interfacial charge recombination [22].

The primary role of a selective contact is to reduce the interfacial recombination between 
perovskite light absorbing layer and the FTO and Au extracting contacts. It should be as thin 
as possible in order to reduce the transport resistance but thick enough to avoid pinholes, 
hindering effective charge recombination. Obviously the goodness of an interfacing mate-
rial for an efficient electron transport and performance in PSC will lies on the nature and 
interaction of the chosen selecting contact with the light absorbing perovskite layer. Tan et al. 
reported that using chlorine-capped TiO

2
 colloidal nanocrystal film that mitigates interfacial 

recombination and improves interface binding in low-temperature planar solar cells [23].

Hole transporting material (HTM) also plays a vital role in both extracting and transporting 
the holes from the perovskite materials to the back electrodes thus minimizing undesired 
recombination losses at the interfaces. Spiro-OMeTAD is the widely used HTM results in better 
performance of the device. As of high cost and tedious synthesis inhibits its commercial applica-
tion looking forward for inorganic semiconductors. Recently CuSCN has been used as HTM in 
perovskite solar cells and considerable high power conversion efficiency has been achieved [24].

There are numerous techniques employed to deposit different layers of perovskite solar cells 
like drop casting, spin coating, slot die coating, screen printing, ink-jet printing, etc. Among 
them drop casting is a simple and low cost method for the deposition of perovskite films [25].

2.3.3. Drop casting method

Drop casting is a simple and potentially scalable casting method proposed for the fabrication 
of micro and nanocrystalline thin films. The impingement of a solution drop onto a substrate 
in a simple process called drop casting, usually results in spreading of the liquid solution and 
the formation of a non-uniform thin solid film after solvent evaporation [26]. Drop-casting 
usually happens by the way of releasing large droplets in a controlled manner that spreads 
and wet the surface upon impact as far better than spray coating, although its application 
is limited to small-area films and coatings [27]. Schematic view of perovskite solar cell with 
different layers is shown in the (Figure 7).

The formation of homogeneous thin perovskite layer is extremely important, and it can be 
developed by solution process. The process is employed for the most common structure of 
methyl ammonium lead iodide. The initial components taken in the appropriate ratio is spread 
over the entire surface of the substrate. Then, the spin-coater is accelerated to the desired rota-
tional speed to evaporate the solvent. If the solvent does not dissolve the perovskite materials 
and is miscible with DMSO (dimethyl sulfoxide), a toluene or chloroform solution is dripped 
on the substrate during spinning. At last, all constituents are frozen into a uniform layer on 
the removal of the residual DMSO and a new complex as an intermediate phase is obtained. 
Films of different thicknesses were achieved by varying solution concentration [28].
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Drop casting is similar to spin coating method but the major difference is no substrate 
spinning is required and also less material wastage. Film thickness depends on the vol-
ume of dispersion used and the particle concentration, both of which can be easily varied. 
Generally, it is desirable to use solvents that are volatile, wet the substrate, and are not 
susceptible to thin film instabilities. However, water is not a recommended solvent for 
depositing some materials because the nanoparticles oxidize as the water evaporates from 
the sample [29]. In some cases alcohols can replace water, a good choice relies on the use 
of organic solvents such as hexane or toluene for nanoparticles with hydrophobic capping 
ligands.

The demerits of drop-casting are that even under ideal conditions, the rate of evaporation dif-
fers across the substrate thus leads to variations in film thickness or internal structure. However, 
it serves as a quick and accessible method to generate thin films even on a small substrates. 
Figure 8 shows the SEM image of the perovskite thin films prepared with different layers.

Figure 7. Schematic diagram of perovskite solar cell with different layers.

Figure 8. SEM image of perovskite solar cell with different layers.
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3. Recent trends in solar cells

3.1. Flexible perovskite solar cells (F-PSCs)

Now research has been moved towards a flexible PSCs from rigid PSCs and it achieved 
notable milestones in terms of its efficiency with light weight [30]. Unlike rigid PSCs employ 
glass substrate for its processing, F-PSCs used flexible substrates like poly ethylene tere-
phthalate (PET) which could not endure at high processing temperature significantly higher 
than 200°C. Hence various low-temperature techniques have been developed to fabricate 
electronic selective layers (ESLs) with great progress in attaining high power conversion 
efficiency (PCE) [31]. The two significant aspects to attain high efficiency in F-PSCs are the 
low temperature ESLs and the high quality perovskite absorbers that include grain size, trap 
density, charge transport, carrier lifetime, etc. The F-PSCs give much lower PCE compared 
with rigid counterparts though they are having similar process used to deposit perovskite 
absorber film. It requires different deposition methods to achieve desirable power conversion 
efficiency of perovskite films especially for larger area F-PSCs. The quality of the perovskite 
film was significantly improved by the inclusion of an additive dimethyl sulfide (DS) thereby 
enhancing both the grain size and crystallinity. When DS was introduced into the perovskite 
precursor solution, it chelates with Pb2+ to form an intermediate complex resulting in smaller 
Gibbs free energy and slower the rate of growth for perovskite to crystallize. Further the 
trap density of the perovskite film is reduced as the chelation interaction efficiently retards 
transformation kinetics during the thin film crystallization process, hence PCE of F-PSCs is 
increased to as high as 18.40%, the highest reported value so far for the F-PSCs. It is also 
expected that large area F-PSCs may also give improved efficiency as 13.35% [32].

Deployment of flexible PV technology is not only motivated by the quest for high-throughput 
and low-cost manufacturing but on the view for marketing it would be able to access with its 
eminent properties as it is being flexible, thin and lightweight, which would make it easy to 
integrate or apply on any surface or structure (either rigid, curved or flexible) [33] and even 
have its applications in portable and indoor electronics.

3.2. CIGS perovskite tandem solar cells

The development of high efficiency semi-transparent perovskite solar cells is necessary for 
the application in integrated photovoltaics and tandem solar cells. Tandem solar cells allow 
higher efficiencies than single-junction solar cells by better utilizing the energy of short-
wavelength photons in the spectrum of sunlight. Top cells comprising a high-bandgap semi-
conductor to generate photocurrent at high voltage from the short-wavelength part of the 
solar spectrum. Longer-wavelength light, beyond the bandgap of the top cell, is transmitted 
to an underlying bottom cell comprising a lower-bandgap semiconductor with broad absorp-
tion coefficient. Tandem cells that are unique to inorganic-organic metal-halide-perovskite 
materials, particularly due to their bandgap-tuneability and luminescence efficiency thus an 
excellent candidates for applications in building integrated photovoltaics (BIPV) and tan-
dem solar cells. Rapid growth in perovskite solar cells already reached its highest efficiency 
of 22.1%. However the translation of such high efficiencies to semitransparent perovskite 
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devices requires the development of suitable transparent conducting electrodes which have 
high transparency, conductivity and process compatibility with prior device fabrication steps 
is a major perspective [34].

Deposition of transparent conductive oxides (TCO), such as indium tin oxide (ITO), alu-
minum doped zinc oxide (AZO), or indium zinc oxide (IZO) acts as an electrode. Halide 
perovskites are known to have solvent and temperature instabilities hence physical vapor 
deposition processes are preferred rather than sputtering and spin coating. Thermally evapo-
rated molybdenum oxide (MoOx) and thin Ag are the two existing material systems that have 
been reported as potential buffer layers for semitransparent devices [35]. PCE of 16.0% can 
be achieved and an average transparency of 54% in the near infrared region using thin Ag. 
We can apply the same semi-transparent cells in a 4-terminal (4T) tandem configuration with 
Cu(In,Ga)Se (CIGS) cell and attained a tandem efficiency of 20.7%. Although a tandem with 
Si cells would yield higher efficiency, both perovskite and CIGS are thin film technologies 
which are lightweight and can be deposited on flexible substrate. Further they exhibit radia-
tion hardness but capable to withstand radiation levels several orders higher than crystalline 
Si, lending them suitable for high altitudes and space applications [36].

3.3. Ultra high band gap solar cells

The recent surge for interest towards the ultra-high band gap absorbers for tandem solar 
cells from the oldest material selenium with a band gap of 1.95 eV. Moreover, Se devices 
are air-stable, non-toxic, and extremely simple to fabricate. Se solar cell utilized n-type TiO

2
, 

deposited on SnO
2
(FTO) coated glass and p-type Se followed by gold contact with its effi-

ciency of 5% lasts same for more than 30 years. This structure is similar to hybrid perovskite 
solar cells without the advanced hole transporting layer [37]. Now the redesigned Se device 
for its improvement in terms of its efficiency can be modified in three aspects. First, intro-
ducing a reliable inorganic MoOx (molybdenum oxide) with high-work-function as a hole-
selective layer between selenium and the gold back contact in order to reduce recombination 
and improve collection as it is been in both CdTe solar cells as well as other inorganic and 
organic photovoltaics [38]. Second method by reducing the thickness of the selenium absorber 
to only 100 nm—20 times less than the previous Se champion cell as well as typical chalcogen-
ide absorbers such as copper indium gallium selenide (CIGS). Finally optimizing the buffer 
layer to reduce the cliff at interface should significantly improve Voc (open circuit voltage) as 
well as fill factor. Though Se an attractive alternative candidate for a high-band-gap absorber 
they are prone to practical applications by simple and inexpensive fabrication process, lack 
of highly toxic elements such as Cd and Pb, and stability upon prolonged storage and air 
exposure for these devices. Thus now Se solar cells find its new outlook after three decades 
with slight modification which suits well for our future energy crisis.

4. International standards for solar panels

IEC Technical Committee TC82 was established in 1981. It is the most important International 
body regarding photovoltaic related standardization. The main task of TC82 is to prepare 
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international standards for systems of photovoltaic conversion of solar energy in to electrical 
energy and for all the elements in the entire photovoltaic energy system.

• IEC TC82-IEC Technical Committee 82, solar photovoltaic energy system.

• ISO TC 180-ISO Technical Committee 180, solar energy.

• ASTM E44-ASTM Committee E44 on Solar, geothermal and other alternative energy.

• IEEE SCC21-IEEE SCC21 standards Coordinating Committee on fuel cells, photo-voltaic, 
dispersed generation and energy storage.

5. Conclusion

Thin film technologies made a remarkable advent in the photovoltaic industry for the manufactur-
ing of solar cells. Thin film solar cells offer a most promising options for reducing the cost of pho-
tovoltaic systems. Enormous progress in device performance has been made in dye sensitized to 
perovskite solar cells. Perovskite solar cells open the door for novel applications in the production 
of solar cells with increase in stability and reliability. Major concern is about the toxicity of lead 
and its impact in the environment. Then a major task is finding a material which would replace 
the lead. Tin can replace lead but the stability issues still pertain and the efficiency achieved was 
low compared with lead. The device performance suits best in N

2
 gas atmosphere to avoid quick 

degradation of tin. Therefore a thirst for new material without lead such as BiFeO
3
, BiFe

2
CrO6 

and BiMnO
3
. The overall power conversion efficiency is lower than metal halides but they are 

more stable. Hence it been able to investigate bismuth based photovoltaic materials. Cesium with 
bismuth, for example, Cs

3
Bi

2
I9 will give the highest solar cell performance with low toxicity and 

environment impact. It also proves to be a predominant in the fulfillment of our future energy 
crisis in terms of its simplicity in manufacturing process and low cost. Moreover there is also an 
opportunity to develop high-performance tandem cell technology that uses both perovskite and 
existing technologies and this may allow market introduction as a new premium product.
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