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Chapter

Green Corrosion Inhibitors
Lipiar K. M. O. Goni and Mohammad A. J. Mazumder

Abstract

Corrosion is an unavoidable fact in everyday life but always receive attention 
to control due to its technical, economical, and esthetical importance. Corrosion 
inhibitors are one of the most widely used and economically viable methods protect-
ing metals and alloys against corrosion. Typical corrosion inhibitors are bio-toxic 
organic compounds, which have serious issue on toxicity. Considering the toxicity 
of the inhibitors, there is a tremendous interest in searching for an eco-friendly, and 
non-toxic green corrosion inhibitor. This chapter briefly discusses the importance 
and different methods of corrosion inhibitors with a particular emphasis given to the 
discussion on the different characteristic feature of the green corrosion inhibitors 
reported in the literature as a comparative view of organic inhibitors.

Keywords: corrosion inhibitors, mild steel, green corrosion, organic, adsorption

1. Introduction

Generally, corrosion is regarded as the loss of a metal by the influence of cor-
rosive agents [1]. However, in a broad sense, corrosion is the devastative consequence 
of chemical reaction between a metal or metal alloy and its environment [2]. General 
corrosion or uniform corrosion is the most prevalent form of corrosion that takes 
place on an entirely exposed metal surface via the electrochemical reactions in atmo-
spheric or aqueous media and continues uniformly to cause the greatest destruction 
of that metal [3]. Even though only metals come to mind when describing corrosion, 
non-metallic materials, such as plastics, concrete, ceramics, rubber, etc. are prone to 
corrosion as well when exposed to different corrosive environments [4].

The difference in the potential energies of the corroding metal and the corro-
sion product is the fundamental force that drives the corrosion reaction. A certain 
amount of energy is required to be provided to naturally occurring minerals and 
ores to extract metals from them. Therefore, it is natural that these metals tend to 
revert back to their original state from which they were obtained when they are 
exposed to their environments. It is noteworthy that each metal is different in terms 
of the amount of energy required and stored in it or that is released during its corro-
sion. The greater the amount of energy needed during metal extraction, the more 
thermodynamically unstable is the metal and the shorter is its temporary existence 
in metallic form. Hence, corrosion has also been defined as the reverse of extractive 
metallurgy [1, 5].The electrochemical dissolution of a metal is the most important 
mechanism involved in its corrosion and makes the basis of all uniform and local-
ized corrosion types. However, there are some corrosion types, such as oxidation, 
fretting corrosion, molten salt corrosion, etc. that can be described without refer-
ence to electrochemistry [1]. The mechanism of corrosion attack in an atmospheric 
environment and in an aqueous environment will be always governed by some 
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aspect of electrochemistry. Electrons will be flowing from certain areas of a metal 
surface to other areas through an electrolyte that is capable of conducting ions. This 
stems from the incredible tendency of metals to react electrochemically with water, 
oxygen, and other substances in the aqueous environment. In an electrochemical 
corrosion process, the anode is that area of the metal surface that is corroding due 
to the loss of electrons while the cathode is the area that consumes the electrons 
generated by the corrosion reaction [6].

Almost all of us are familiar with corrosion happening to metal structures, 
boats, steel pilings, household utensils, etc. Unfortunately, many of us are not 
aware of corrosion that is deteriorating the properties of underground water, oil, 
and gas pipelines crisscrossing our land or water pipes in the home where corrosion 
occurs mostly from the inside. Successful enterprises put in considerable efforts in 
controlling corrosion at the design stage and in the operational phase to avoid major 
corrosion failures, such as unscheduled shutdowns, fatalities, personal injuries, 
and environmental contamination in a modern business environment. However, 
even the best design is unable to foresee all conditions that can allow corrosion 
intruding into the life of a system [5]. Steel reinforced bar (rebar) can corrode in 
concrete without being noticed at all and can cause damage to buildings, bridges, 
parking structures, the collapse of electrical towers, failure of a section of highway, 
etc., resulting in a huge amount of repairing cost and threatening public safety [7]. 
This is why regular maintenance of the metallic components that are susceptible to 
corrosion is of paramount importance.

2. Impact of corrosion

Even though the main reasons for considering corrosion are economic and 
ecological, losses due to corrosion or costs of corrosion can be actually divided into 
three main categories as shown in Figure 1 [8].

2.1 Material and energy

The impact of corrosion on the equipment and its surrounding deserves a huge 
attention when it comes to designing an industry. Corrosion is considered to be one 
of the most challenging issues for most of the industrialized countries. Corrosion 
of tanks, piping, metal components of machines, bridges, ships, etc. can incur a 
massive material and economic losses upon a nation. Additionally, the safety of 
operating equipment, such as boilers, pressure vessels, metallic containers for toxic 
chemicals, bridges, turbine blades and rotors, automotive steering mechanisms, and 
airplane components can be threatened by corrosion failure [8]. Furthermore, the 

Figure 1. 
Breakdown of corrosion costs.
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devastative impact of corrosion goes beyond the metals and extends to energy, water, 
and the manufacturing phase of the metal frames [9]. It has been reported that one 
ton of steel turns into rust every 90 seconds, and, on the contrary, the energy needed 
to manufacture one ton of steel is approximately equal to the energy an average 
family consumes over 3 months. Approximately 50% of every ton of steel produced 
by the world is used to replace rusted steel [10].

2.2 Economic

Economic losses are classified into two types: (i) direct losses and (ii) indirect 
losses. Replacing the corroded structures and machinery of their components, for 
instance, mufflers, condenser tubes, pipelines, metal roofing, including necessary 
labor, repainting structures to prevent rusting, maintenance cost of cathodic pro-
tection system for underground pipelines, replacement cost of millions of domestic 
hot-water tanks and automobile mufflers, extra cost of using corrosion-resistant 
metals and alloys, galvanizing or nickel plating of steel, addition of corrosion 
inhibitors to water, and dehumidifying cost of the metal equipment storage rooms 
contribute to the direct losses. While it is quite difficult to assess the indirect losses, 
they have still been reported to add several billion dollars to the direct losses. 
Indirect losses include sudden shutdown of plants, loss of water, gas, or oil through 
a corroded pipeline, loss of efficiency in the energy conversion systems imposed by 
corrosion processes, contamination of water and food products in metal piping and 
containers, and overdesign requiring equipment to be designed many times heavier 
than normal operating pressure or applied stress to extend their lifetime [8]. Uhlig 
made the first ever systematic study on the cost of corrosion in 1949 [11]. Uhlig's 
report estimated the annual cost of corrosion in the United States to be US$ 5.5 
billion or 2.1% of the 1949 gross national product (GNP). This study measured the 
total costs by summing the costs related to anti-corrosion materials and corrosion-
induced maintenance and replacement handled by owners and operators (direct) as 
well as those related to users (indirect) [5, 12].

Corrosion cost studies using different methods, such as Uhlig method invented 
by Uhlig in 1949 [11], Hoar method invented by Hoar in 1971 [13], and economic 
input/output model devised by National Bureau of Standards (NBS) collaborating 
with Battelle Memorial Institute in 1978 [14] have been undertaken by several major 
economies, including Australia, China, Finland, Germany, India, Japan, Kuwait, 
the United Kingdom, and the United States [15]. A common observation of these 
studies was that the costs of corrosion ranged from approximately 1–5% of the GNP 
of each nation. The variation in the corrosion cost with respect to GNP was ascribed 
to the methodology used by each study and the specifics of each country [12].

A study done by National Association of Corrosion Engineers (NACE) as part of 
its International Measures of Prevention, Application, and Economics of Corrosion 
Technologies Study (IMPACT) revealed that the global cost of corrosion in 2013 
was estimated to be US$ 2.5 trillion which was equivalent to 3.4% of the global GDP 
in that year [15]. This study utilized the World Bank economic sector and GDP 
data to relate the cost of corrosion studies to a global cost of corrosion. In order to 
address the economic sectors across the world, the global economy was divided 
into economic regions with similar economies (according to World Bank). These 
were: United States, European Region, India, Arab World (defined by the World 
Bank), Russia, China, Japan, Four Asian Tigers plus Macau, and Rest of the World. 
However, the costs estimated typically do not include environmental consequences 
or individual safety. It is noteworthy that receiving additional funds for corrosion 
studies, or updated information on these studies, more detailed and accurate global 
costs can be assessed.
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2.3 Human life and safety

Corrosion can take a toll more than imaginable in human life and safety. This 
destructive phenomenon has been overlooked as the main reason of many fatal 
accidents for reasons of liability or simply because the evidence disappeared in the 
catastrophic event. The Silver Bridge collapse is one of the most dangerous and 
discussed corrosion accidents [16]. On December 15, 1967, this bridge connecting 
Point Pleasant, West Virginia and Kanauga, Ohio suddenly collapsed into the Ohio 
River to claim 46 lives. Stress corrosion cracking (SCC) and corrosion fatigue were 
determined to be responsible for this disaster. The Bhopal accident that took place in 
Bhopal, India on the night of the December 2–3, 1984 is one of the worst industrial 
accidents in terms of the lives lost and injuries. An unfortunate seepage of water 
(500 liters) caused by the corrosion of pipelines, valves, and other safety equipment 
into a methylisocyanate (MIC) storage tank at Union Carbide India Limited caused 
the release of MIC and other toxic reaction products into the surrounding areas 
that killed 3000 people and injured an estimated 500,000 people [17]. Swimming 
Pool Roof Collapse is another infamous corrosion accident that took place in Uster, 
Switzerland in 1985. The roof of this swimming pool was supported by stainless 
steel rods that failed due to SCC and killed 12 people [18].

3. Techniques for corrosion measurement

3.1 Weight loss measurement

Weight loss analysis is known to the simplest, most reliable, and long- 
established method of assessing corrosion losses in plant and equipment. A sample 
of metal or alloy under experiment is weighed and then immersed into a corrosive 
solution, and later removed from the corrosive medium after a predetermined time 
interval. The metal specimen is then weighed again after cleaning all corrosion 
products. The corrosion rate, surface coverage (θ), and corrosion inhibition effi-
ciency (η%) can be calculated using (Eqs. (1)–(3)):

  Corrosion rate  (  mm ____ year  )  = 8.76 ×  10   3    
 m  i   −  m  f   ______ 

S𝜌t
    (1)

  θ =    CR  o   − CR _______ 
 CR  o  

    (2)

  η % =    CR  o   − CR _______ 
 CR  o  

   × 100%  (3)

where mi is the weight of the metal sample in grams before immersion, mf is the 
weight of the metal sample in grams after immersion, S is the total area of metal in cm2 
that has been exposed to corrosive solution, ρ is the density of metal sample in g/cm2, t 
is the time in hours during which the sample was immersed, CR○ and CR represent the 
corrosion rates (in mmpy) without and with the inhibitor, respectively [19, 20].

3.2 Polarization measurements

Since corrosion is a phenomenon that involves electrochemistry, electrochemi-
cal-based corrosion measuring experiments provide valuable information about the 



5

Green Corrosion Inhibitors
DOI: http://dx.doi.org/10.5772/intechopen.81376

rate of corrosion and mechanism of corrosion protection [20]. Polarization meth-
ods are based on changing the current or potential on a sample under investigation 
and recording the corresponding potential or current change. This can be facilitated 
with the help of either a direct current (DC) or an alternating current (AC) source 
[5]. Some important and widely used techniques have been discussed briefly below.

3.2.1 Tafel extrapolation

Tafel curve is a current-potential plot that shows the anodic and cathodic 
reactions in the electrochemical cell. In this method, the potential of the working 
electrode (metal sample) varied over a range at a specific rate and the resulting 
response in current is recorded. The anodic and cathodic reactions that are tak-
ing place simultaneously produce a total current that is represented by a curved 
line. The linear portions of logarithmic Tafel plot are extrapolated to produce an 
intersection that generates a point that signifies an approximation of the corrosion 
current (icorr) and the corrosion potential (Ecorr). This icorr facilitates the calculation 
of the corrosion rate based on (Eq. (4)) and the corrosion inhibition efficiency 
(η%) based on (Eq. (5)):

  Corrosion rate =    i  corr   × K × EW ___________ 
ρ × A

    (4)

  𝜂 % =    i  corr  
o   −  i  corr   _______ 

 i  corr  
o  

   × 100%  (5)

where K is a constant that represents the units for the corrosion rate, EW is the 
equivalent weight in gram/equivalent,  ρ  is density in g/cm3, A is the area in cm2 
exposed to corrosive solution, i°corr and icorr are the corrosion currents in amperes 
without and with the inhibitor, respectively.

3.2.2 Linear polarization resistance (LPR)

Because the linear polarization resistance (LPR) method is non-destructive 
[21], it has quick application and can be used in the field test through portable 
instrumentation [22], it is the most popular of the electrochemical techniques [23]. 
The principal of LPR is based upon introducing a small perturbative DC electri-
cal signal to disturb the corrosion equilibrium on the surface of metal specimen. 
The response of the equilibrium to this perturbation is measured with respect to a 
reference half-cell [24]. The polarization resistance (Rp) of a material is known to be 
the ΔE/Δi slope of a potential-current density curve at the free-corroding potential. 
The polarization resistance can be related to the corrosion current (icorr) using the 
Stern-Geary approximation in which the anodic (ba) and cathodic (bc) Tafel slopes 
can be experimentally obtained from real polarization plots.

3.2.3 Electrochemical impedance spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) is a very powerful electrochemi-
cal technique that has wide applications in the evaluation of coatings in corro-
sion research. This technique provides valuable information about the corrosion 
protection imparted by an inhibitor. In this technique, an AC voltage (in the case 
of potentiostatic EIS) or current (in the case of galvanostatic EIS) is applied to the 
system under investigation to receive response in the form of AC current (volt-
age) or voltage (current) as a function of the frequency. This technique can be 
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performed in a 2- or 3-electrodes system with the help of a potentiostat-galvanostat 
and a frequency response analyzer (FRA) [25]. Usually, an AC voltage having 
small perturbations ranging from 5 to 10 mV is applied in the system over a range 
of frequencies typically starting from 100 kHz to 10 mHz. Based on the shape of 
the Nyquist plot produced by the experiment, the electrochemical cell containing 
the metal sample, adsorbed inhibitors, and the electrolyte medium is represented 
by an equivalent circuit that includes information about the solution resistance Rs, 
charge transfer resistance Rct, and the double layer capacitance Cdl. A large Rct value 
and decreasing Cdl values with increasing inhibitor concentrations indicate better 
corrosion protection [26].

4. Corrosion inhibitors

A corrosion inhibitor is known as a chemical constituent that can diminish or 
prevent and control corrosion when added in small amount to the metal environ-
ment. Corrosion inhibitors are considered as the first line of defense against oil 
and chemical industry corrosion [27]. Corrosion inhibitors are sought after giving 
metals temporary protection during transportation and storage as well as local-
ized protection to prevent corrosion that may have resulted from accumulation of 
small amounts of an aggressive phase. An effective corrosion inhibitor should be 
cost-effective, compatible with the corrosive medium, and produce desired effect 
when present in small concentrations [28]. Corrosion inhibitors act by (i) forming 
a film that is adsorbed on the metal surface, (ii) producing corrosion products, for 
example, iron sulfide (FeS) that acts as a passivator, and (iii) yielding precipitates 
that can eliminate or inactivate an aggressive constituent [29].

Depending on which electrochemical reactions are being blocked, these 
film-forming or interface inhibitors can be classified into anodic, cathodic, or 
mixed-type [28, 30]. Anodic inhibitors, alternately known as passivation inhibi-
tors, suppress the rate of anodic reactions by producing sparingly soluble deposits, 
such as hydroxides, oxides, or salts in close to neutral conditions. On the other 
hand, cathodic inhibitors function by reducing the rate of cathodic or reduction 
reactions by producing a protective layer on cathodic areas against hydrogen in 
acidic conditions and oxygen in alkaline conditions. Mixed inhibitors influence 
both the anodic and cathodic reaction sites by forming an adsorptive film on the 
metal surface. About 80% of organic inhibitors fall into this category. Based on the 
chemical nature of the inhibitors, they can be divided into organic and inorganic 
[31]. Organic and inorganic inhibitors, based on their compositions and mechanism 
of actions, can be further classified into neutralizing, scavenging, barrier or film-
forming, and other miscellaneous inhibitors [32].

4.1 Organic inhibitors

Organic inhibitors act through forming a film on the surface of the metals 
and they can act as anodic, cathodic, or mixed inhibitors. The formation of this 
protective film happens with the help of strong interactions, such as π-orbital 
adsorption, chemisorption, and electrostatic adsorption that prevent the cor-
rosive species from attacking the metal surface [33]. This adsorption is usually one 
molecular layer thick and does not penetrate into the bulk of the metal itself [34]. 
Physicochemical properties, such as functional groups, steric factors, aromaticity, 
π-orbital character of donating electrons, electron density at the donor atoms, and 
the electronic structure of the molecules govern the adsorption process [35, 36]. 
The corrosion inhibition efficiency of an organic inhibitor relies on its adsorption 
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ability and mechanical, structural, and chemical characteristics of the adsorption 
layers formed under a specific environment [37]. An efficient organic inhibitor will 
usually contain polar functional groups with S, O, or N atoms in the molecule and 
a hydrophobic moiety that will repel the aqueous corrosive species away from the 
metal surface. However, the polar head is considered to be responsible for estab-
lishing the adsorption layer [38]. Some chemical families of organic inhibitors are 
pyridines, fatty amides, imidazolines, and 1,3-azoles [39].

4.2 Inorganic inhibitors

Inorganic inhibitors are those inhibitors in which the active substance is an 
inorganic compound. The addition of electropositive metal salts to a corrosive 
medium is one of the simplest ways to improve the passivity of a metal. However, 
the protective metal ion must have a redox potential more positive than the one 
to be protected and potentially more positive than that required for discharging 
protons so that the protective metal ion can be discharged on the surface of the 
metal in need of protection. Cathodic depolarization by overvoltage reduction and 
subsequent formation of an adherent deposit take place through the deposition of 
the protective metal on the surface of the metal susceptible to corrosion. Some of 
the metals that serve this purpose are palladium (Pd), platinum (Pt), iridium (Ir), 
rhodium (Rh), mercury (Hg), and rhenium (Re). Many inorganic anions, such as 
chromates (CrO4

2−), molybdate (MoO3
−), silicates (SiO4

4−), phosphate (H2PO3
−), 

and nitrate (NO2
−) as well provide passivation protection to the metal surfaces 

through their incorporation into the oxide layer [39].
Environmental friendliness, cost, availability, and toxicity are some factors that 

should play an extremely important role when it comes to choosing an inhibitor for 
a particular condition [40]. The toxicity, biodegradability, and bioaccumulation of 
conventional corrosion inhibitors discharged into the environment are matter of 
huge concern. Even though the environmental implications of commercial corro-
sion inhibitors are not fully understood, it is not unknown that their chemical com-
ponents have hazardous impact [41]. Inorganic inhibitors, for example, arsenates, 
phosphates, chromates, and dichromates not only have shown promising inhibition 
efficiency but also have been proved intolerant as well due to the threat they pose 
to our social health in the long run [42]. Likewise, the ecological and health risks 
associated with the organic inhibitors have pushed us towards finding or using non-
toxic or green corrosion inhibitors that would impart maximum protection to the 
metallic structures but have least impact on mankind and nature [36].

4.3 Green corrosion inhibitors

Corrosion inhibitors are extensively used for the protection of metals and equip-
ment and they are required to be acceptable, non-toxic, and eco-friendly due to 
environmental concerns. The cost and harmful effect associated with the commer-
cial organic and inorganic inhibitors have raised considerable awareness in the field 
of corrosion mitigation. Thus, corrosion scientists and engineers are more inclined 
towards the implication of green corrosion inhibitors that are inexpensive, readily 
available, environmentally friendly and ecologically acceptable, and renewable. 
Several classes of such inhibitors have been discussed briefly below.

4.3.1 Plant extracts

Umoren et al. investigated the inhibition efficiency (IE) of gum arabic (GA) 
in absence and presence of halide ions on mild steel in 0.1 M H2SO4 at different 
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temperatures. In weight loss analysis, 0.05 M KCl, 0.05 M KBr, 0.05 M KI, and GA 
(0.5 g/l) alone imparted IE of 27.7, 32.2, 53.6, and 37.9%, respectively, at a maximum 
temperature of 60°C. At the same temperature and under similar technique, GA 
mixed with all of these halide solutions individually showed increased efficiency 
of 38.7, 47.1, and 59.1%, respectively. The ion-pair interactions between the organic 
cations and the halide anions have contributed to increased surface coverage that 
eventually led to better synergistic protection [43]. The IE of GA on AA1060 type 
aluminum sheets with 98.5% purity was examined at 40°C. It was found that GA 
(0.5 g/l) showed IE of 74.2 and 75.9% measured by hydrogen evolution and thermo-
metric methods, respectively [44]. Buchweishaija and Mhinzi [45] investigated the 
IE of gum exudates from Acacia seyal var. seyal and Acacia gum from seyal var. seyal 
on mild steel in chlorinated drinking water using potentiodynamic polarization 
(PP) and electrochemical impedance spectroscopy (EIS) techniques. Gum exudates 
showed maximum IE of 98.5% at a concentration of 1000 ppm at 30°C. On the 
other hand, Acacia gum showed an IE of 96.8% at an elevated temperature of 80°C 
at a concentration of 600 ppm.

The anticorrosive effect of a composite coating containing chitosan (CS; green 
matrix), oleic acid (OA), and graphene oxide (GO; nanofiller) on mild steel in 3.5 
wt.% NaCl solution has been studied by Fayyad et al. [46]. The IE of the nano-
composite coating was measured by PP and EIS techniques. It was observed that 
oleic acid-modified chitosan/graphene oxide (CS/GO-OA) film showed corrosion 
resistance 100 times better than pure chitosan (CS) coating. Additionally, oxygen 
transmission rate (OTR) measured for the CS/GO-OA was found to decrease 
by 35 folds in comparison to the pure chitosan film. This decreased OTR for the 
CS/GO-OA coating demonstrates that an effective barrier between the metal 
surface and the corrosive electrolyte species was developed. Alaneme et al. [47] 
experimented the IE and adsorption characteristics of elephant grass (Pennisetum 
purpureum) extract on mild steel in 1 M HCl solution. At room temperature (RT), 
the inhibitor showed efficiency greater than 95% and increasing with increasing 
concentration of the extract but decreasing with increasing temperature. The pres-
ence of hydroxyl (O-H) and unsaturated (C=C) groups that have inhibitory proper-
ties were confirmed in the extract by FT-IR investigation. The scanning electronic 
micrographs showed significant pitting on the metal substrate that was immersed in 
1 M HCl solution without the inhibitor and pitting was rarely present in the solution 
that contained inhibitor. The lower rate of iron dissolution in the corrosive solu-
tion that contained inhibitor was further confirmed by a higher Fe peak by energy 
dispersive spectroscopy (EDS) spectrum.

The inhibitory effect of hydroxyethyl cellulose (HEC) on 1018 c-steel corrosion 
in 3.5% NaCl solution was studied by El-Haddad using PP, EIS, and electrochemi-
cal frequency modulation (EFM) techniques [48]. The PP study revealed that 
HEC acted as a mixed inhibitor and the adsorption study showed that it followed 
Langmuir adsorption isotherm. The fact that oxygen atoms donate unshared pair of 
electrons to the vacant d-orbital of iron was established by the optimized geometry 
of HEC obtained by DMol3 quantum chemical calculations that showed that oxygen 
atoms of HEC have Muliken atomic charges with higher electron densities. The IEs 
measured by PP, EIS, and EFM techniques were 96.7, 95.5, and 94.8%, respectively, 
for the inhibitor concentration of 0.5 mM at 25°C. Mobin and Rizvi [49] explored 
the anticorrosion behavior of xanthan gum (XG) as an eco-friendly corrosion 
inhibitor for mild steel in 1 M HCl at 30, 40, 50, and 60°C, respectively. At a con-
centration of 1000 ppm at 30°C, XG showed the maximum IE of 74.2%. The addi-
tion of very small amounts of surfactants cetylpyridinium chloride (CPC), sodium 
dodecyl sulfate (SDS), and Triton X-100 (TX) improved the IE. Quantum chemical 
calculations found the energy differences between the highest occupied molecular 
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orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) to be 0.05 
and 0.02 eV in XG alone and XG plus SDS, respectively. The smaller energy gap 
between HOMO and LUMO indicated better inhibition efficiency for XG plus SDS 
system. The formation of complex between XG and Fe2+ was further confirmed by 
UV-Visible spectroscopic measurements. Scanning electronic microscopy (SEM) 
study revealed an improved surface morphology of inhibited mild steel compared 
to uninhibited mild steel. The plant extracts form a major class of green corrosion 
inhibitors. Some recently reported plant extracts as green corrosion inhibitors and 
their IEs have been summarized in Table 1.

4.3.2 Amino acids

Amino acids are molecules that contain at least one carboxyl (-COOH) group 
and one amino (-NH2) group bonded to the same carbon atom (α- or 2-carbon). 
Amino acids are considered as green corrosion inhibitors because they are non-
toxic, biodegradable, inexpensive, soluble in aqueous media, and easy to produce 
at high purity. The presence of heteroatoms, such as N, O, and S and conjugated 
π-electrons system have made amino acids a significant class of green corrosion 
inhibitors thanks to their environmental aspect [60, 61]. El-Sayed investigated the 
anti-corrosive effect of some amino acids, such as glycine, valine, leucine, cysteine, 
methionine, histidine, threonine, phenylalanine, lysine, proline, aspartic acid, 
arginine, and glutamic acid on carbon steel in stagnant naturally aerated chloride 
solutions using PP and EIS techniques. All of the amino acids acted as mixed-type 
inhibitor while cysteine, phenylalanine, arginine, and histidine showed remarkably 
high corrosion inhibition efficiency at a concentration of 10 mM/dm3. The presence 

Inhibitor 

(concentration)

Metal/alloy Test 

condition

Maximum 

efficiency 

(η%)

Test 

technique

References

Saraca asoca 
(100 mg/L)

Mild steel 0.5 M 
H2SO4, 25°C

95.5 Tafel [50]

Sida cordifolia 
(500 mg/L)

Mild steel 0.5 M 
H2SO4, 25°C

99.0 Tafel [51]

Myristica fragrans 
(500 mg/L)

Mild steel 0.5 M 
H2SO4, 25°C

87.8 EIS [52]

Ginkgo (200 mg/L) X70 steel 1 M HCl, 
45°C

92.5 EIS [53]

Eriobotrya japonica 
(100% v/v)

Mild steel 0.5 M 
H2SO4, 25°C

96.2 Weight loss [54]

Turbinaria ornata 
(25 g/L)

Mild steel 1 M HCl, 
25°C

94.5 EIS [55]

Pongamia pinnata 
(100 ppm)

Mild steel 1 N H2SO4, 
30°C

94.6 Weight loss [56]

Prosopis juliflora 
(300 ppm)

Low-carbon 
steel

1 M HCl, 
25°C

91.5 EIS [57]

Rollinia occidentalis 
(1.0 g/L)

Carbon 
steel

1.0 M HCl, 
25°C

85.7 Tafel [58]

Xanthium strumarium 
(10 mL/L)

Low-carbon 
steel

1 M HCl, 
60°C

94.8 Weight loss [59]

Table 1. 
Some recent plant extracts as green corrosion inhibitors of different metals and alloys.
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of functional groups such as OH, SH, or phenyl in the backbone of the amino 
acid molecules help them undergo better adsorption [62]. Mobin et al. studied the 
inhibitory behavior of mercapto group containing amino acid L-cysteine (CYS) 
on mild steel in aerated and unstirred 1 M HCl solution using weight loss (WL), 
PP, and EIS techniques. The maximum IE of 85.6% at 30°C was achieved with an 
inhibitor concentration 500 ppm. The authors investigated the effect of surfactants 
CPC, SDS, and TX by adding them to CYS and found that the surfactants increased 
the IE. CYS separately and in combination with surfactants acted as mixed-type 
inhibitor and obeyed Langmuir’s adsorption isotherm [63].

In their attempt to solve the “bronze disease”, Wang et al. studied the corrosion 
behavior of bronze covered with CuCl patina in the presence of CYS using EIS and 
X-ray photoelectron spectroscopy (XPS) techniques. EIS results revealed that CYS 
can both inhibit the bronze substrate and stabilize the CuCl patina effectively. The 
IE reached the highest value of 95.3% at a CYS concentration of 5 mmol/L. The 
XPS investigation showed that the chemisorption of CYS on CuCl surface hap-
pened through sulfur atom in thiol and nitrogen atom in amino group [64]. Zeino 
et al. investigated the mechanistic study of polyaspartic acid (PASP) on mild steel 
in 3% NaCl solution. PASP alone showed a moderate IE of 61% at 2.0 g/L and zinc 
ion added PASP showed a superb IE of 97% at a reduced PASP concentration of 
0.5 g/L. The authors studied the surface morphology of mild steel utilizing SEM 
and atomic force microscopy (AFM) techniques. Quantum calculation and Monte 
Carlo simulation helped them achieve molecular level insights into the complex 
adsorption mechanism [65]. Ituen et al. investigated the IE of N-acetyl cysteine 
(NAC)-based formulation on J55, mild steel, and X80 steel at different temperatures 
(30–90°C). NAC-based formulations showed IEs up to 91% at 90°C [66].

4.3.3 Drugs

The use of drugs as green corrosion inhibitors has been inspired by the fact 
that they are non-toxic, cheap, eco-friendly, and green enough to compete with 
other green corrosion inhibitors because most of these drugs can be synthesized 
from natural products [67]. The presence of heteroatoms, benzene ring, and 
heterocycles, such as thiophenes, pyridine, isoxazoles, etc. have made drug 
molecules as a promising source of green corrosion inhibitors. Recently, Ali 
investigated the inhibitory behavior of Candesartan drug on carbons steel (CS) 
in 1 M HCl acidic medium using WL, PP, EIS, and EFM techniques. The surface 
morphology of the inhibited CS was investigated by EDX, AMF, and SEM tech-
niques. The inhibitor showed an IE of 79.8% at a concentration of 300 ppm [68]. 
Matad et al. investigated the inhibitive properties of an anti-inflammatory drug 
ketosulfone as green corrosion inhibitor of mild steel in 1 M HCl acidic medium 
using chemical and electrochemical methods. Ketosulfone imparted a maximum 
IE of 96.6% at 30°C for a concentration of 200 ppm. The inhibitor was found to 
be of mixed-type and follow Langmuir adsorption isotherm determined by polar-
ization measurements and thermodynamic calculations, respectively [69]. Singh 
et al. investigated the corrosion behavior of mild steel in 1 M HCl acidic medium 
in presence of an expired atorvastatin drug using WL, PP, and EIS techniques 
[70]. The expired drug showed an amazing IE of 99.1% at a concentration of 150 
ppm. The inhibitor acted as mixed-type inhibitor with predominant cathodic 
behavior. Dahiya et al. studied the anti-corrosive behavior of an expired drug 
ethambutol on mild steel in 0.5 M HCl using WL, PP, EIS, SEM, and molecular 
dynamics (MD) techniques. The inhibitor showed an IE more than 95% at a 
concentration of 100 ppm and it acted as a mixed-type inhibitor and followed 
Langmuir adsorption isotherm [71].
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4.3.4 Rare earth (RE) metal compounds

Chromates have applications in deoxidizers, anodizing, conversion coatings, 
chromate-inhibited primers, wash primers, and repair processes. Environmental 
protection legislation was realized to prevent the use of unacceptable materials such 
as chromium salts. Chromium (Cr6+) is highly toxic and carcinogenic [41, 72]. The 
health problems associated with the use of chromates and the cost associated with 
their safe use and disposal have led to efforts finding good alternatives such as rare 
earth metal compounds. After the first paper was published by Hinton et al. [73] in 
1984 on the use of cerium chloride salts as corrosion inhibitor, a lot of research papers 
have been published by the researcher working in this area. In 1992, Hinton et al. 
[74] published a review paper highlighting the use of some RE compounds as green 
corrosion inhibitors of a wide range of metals. In this chapter, the authors pointed that 
these RE salts work by producing an oxide film at the cathodic sites of the metal sub-
strate which prevent the supply of oxygen or electrons to the reduction reaction thus 
reducing the corrosion rate. A comprehensive review of the recent developments in 
corrosion inhibitors based on RE metal compounds can be gained from the two works 
published by Forsyth et al. [75, 76] and the book edited by Forsyth and Hinton [77].

4.3.5 Others

Surfactant corrosion inhibitors are also known as green corrosion inhibitors 
because they are highly efficient, cheap, and less/non-toxic. Surfactant molecules 
consist of a polar hydrophilic group or “head” and a non-polar hydrophobic group 
or “tail”. In aqueous solutions, the adsorption of surfactant occurs through either 
chemisorption or physisorption. Critical micelle concentration (CMC) is the most 
important parameter when it comes to studying the corrosion inhibition by surfac-
tants [78]. Recently, ionic liquids have gained widespread popularity as green corro-
sion inhibitors. By definition, ionic liquids are referred to as materials consisting of 
ions having melting point below 100°C. Ionic liquids due to their some fascinating 
properties, such as high polarity, lower melting point, low toxicity, lower vapor 
pressure, very high thermal, and chemical stability have applications in some other 
fields of chemical and chemical engineering researches as well [79].

5. Recent patents on green corrosion inhibitors

Corrosion inhibitors are an important and cost-effective way of dealing with 
corrosion. A huge effort to produce green inhibitors and evaluate them successfully 
is underway. Some recently patented green corrosion inhibitors that could indicate 
the importance of this class of inhibitors are included in Table 2.

Inhibitor system Reference

Main chain type polybenzoxazine (MCTPB)-Chitosan (CHI) blend [80]

Polyaspartic acid-hydroxyphosphonoacetic acid-phosphinocarboxylic acid composition [81]

Polyaspartic acid-soluble Sn (II) or Sn (IV) compound blend [82]

At least (one fatty acid-one alkanolamine-one alkylamine-one organic sulfonic acid 
composition)

[83]

A corn stillage product [84]

Table 2. 
Some recent patents on green corrosion inhibitors.
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6. Conclusion

Corrosion is a destructive phenomenon that could strike badly at the heart of an 
economy as it did on many occasions. The direct and indirect global costs associated 
with corrosion are no longer ignorable. Corrosion is not a necessary curse because it 
might be almost impossible to stop it but preventable. The use of inhibitors to miti-
gate corrosion is an economically viable option given the maintenance costs associ-
ated with the metals and equipment is already very high. However, recent trends 
in the field of corrosion inhibition are more inclined towards finding not only an 
effective inhibitor but also an eco-friendly one. This is because an effective inhibi-
tor may serve the purpose of mitigating corrosion well but could leave hazardous 
impact on the health and ecology due to the harmful aspect associated with its 
chemical formula. Green corrosion inhibitors in the form of plant extracts, drugs, 
amino acids, rare earth metal compounds, ionic liquids, surfactants, etc. are not 
only eco-friendly but also provide excellent corrosion prevention. The replacement 
of the existing harmful organic and inorganic inhibitors that are used for different 
industrial applications by the green ones is not merely a matter of concern anymore 
but an agenda that has been in implementation and will continue to be realized.
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