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Abstract

Colorectal cancer (CRC) is a common and treatable disease if diagnosed early. 
Current population screening programs are suboptimal, and consequently, there 
is a need for the development of new methodologies for early diagnosis of CRC. In 
the past 10 years, unprecedented technological advancements in the field of mass 
spectrometry (MS)-based proteomics have progressively increased the sophistica-
tion and utility of these investigations, leading to the draft mapping of the human 
proteome. These exciting studies have shaped our mechanistic understanding of 
the human genome and begun to provide us with a suite of novel biomarkers to 
predict the onset, progression and severity of many debilitating diseases. Thus, 
sophisticated MS workflows coupled with revolutionary protein quantification 
techniques hold promise for the field of MS-based plasma proteomics, particularly 
valuable in the context of early stage identification of curable CRC. However, 
within the last 40 years, no new plasma protein biomarkers of CRC have been 
translated into clinical practice. Here. we discuss the application of proteomic 
technologies within the field of CRC, highlighting contemporary MS-based plasma 
proteomic strategies that could be exploited to deliver on the promise of a panel 
of sensitive and specific plasma-based biomarkers with which to non-invasively 
detect early stage CRC.

Keywords: colorectal cancer, colonic adenomas, polyps, proteomics, SWATH, mass 
spectrometry, isobaric tag

1. Introduction

Colorectal carcinoma (CRC) is a common form of cancer that is estimated to 
be responsible for approximately 694,000 deaths worldwide each year [1]. It is the 
third most common form of cancer in males and the second in females, with an 
estimated 1.4 million new cases diagnosed annually. The natural history of progres-
sion of adenomatous polyps to CRC has been well described by the adenoma-carci-
noma sequence, a stepwise process which recognizes that the majority CRC arises 
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from adenomatous polyps (Figure 1) [2]. Colon and rectal cancer is staged from 
radiological, histopathological and intraoperative findings with the TNM (tumor-
nodes-metastasis) system [3] or historically with the Dukes staging system [4]. The 
stage at diagnosis correlates to prognosis; the 5-year survival of patients with stage 
one disease is 90%, stage two is 71%, stage three 53% and stage four is only 14% [5]. 
Therefore, diagnosis and treatment of early stage disease is associated with signifi-
cantly better outcomes than late stage disease.

Screening programs aim to detect asymptomatic patients with early stage disease 
where there is a conferrable survival benefit. Investigations used for screening 
require appropriate levels of sensitivity and specificity, this is to ensure adequate 
probability of disease detection and to reject patients without the disease in ques-
tion. Fecal immunochemical tests (FIT) stool screening tests suffer from low 
predictive values for CRC and as such, positive tests can lead to unnecessary inves-
tigation with colonoscopy and other modalities. When considering the discovery of 
a biomarker for clinical use, the test must have both high sensitivity and specificity 
to capture the appropriate patient cohort without falsely reassuring patients. In 
addition, it must be specific in early stage disease, where the natural history of the 
disease can be successfully altered by surgical intervention. Currently, the par-
ticipation in CRC screening programs is suboptimal, particularly given that early 
diagnosis and subsequent treatment significantly correlate to improved outcomes. 
Depending on the country or region, and the screening test offered, participation 
can be as low as 40% of the target population [10]. In the context of this poor com-
pliance and subsequent effects on patient morbidity and mortality, there has been 
increased interest in the role of plasma-based biomarkers as a screening tool for the 
detection of early stage CRC.

Early stage screening for CRC is via stool-based tests or endoscopic or radiologi-
cal investigations. Stool-based tests include guaiac-based fecal occult blood (FOB) 
tests or fecal immunochemical tests (FIT) [6, 7]. Other methods include; colo-
noscopy, computed tomography colonography, flexible sigmoidoscopy or capsule 
colonoscopy [8]. Currently, FIT testing is the main method of population based 
screening for average risk patients as it has 83% sensitivity and 93% specificity 
[9]. However, the FIT test sufferers from low compliance rates [10]. Colonoscopy 
is also used for screening and diagnosis but it is a procedure associated with risk, 
with complications estimated to occur between 0.5–2.8 per 1000 procedures and a 
mortality rate of 0.007% [11]. Patients who participate in screening programs and 

Figure 1. 
Summary of plasma protein biomarkers according to disease stage. (A) Normal mucosa, (B) adenomatous 
polyp, (C) stage one and two adenocarcinoma (D) and stage three and four adenocarcinoma. Beneath each 
image representing each clinical stage, corresponding plasma protein biomarkers are listed. Each biomarker is 
placed corresponding to the earliest point where it has been identified. Images (A–C) are 40× objective lens. 
Image (D) 12.5× objective lens, hematoxylin-eosin staining. After deparaffinization and rehydration of colon 
sections were counterstained with hematoxylin (Gill’s formulation, vector laboratories, California, USA). 
Imaging was performed on an Axioplan-2 microscope (Carl Zeiss AG, Oberkochen, Germany).
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Analyzer Technology Advantages Disadvantages References

Quadruple Parallel 

cylindric 

magnets to 

filter ions 

based on the 

mass to charge 

ratio (m/z).

Clinical mass 

spectra

Good 

reproducibility

Lower cost

Efficient 

conversion of 

precursor to 

product

Preferential for 

targeted analysis

Poorer resolution

Peak heights 

represented as a 

function of mass

Limited application 

for pulsed ionization 

methods

[129, 130]

Ion trap Combination 

of radio 

frequency 

and direct 

current (DC) 

electrical 

fields which 

allow ions to 

be trapped for 

analysis.

High sensitivity

High resolution

Multi-stage MS

Compact mass 

analyzer

Poor quantitation

Poor dynamic range

Affected by space 

charge effects 

and ion molecule 

reactions

Collision energy not 

well defined

Many parameters 

which can affect the 

quality

[129, 130]

Time of flight Utilizes 

different ion 

velocities 

allowing 

separation 

based on 

mass.

Fast

Can be used 

for pulsed 

ionization 

methods

High ion 

transmission

Good mass 

range

Requires pulsed 

ionization method or 

ion beam switching

Analyzers used 

can have limited 

dynamic range

Limited precursor 

selectivity

[129, 130]

Orbitrap Utilizes DC 

between 

electrodes 

which results 

in orbiting 

ions. The 

ions oscillate 

at various 

frequencies 

which enable 

mass-to-

charge 

measurement.

High resolution

Accurate-mass 

detection

Good for 

non-targeted 

analysis

Decay of coherent 

ion packets

[129, 130]

Ionization

• Surface-enhanced 

laser desorption/

ionization

• Matrix-assisted laser 

desorption ionization

Uses a laser 

energy 

absorbing 

matrix 

to create 

ions from 

molecules.

High-throughput

Fast

Minimal 

fragmentation 

required

Rapid 

identification

Good 

sensitivity for 

low abundant 

proteins

Poorer 

reproducibility

Requires small 

sample volume

Detection limits at 

attomole level

Limited to detection 

of proteins of 

relatively low 

molecular mass

Dependent of 

change in expression 

profiles

[131, 132]

Table 1. 
Overview of common MS analytical technologies.
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undertake colonoscopy examination have an estimated 90% decreased incidence 
of colon cancer than those who do not [12]. Early detection of polypoid disease and 
subsequent removal of polyps therein prevents progression to CRC [8].

Over the last 2 decades, unprecedented technological advancement in protein-
based mass spectrometry (proteomics) has radically changed the landscape of 
biomarker research [13] (Table 1). This has facilitated the characterization of 
complex cellular proteomes [14–19], research that has identified hundreds of over 
and under expressed proteins in carcinoma patients using tumor tissue, histologi-
cal sections, plasma or fecal samples when compared to matched normal tissues 
[20–24]. Despite this, with the exception of Carcinoembryonic antigen (CEA) and 
Cancer antigen 19-9 (CA 19-9) [25], no new protein biomarkers have made it into 
routine clinical practice [21, 26, 27]. In this book chapter, we have sought to pres-
ent an overview of the diagnostic and prognostic protein biomarkers of early stage 
CRC to aid in the development of accommodating future screening tools that will 
continue to increase the rate at which early stage CRC is diagnosed and treated. We 
also review the use of contemporary proteomic approaches to address many of the 
long-standing challenges in the field of human CRC plasma proteomics and specu-
late on the future clinical applications of these technologies (Figure 2).

Figure 2. 
Overview, and advantages and disadvantages of using gel-free quantitative proteomic approaches for the 
identification of plasma protein biomarkers of early stage colorectal carcinoma.
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2. Proteomic technologies for the identification of plasma proteins of 
early stage CRC

The use of blood or plasma for screening or diagnosis of CRC is the most 
attractive non-invasive material available for the identification of clinically rel-
evant protein biomarkers. Most commonly, candidate protein biomarkers of early 
stage CRC are identified using MS-based proteomics techniques. Below we list the 
limitations and advantages of the most common sample preparation and proteomics 
techniques specifically to identify candidate biomarkers in the plasma of early stage 
CRC. These techniques face a number of limiting factors, which have reduced the 
utility of proteins revealed by proteomics. Indeed, factors including the extreme 
dynamic range of proteins within plasma [28], the variability in collection and pro-
cessing methods [21], preanalytical and analytic processes [29], and the inherent 
heterogeneity of patient samples [30], have all hindered uniform consent for which 
biomarkers are the most relevant for use in the setting of early stage disease.

As a small number of highly abundant proteins such as; albumin, IgG, anti-
trypsin, IgA, transferrin, haptoglobin, fibrinogen, comprise 90% of the human 
plasma proteome [31], therefore little capacity is left for the identification of lower 
abundance proteins to be used as early stage markers of CRC [32]. Researchers have 
thus turned to immunodepletion strategies to enrich for low abundant proteins, 
resulting in a 25% increase in identified proteins and 4-fold increased enrichment 
of non-targeted plasma proteins using peptide isoelectric focusing (IEF), followed 
by liquid chromatography-tandem mass spectrometry (LC-MS/MS) [31]. These 
pioneering studies have paved the way for high-resolution LC-MS/MS studies 
employed on depleted samples, routinely affording researchers with the capacity 
to identify 100 s if not 1000 s of plasma proteins during the course of a proteomics 
investigation [21] (Figure 2).

In the context of proteogenomic approaches to biomarker discovery [33], recent 
studies have also made some progress in reducing variability during collection and 
processing, revealing the suitability of human plasma proteins for qualitative and 
quantitative proteomic analysis after collection and storage for up to 48 hours at 
room temperature in cell free DNA-optimized blood collection tubes [21]. These 
tubes have been developed to overcome some of the issues that delays in processing 
time, temperature, and handling contribute to the deterioration of non-protein–
based biomarkers [34] and now protein biomarkers [21]. Although not yet in 
widespread use, future studies may show that these cell stabilization tubes reduce 
plasma contamination by proteins originating from blood cells during collection 
and storage, thus increasing the reproducibility of proteomics-based biomarker 
discovery projects (Figure 2).

2.1 Gel-based separation platforms

Two-dimensional electrophoresis (2DE) coupled to mass spectrometry is a very 
accurate and sensitive method of large-scale protein separation using human CRC 
tissue [35]. The application of this preparative platform, which facilitates the reso-
lution of protein mixtures on the basis of proteins isoelectric point and molecular 
weight has been extensively employed using CRC tissue [36–38]. These techniques 
can be combined with any analytical MS platform to identify changes in protein 
abundance between samples. Results of these studies are most commonly validated 
using orthogonal immunological-based techniques using plasma including; ELISA, 
flow cytometry, immunoblotting. Recently, two-dimensional fluorescence dif-
ference gel electrophoresis (2D-DIGE) was employed on early and late stage CRC 
plasma samples, identifying apolipoprotein A1 (APOA1) as a potential marker 
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of early stage CRC [39]. Interestingly, this study also showed decreased levels of 
galectin-7 (GAL-7) in patients with early stage disease compared to healthy con-
trols. CRC tissue examination of GAL-7 revealed 100% negative immunoreactivity 
implying that it may not might not be originating from the tumor tissues [39].

Gel-based separation approaches coupled to mass spectrometry face significant 
limitations related to their reproducibility, low sample number capacity, poor 
resolution of low abundant potential biomarker proteins, poor resolution of highly 
acidic/basic proteins and of proteins with extreme size or hydrophobicity, and 
co-migration of multiple proteins in a single spot that renders comparative quan-
tification rather inaccurate [40]. Therefore, more recently researchers have largely 
focused on gel-free approaches for the identification of biomarkers of early stage 
CRC.

2.2 Surface-enhanced laser desorption/ionization time-of-flight mass spectro-
metry (SELDI-TOF MS)

SELDI-TOF MS also known as ProteinChip® technology, is a high-throughput 
technique that can purify and identify plasma protein biomarkers [41]. The method 
offers simplicity as proteins are bound to a solid-phase chromatographic surface, 
which helps protein isolation from crude mixtures, with non-bound proteins being 
washed away. The remaining bound proteins are mixed with an energy-absorbing 
matrix such as sinapinic acid (SPA) or α-cyano-4-hydroxycinnamic acid (CHCA) 
to induce ionization and desorption of the proteins on the surface of the plate. 
MALDI-TOF MS is then used to generate a unique mass-to-charge ratio (m/z) of 
the desorbed molecules, which are analyzed as they fly down the TOF tube and 
detected as peaks in a mass spectrum [42]. The normalized peak intensity is directly 
proportional to the concentration of the corresponding protein molecule in the 
sample.

One of the earliest reports of SELDI-TOF MS for the identification of early stage 
CRC plasma biomarkers identified a four protein peak m/z profile (m/z: 3191.5, 
3262.9, 3396.3 and 5334.4) that was able to discriminate CRC from healthy controls 
with a sensitivity and specificity exceeding 90% [43]. Furthermore, two additional 
protein peaks (m/z: 9184.4 and 9340.9) were described as being able to discriminate 
plasma from patients with primary CRC from those with metastatic CRC [43]. In 
the same year, a similar study employing SELDI-TOF revealed a set of two protein 
peaks (m/z: 8132 and 4002) that could discriminate CRC from control again with 
>90% sensitivity and specificity [44]. This study was followed up some years later 
using an independent, patient case-control series of blood samples collected at mul-
tiple sites. However the latter study failed to discriminate plasma from CRC patients 
from healthy controls using these two protein peaks. Rather, the study identified 
two new protein peaks (m/z: 3961 and m/z 5200) in CRC plasma compared to 
healthy controls, again yielding very high sensitivity and specificity [45]. Drift and 
intensity of m/z were suggested to be responsible for the variation in reproducibility 
between the studies, an inherent limitation of SELDI-TOF based biomarker discov-
ery projects, mostly underpinned by the wide dynamic range of human plasma.

2.3 Chromatographic separation platforms

While the analysis of intact proteins by 2DE is likely to continue to play an 
important role in comparative studies of the CRC tissue proteome, recent technical 
developments have heralded a new era in proteomics where the emphasis is placed 
on peptides rather than on whole proteins. Trypsin-based proteomics is now well 
recognized at the starting point in any proteomics investigation. Hydrolysis of 
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peptide bonds in proteins is achieved using proteolytic enzymes resulting in the 
generation of an even more complex peptide mixture. However, the smaller size 
of peptides makes them much more homogenous structures than proteins. This 
coupled with the continued maturation of nanoscale chromatographic strategies, 
and the revolution of electrospray ionization MS (ESI-MS) [46] have meant that the 
rapid and detailed analysis of the human proteome using tryptic peptides is now 
common place in the MS laboratories of the world [47] (Figure 2).

Tryptic digestion at the whole proteome level increases the complexity of a 
protein sample, therefore peptide purification techniques including reversed-
phase high performance liquid chromatography (RP-HPLC) are key for achieving 
increased sensitivity through flow separating eluting peptides entering the MS over 
time. RP-HPLC is most commonly used for one-dimensional (1D) peptide purifica-
tion in proteomics. In RP-HPLC, peptides are generally retained due to hydrophobic 
interactions with the stationary silica phase. Polar mobile phases, such as water 
mixed with acetonitrile, are subsequently used to elute the bound peptides in order 
of decreasing polarity (increasing hydrophobicity). While reversed phase chro-
matography can be used as the sole separation procedure for moderately complex 
peptide mixtures prior to LC-MS/MS analysis, it is generally considered to have 
insufficient resolution for the analysis of more complex mixtures. This reflects the 
fact that although an MS instrument can perform mass measurements on several 
co-eluting peptides, if many peptides co-elute, the instrument cannot fragment 
them all and valuable information is likely to be irretrievably lost. Therefore, 
2D-HPLC fractionation strategies including ion exchange chromatography (IEX), 
strong cation exchange (SCX), hydrophilic interaction liquid chromatography 
(HILIC), electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) 
and hydrophilic strong anion exchange chromatography (hSAX) are commonly 
employed prior to RP-HPLC. These 2D approaches were used in the draft mapping 
of the human proteome [48, 49], and continue to be a key preparative step in the 
successful application of whole proteome based investigations.

2.4 Quantitative proteomics

2.4.1 Isobaric labeling

In addition to their utility in building an in-depth understanding of the CRC 
plasma proteome, gel-free strategies have also proven to be particularly amenable 
for use in comparative profiling applications. Indeed, since peptides are inherently 
less variable than their parent proteins, it has been argued that they constitute a 
more reliable basis for quantitative comparisons. This property has been exploited 
for the development of a suite of isobaric-tag based labeling strategies, which 
facilitate the simultaneous comparison of complex proteomic mixtures using 
different sample populations. The most common of these approaches used in 
plasma introduces a isobaric tag covalently bound to the N-terminus and side chain 
amines of plasma peptides [e.g. isobaric tags for relative and absolute quantitation 
(iTRAQ ) [50] and tandem mass tags (TMT)] [51]. Each of these approaches allows 
for relative quantification between samples based on the intensities of the reporter 
produced by precursor-ion fragmentation in the low m/z region of spectra. In each 
technique, the isobaric tags possess identical chemical properties to ensure similar 
behavior during chromatographic peptide separation and MS1 applications, but 
thereafter present as an easily distinguishable mass difference. As such, chro-
matographic separation platforms have become viable alternatives to 2DE for the 
differential analysis of complex protein mixtures [52, 53]. The MS operates in Data 
Dependent Acquisition (DDA) mode so that during each duty cycle the MS cycles 
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through a short survey scan of the eluting peptides or precursor-ions, then a series 
of n (~10–15) MS2 scans, during which each of the precursor-ions are isolated, frag-
mented and their fragment-ions are detected. Database searching is then performed 
on the MS2 fragmentation spectra and used to identify the sequence of their MS1 
parent peak. Limitations in this technology underpin some of the variation seen in 
MS based biomarker studies since MS2 spectra rarely allow unambiguous identi-
fication of the precursor-ions. Nevertheless, the application of quantitative DDA 
(iTRAQ ) to investigate a panel of 10 CRC plasma samples revealed Orosomucoid 2 
(ORM2) to be elevated compared to 10 healthy control samples [54]. ORM2 expres-
sion was confirmed in CRC tissues compared with corresponding adjacent normal 
mucosa; however no significant association between ORM2 concentrations and 
TNM stage or histological grade was shown. Nevertheless, an interesting finding 
to arise from this work was that plasma levels of ORM2 were higher in patients 
with inflammatory bowel disease, than in patients presenting with either a normal 
colorectum, hyperplastic polyps, or adenoma [54]. Thus, ORM2 appears to func-
tion in modulating the activity of the immune system, potentially mediating escape 
from immune recognition; an important first step during transformation.

A recent study by our group assessed whether the plasma samples of CRC 
patients stored in specialized blood collection tubes (e.g., PAXgene or STRECK; 
referred to as “BCT”), designed to reduce plasma DNA (pDNA) contamination 
and enhance low-abundance DNA target detection, was amenable for comparative 
and quantitative proteomics [21]. Eight patients with Stage I–IIA, and one patient 
with Stage IIIB were collected pre- and post- resection, in both BCT and EDTA 
tubes, and subjected to comparative and quantitative analyses using TMT. Of the 
641 unique proteins identified across all samples, 184 proteins showed ±0.5 log2 
fold-change in peptide abundance pre- versus post-operation. Label-free targeted 
proteomics validation using parallel reaction monitoring (PRM, discussed below) 
showed the most well recognized blood marker of CRC, CEA, was significantly 
more abundant pre- compared to post-operation in patients with early stage disease 
when collected and stored in BCT prior to MS. The same trend was also seen for 
gelsolin (GSN), structural maintenance of chromosomes protein 1B (SMC1B), 
E3 ubiquitin-protein ligase SHPRH (SHPRH), and semaphorin-3C (SEMA3C), 
highlighting the importance of preanalytical considerations during biomarker 
investigations using proteomic-based techniques [21].

2.4.2 Label-free quantification

Label-free mass spectrometry has recently emerged as a quantitative tool for the 
analysis of CRC plasma proteins. In the absence of isobaric-tagged based modifica-
tions, this rapid, low-cost technology relies on a workflow in which individual 
samples are analyzed (e.g. by LC-MS or LC-MS/MS) separately prior to protein 
quantitation via precursor ion (intact peptide) signal intensity or via spectral 
counting. The development of high-resolution accurate mass time-of-flight (TOF), 
and Orbitrap MS facilitates the extraction of precursor ion peaks at the MS1 level, 
permitting identification based at MS2 level (Table 1). The m/z ratios for all ions 
are detected and their signal intensities at a particular chromatographic retention 
time recorded. Owing to the tight correlation between signal intensity and ion 
concentration, relative peptide levels between samples can be determined directly 
from these peak intensities. Similarly, spectral counting exploits the strong correla-
tion between protein abundance and the number of MS/MS spectra. This approach 
involves counting the number of peptide-specific spectra identified in different 
biological samples and the subsequent integration of these data for all measured 
peptides of the protein(s) that are quantified.
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Examples of the application of label-free based proteomic profiling in the 
context of CRC include comparative analyses of the plasma samples from a cohort 
of 118 CRC patients compared with 96 healthy controls [55]. This study reported 
the identification of 373 plasma proteins, with 69 linked to CRC. Of the 69 CRC 
associated proteins, 2 proteins; Macrophage mannose receptor 1 (MRC1) and 
S100A9, were verified as being upregulated in CRC by immunoblot analysis and 
proved effective in identifying CRC from healthy controls with high accuracy, using 
ELISA analyses [55].

2.4.3 Multiple and parallel reaction monitoring (MRM/PRM)

Targeted proteomics, using multiple (MRM) (also known as; selected reaction 
monitoring or SRM) [56] or parallel reaction monitoring (PRM) [57] technologies 
enables absolute quantitation of multiple peptides per chromatographic experiment 
by exploiting the unique capabilities of triple quadrupole (QQQ ) and quadrupole 
Orbitrap MS and the unique characteristics of the targeted peptides. Analysis 
is performed by the acquisition of selected events across the chromatographic 
retention time, of predefined pairs of precursor-ion and product-ion masses for 
MRM, or individual precursor-ions for PRM. The technique becomes an absolute 
quantitation tool by spiking isotopically labeled synthetic peptide(s) into the 
complex sample of interest, which act as internal standards for any peptide(s) of 
interest. The labeled peptide standards are designed to mimic those generated by 
tryptic sample digestion, differing by only a few Daltons dependent on the isotopic 
label used. This enables endogenous and isotope-labeled peptides to be subjected 
to targeted MS/MS analysis and differentiated by the unique MS2 mass spectra 
provided by the isotopic label. MRM assay development and optimization are key 
elements for this method of targeted quantitation. This is somewhat mitigated 
using PRM-based targeted proteomics, owing to the high-resolution mass accuracy 
of quadruple Orbitrap MS for precursor-ion selection and the monitoring of all MS2 
fragment-ions used for quantitation in parallel.

High-throughput targeted proteomics using MRM in immunodepleted blood 
plasma has previously been employed to measure the abundance of large numbers 
of candidate CRC plasma proteins using 137 [23] and 1045 [20] confirmed CRC 
patients. These powerful studies highlight the capabilities of current MS technolo-
gies. Indeed, no less than 187 and 392 candidate marker proteins were simultaneous 
monitored, respectively. These analyses have aided in the development of candidate 
panels of plasma protein markers that can be monitored simultaneously to identify 
CRC in the symptomatic population [20, 23].

2.4.4 SWATH MS

Sequential windowed acquisition of all theoretical fragment-ion mass spectra 
(SWATH-MS) is a quantitative MS approach heralded as among the most important 
recent developments in proteomics research [58]. Driven by the recent advances 
in speed and sensitivity of the new generation of high resolution Triple-TOF MS, 
these technologies afford the ability not only to determine which proteins are 
present in the proteome, but also to accurately quantitate without the need for 
label-based methods, or by limited numbers of targeted peptides. This is due to the 
lower duty cycle of a Triple-TOF MS compared to an Orbitrap-based mass analyz-
ers [59]. SWATH-MS operates in Data Independent Acquisition (DIA) in which all 
ions within a selected m/z range are fragmented and analyzed in a second stage of 
tandem mass spectrometry. In combining the unique advantages of traditional DDA 
(high-throughput) and MRM (high reproducibility and consistency) technologies, 
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SWATH-MS can be deployed for both discovery and quantitation of all detectable 
peptides present in complex biological samples.

SWATH-MS also affords the added advantage that it does not rely on prior knowl-
edge of the precursor peptide ions, instead acquiring information in a DIA manner 
and thus avoiding laborious assay development. The SWATH-MS workflow involves 
two key steps beginning with the generation of a spectral library (e.g. via conven-
tional LC-MS/MS) through which acquired peptides are identified. During this 
acquisition mode, the mass spectrometer is programed to step within 2–4 s cycles 
through a set of precursor acquisition windows covering the mass range accessible by 
a quadrupole mass analyzer and also that in which most tryptic peptide precursors 
should fall (400–1200 m/z). During each cycle, the mass spectrometer fragments 
peptide precursors and records a complete, high accuracy fragment ion spectrum for 
all precursors that elute on the chromatograph. This is then followed by acquisition 
of SWATH-MS data for each sample under analysis, interrogation and matching 
against the spectral library to identify peptides, and finally extraction of specific 
peptide ions to enable area-under-the-curve quantitation between samples.

The first SWATH-MS study of CRC plasma also simultaneously assessed pro-
tein biomarkers from pancreatic cancer, lung cancer, prostate cancer, and ovarian 
cancer, all from patients diagnosed with early forms of these diseases. This sophis-
ticated study employed sample enrichment and subsequent detection of tissue-
specific secreted protein profiles via SWATH-MS. These data were used to generate 
a digital representation of the proteins from within each plasma sample that could 
be queried for the presence and quantity of specific peptides using a targeted data 
analysis [60]. Tumor specific biomarkers were detected for individual cancer 
types, as well as a common biomarker Thrombospondin-1 (THBS1), which was 
significantly altered in the blood of four of five carcinomas (CRC, lung, prostate 
and ovarian) [61]. These ground breaking studies highlight the potential of the new 
generation of analytical MS techniques for the detection of early stage.

3. Overview of biomarkers of colorectal adenocarcinoma

Plasma biomarkers used in clinical practice include Carcinoembryonic antigen 
and Cancer antigen 19-9, however these investigations have limited use in early 
diagnosis of CRC [6]. A variety of plasma and histological biomarkers of early and 
late stage CRC including heat shock proteins, matrix metalloproteinases, comple-
ment component proteins, Annexins and S100 proteins are discussed and summa-
rized in Table 2.

3.1 Carcinoembryonic antigen

Carcinoembryonic antigen (CEA) is a cell-surface high molecular weight 
glycoprotein important for cell adhesion, discovered in 1965 by Gold and Freedman 
as a component of human colon carcinoma and foetal tissue [62]. The production of 
CEA typically ceases at birth and it is present in very low concentrations in healthy 
patients. It can, however, be elevated in CRC, other types of cancer and non-malig-
nant conditions [63]. CEA is one of the most commonly used biomarkers of CRC 
worldwide, however its sensitivity for the detection of CRC is not good enough to be 
useful as a diagnostic tool, with plasma elevation >5 μg/L in Dukes type A, B, C and 
D reportedly 3, 25, 45 and 65% respectively [63, 64] . Limited evidence supports 
a role of CEA as a marker of CRC prognosis and recurrence; its sensitivity as an 
indicator of recurrence is estimated to be 80% [65] and post-operative elevation is 
particularly sensitive for the detection of hepatic and retroperitoneal metastases.
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Protein Sample type Workflow MS platform Proteins identified Validation set References

APO1A Serum samples: Dukes 

A And B (N = 24), 

Dukes C and D 

(N = 24) and healthy 

controls (N = 26).

Serum protein enrichment 

and clean up, lysis buffer 

and labeling, 2D-DIGE.

Nanoacquity 

UPLC Q-TOF

LS-MS/MS

2419 protein spots detected, 8 proteins 

up -regulated in early CRC and 2 

down regulated. In late stage CRC, 14 

proteins up-regulated, 4 proteins were 

down-regulated.

ELISA: 66 Serum Samples (Early 

Stage Disease N = 29, Late stage 

disease N = 19, Healthy controls 

N = 18). The 5 proteins selected 

for validation were APO1a, 

APOe, CFH, SYNJ2, GAL7.

IHC: APO1a the only protein 

consistently identified.

[91]

HSP27 Histological samples: 

404 primary tumors.

2DGE for 12 CRC samples. 

HSP identified, excised and 

trypsin digested.

TMA of 404 CRC samples 

and 100 controls followed by 

IHC analysis.

QSTAR Pulsar 

i hybrid mass 

spectrometer

LC-MS/MS

HSP27 TMA of 315 CRC in an 

independent cohort.

[77]

HSP40 Histological samples: 

50 CRC formalin 

fixed, 10 frozen CRC.

IHC for the 50 formalin 

samples using positive 

and negative controls. 

Immunoblotting 

(SDS-PAGE).

Immunoblot for 10 frozen 

samples.

N/A HSP40 expressed in 14% of IHC 

samples, 80% of immunoblot

HSP70 in 80% of IHC samples, 60% of 

immunoblot

N/A [79]

HSP60 Histological samples: 

50 CRC

Serum: 112 CRC and 

90 healthy controls 

for immunoassay.

Histological samples 

underwent 2DGE with 

internal standards.

ELISA for HSP60 to compare 

serum levels.

MALDI 

TOF-MS

Approx. 1600 gel protein spots. 17 

proteins with differential expression.

IMMUNOBLOT demonstrated 

significant overexpression 

of HSP60, glutathione-S-

transferase pi, α-enolase, 

TCP1β. Leukocyte elastase 

inhibitor with decreased 

expression.

HSP60 overexpression 

confirmed with IHC in 20 

samples.

[83]
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Protein Sample type Workflow MS platform Proteins identified Validation set References

HSP70

HSP 110

BCL

Histological: 81 CRC 

samples

Cell culture lines

SDS-PAGE

Immunoblot analysis

IHC

N/A Cell culture: HSP110, HSP70 elevated 

in highly metastatic cell lines. HSP 90, 

HSP60, HSP27 variable expression. 

BCL preferentially elevated in weakly 

metastatic cell lines.

Histological IHC: HSP70, HSP110, 

Bcl-2 corresponded to cell line results. 

Bcl-2 positive staining correlated to less 

invasive cancer and earlier clinical stage.

N/A [88]

HSP90Α Histological samples: 

56 CRC

cell culture lines

Immunoprecipitation with 

IHM-2 antibody

Immunoblotting or MS 

analysis

RT-PCR

MALDI-TOF

LC-MS/MS

Tumor HSP90α overexpression was 

correlated with the metastasis and poor 

prognosis of CRC patients.

N/A [39]

S100 A9

TCTP

Histological samples: 

Dukes stage B (n = 28) 

with paired normal 

tissue

2DGE, spot excision, trypsin 

digestion.

TMA with normal colon 

mucosa (n = 50), primary 

(n = 515) and metastatic 

CRC (n = 224)

ESI-TRAP

LC-MS/MS

1200 protein spots. 45 proteins 

overexpressed.

15 proteins validated with 

IHC. The most significantly 

overexpressed were HSP60, 

S100A9 and TCTP. 4-3-3b and 

aldehyde dehydrogenase 1 were 

identified as having prognostic 

benefit.

[81]

GSN Histological samples: 

5 CRC

Protein digestion, iTRAQ 

labeling, fractionation

Q-Star Pulsar

LC-MS/MS

802 proteins identified, 82 with 

differential expression.

Immunoblot and IHC for GSN [90]

MMP-1 Histological samples: 

20 adenoma, 142 

CRC.

IHC, in-situ hybridization, 

RT-PCR

N/A MMP-1 immunoreactivity only N/A [96]
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MMP-2

MMP-

1,3,9

Histological samples: 

72 CRC with matched 

normal tissue and 

serum plasma samples

ELISA using commercial kits 

for MMP-1,2,3,9

N/A Highly elevated concentrations of MMP-

1, MMP-2, MMP-3 and MMP-9 protein 

expression in tumor tissue compared 

with tumor-free tissue (p < 0.0001). 

MMP-2 the only significantly increased 

in plasma.

N/A [98]

MMP-7 76 Histological 

samples: Normal 

mucosa (n = 15) or 

tubular (n = 32), 

tubulovillous (n = 16), 

or villous (n = 13) 

adenomas.

IHC

Grading G0-G3 according to 

the percentage of strongly 

stained areas.

N/A MMP-7 identified in cytoplasm of all 

adenoma cells. Statistically significant 

difference in degree of overexpression of 

the three subtypes of colonic adenomas.

N/A [103]

MMP-12 Serum samples: 78 

CRC, 38 healthy 

controls.

Protein concentration 

estimation by commercial 

Assay kit. Luminex based 

Assay for MMP-7, MMP-10, 

MMP-12

N/A Significant overexpression of 

MMP-7. MMP-10 and 12 not statically 

significant. All associated with 

significantly impaired survival.

N/A [108]

MMP-13 Histological samples: 

249 CRC.

IHC. Monoclonal antibody 

to MMP-13. Detection using 

Gelatin Zymography

N/A MMP-13 N/A [93]

TIMP-1 Histological: 94 CRC 

with matched healthy 

controls

IMMUNOBLOT assay

IHC analysis

TMA

N/A Positive TIMP staining in 53.2% 

CRC samples, 80.6% of lymph node 

metastasis.

Increased levels associated with 

decreased disease-free survival and 

overall survival

N/A [109]
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Protein Sample type Workflow MS platform Proteins identified Validation set References

TIMP-2 Histological and 

Serum samples: 72 

CRC patients, 68 

healthy controls

Serum: ELISA for TIMP-2 

and MMP-2

Histological: IHC

N/A Serum levels of MMP-2 and TIMP-2 

were significantly lower in CRC.

IHC demonstrated overexpression for 

both, immunoreactivity correlated with 

tumor grade.

N/A [110]

TIMP-3 Histological samples: 

351 CRC patients.

TMA

IHC staining of MMP-

1,2,7,13 using a commercial 

kit and TIMP-1,2,3,4 hand 

stained.

N/A TIMP-3 the only marker of independent 

prognostic value

N/A [111]

A2 Serum samples: 100 

patients CRC, 70 

healthy controls

ELISA N/A A2 levels significantly lower in patients 

with colon cancer when compared to 

control subjects

N/A [113]

See also [90]

A3

A4

A11

Serum and cell 

culture supernatants. 

Training set: 51 CRC, 

26 healthy controls.

725 Candidate proteins 

identified by Literature 

search, Shotgun proteomics 

for Extracellular Vesicle 

(EV) Proteins

Q Exactive

LC-MS/MS

356 EV proteins from Shotgun analysis. 

46 proteins selected for SRM analysis for 

target peptide selection.

SRM analysis: 22 proteins 

A11, A3, A4, Tenascin-N, 

Transferring receptor protein 

1, GLUT-1, C9, CD88 antigen, 

78 kDa glucose-regulation 

protein, Alpha-1-acid 

glycoprotein, MMP-9, 

Angiopoietin-1, CD67 antigen, 

Mucin-5B, Adapter protein 

GRB2, A5, Olfactomedin-4, 

Neutral amino acid transport 

B(0), Tripeptidyl-peptidase 

1, Heat shock-related 70 kDa 

protein 2, Proteasome subunit 

alpha type-5, Neutrophil 

gelatinase-associated lipocalin.

[26]
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PRTN3

ATM

Stool samples: 12 

CRC, 10 healthy 

controls

1D-SDS GE.

Tryptic peptides excised 

for MS

LTQ-FT MS

LC-MS/MS

830 proteins, 134 increased in CRC (78 

significantly more enriched than FIT 

negative samples).

Validation set identification 

of 63 of the proteins from 

discovery set, 33 selected for 

further validation using SRM.

Differentially expressed 

proteins: Complement 

component C4B, Glucose-

6-phosphate isomerase, 

Proteinase 3 (PRTN3), 

Alpha-2-micorglobulin (A2M), 

A100A8, S100A9, Azurocidin, 

Ceruloplasmin

[119]

C3 Fecal samples: 

(n = 315). Three 

series of patients with 

CRC, nonadvanced 

adenomas, advanced 

adenomas and healthy 

normal.

Protein extraction, GE, 

in-gel tryptic digestion. FIT 

analysis using antibody-

based assays.

LTQ-FT 

Hybrid MS

LC-MS/MS

834 proteins identified, 29 statistically 

increased in CRC including ATM, 

S100A8, S100A9, and C9

N/A [118]

C9 Plasma: 69 CRC and 

69 healthy control.

Assay for 187 biomarkers 

identified from a literature 

search.

Sample preparation and 

trypsin digestion.

Targeted MS analysis using 

MRM.

6490 triple 

quadrupole 

mass 

spectrometer

LC-MS/MS

15 transition, 13 protein cross classifier. MS-MRM assay. Identification 

of over 50% of the proteins 

from the discovery set. Proteins: 

Alpha1-acid glycoprotein, 

Alpah1-Antitrypsin, Alpha-

Amylase 2B, Clusterin, 

Complement component C9, 

Mitochondrial Delta(3,5)-

Delta(2,4)-dienoyl-CoA 

isomerase, Ferritin light chain, 

Gelsolin, Metalloproteinase 

inhibitor 1, Osteopontin, 

Selenium-binding protein 1, 

Seprase, Spondin-2.

[23]
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Protein Sample type Workflow MS platform Proteins identified Validation set References

S100A8

S100A9

Histological: 6 CRC 

and 6 healthy controls

Plasma: 77 CRC, 11 

adenoma, 21 healthy 

controls

2DGE. In gel digestion, 

protein spots excised for MS

AB 4700 

Proteomics 

Analyzer

LC-MS/MS

34 increased and 17 decreased 

proteins on gel spots, 4 selected 

for RT-PCR and IMMUNOBLOT 

analysis: Nm23-H1, S100A8, S100A9, 

Adenosylhomocysteinase.

Semi-quantitative PCR and 

IMMUNOBLOT analysis.

IMMUNOBLOT analysis 

preformed for plasma samples. 

S100A8 and S100A9 were 

significantly increased in the 

plasma of CRC and colorectal 

adenoma patients compared to 

controls.

[36]

Synopsis of biomarker identification including sample type, pre-analytic workflow and MS technique (where applicable).

Table 2. 
Summary of CRC biomarker identification methods.
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3.2 Cancer antigen 19-9

Cancer (or Carbohydrate) antigen 19-9 (CA 19-9) is a clinical biomarker used 
in various diseases. Elevation can occur in benign conditions such as biliary and 
pancreatic disease, pulmonary disease, renal failure and autoimmune disease as 
well as malignant conditions of the pancreas, colon, rectum, liver, ovary and lung. 
CA 19-9 is therefore considered a non-specific biomarker of CRC [66] and is a clas-
sical marker for late stage disease and metastasis. For this reason it is not appropri-
ate for use as a screening, or diagnostic, marker of carcinoma [67]. CA 19-9 can be 
used in tandem with CEA for post-operative monitoring to detect recurrence, or as 
a prognostic indicator as pre-operative elevation without correspond elevation of 
CEA is associated with a poorer 5-year survival [68]. When the combination of pre-
operative elevation of both CEA and CA19-9 occurs, this is predictive of increased 
cancer mortality compared to non-elevated pre-operative levels [69].

3.3 Heat shock proteins

Heat shock proteins (HSP) are a type of stress-inducible protein that are present 
in all organisms [70] and their cells at low levels in normal physiological conditions. 
They have been functionally linked to cell apoptosis, protein homeostasis, cell growth 
mediation as play an important role during fertilization [70–76]. HSPs also function 
as chaperones, and act in protein assembly and unfolding. Various member of the HSP 
family have been postulated to have roles in antigen presentation and as a chaperones 
of peptides to major histocompatibility complex class I and class II [75, 76]. HSPs are 
typically classified into five subunits or families according to their molecular weight; 
Large HSP (HSP110, glucose-regulated protein 170), HSP90, HSP70, HSP60 and small 
HSPs (HSP27, HSP40). Significant research has focused around the role of HSPs in 
disease progression and on their role as therapeutic targets and as biomarkers.

3.3.1 HSP27

HSP27 is a member of the small HSP family, it has an anti-apoptotic role and 
acts as a chaperone to prevent misfolded protein aggregation. It is considered to be 
modulated by mitogen-activated protein kinase through phosphorylation. Abnormal 
HSP27 expression has been demonstrated in various cancer types, including ovar-
ian, prostate, breast and colon cancer, as well as non-malignant conditions such as 
neurological and cardiovascular disease [76]. The overexpression of HSP27 in histo-
logical colon and rectal cancer samples was assessed in a large cohort of 404 patients 
with 2DE and tandem mass spectrometry (MS/MS) combined with a large validation 
set using tissue microarrays (TMA). The authors found that overexpression of HSP27 
was present in both colon and rectal cancer and associated with poorer cancer-free 
survival in the rectal cancer cohort [77]. Furthermore the use of immunohistochem-
istry (IHC) and TMA analytical approaches has revealed that high HSP27 and HSP70 
are associated with poorer clinical outcomes in primary resected CRC [78].

3.3.2 HSP40

HSP40 is also a member of the small HSP family and act as co-chaperones to 
HSP70. This family are further subdivided into DNAJA, DNAJB, and DNAJC; sub-
groups that have been shown to participate in both tumor progression or conversely, 
in tumor suppression in different types of cancer [75]. HSP40 overexpression in 
CRC has been demonstrated (along with HSP70) in 50 histological samples using 
IHC and immunoblotting [79].
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3.3.3 HSP60

HSP60 is a chaperone protein with functions including transport and mitochon-
drial protein folding. This protein has been associated with a wide range of cancers 
including prostate, breast, cervical bladder, hepatic and CRC [71]. HSP60 is also 
elevated in non-cancer conditions such as chronic hepatitis and liver cirrhosis [80]. 
2DE coupled to LC-MS–MS/MS using 28 histological adenocarcinoma samples 
and a 789 patient IHC validation set revealed that HSP60 was overexpressed along 
with S100A9 and translationally controlled tumor protein (p < 0.001 for each) 
[81]. This study also identified the beta subunit of 14-3-3 as a prognostic marker 
[69]. Additionally, IHC and immunoblot were used to demonstrate, in histological 
samples of 44 patients, that HSP60 was elevated in tumor tissues and there was a 
significant association between HSP60 levels, tumor differentiation, and tumor 
stage [82]. Comparison of colonic tumor samples and matched normal tissue 
confirmed overexpression of HSP60 (3.25-fold change ratio) with 2D-DIGE and 
immunoblotting) [83]. The authors of this study also developed an immunoassay 
for serum HSP60 detection, confirming a statistically significant elevation in serum 
HSP60 levels in CRC compared to controls (P = 0.0001) [83].

3.3.4 HSP70

HSP70 has 13 subgroup family members. It is associated with cytosolic calcium 
level homeostasis and, inhibition of HSP70 expression, has been shown to stimulate 
release of intra-cellular calcium in cell culture. Calcium induces cell death by the 
caspase dependent mechanism in CRC cell lines, and functions in the stabilization 
of lysosomes and inhibition of apoptosis [84]. Importantly, in other types of cancer 
such as pancreatic and prostate cancer, HSP70 has been shown to upregulate cell 
survival [84]. In a study of 33 CRC patient plasma samples, using ELISA assays, 
serum levels of HSP70 were significantly elevated (≥2.25 ng/ml) in cancer patients 
compared to healthy controls, The sensitivity and specificity of elevated serum 
HSP70 in the CRC group was reported as 96.77% and 96.96% respectively [85]. It 
has been further demonstrated using ELISA testing that high serum concentration 
of HSP70 is associated with increased mortality (p = 0.005) [86]. Additionally 
the use of immunostaining has shown that mitochondrial HSP70 overexpression 
correlates to poor survival (p = 0.04) [87]. Independent IHC analyses of 81 primary 
CRC tissues revealed that HSP70, as well as HSP110, overexpression is associated 
with highly advanced clinical stages and positive lymph node involvement [88].

3.3.5 HSP90

HSP90 activates Hypoxia-inducible factor-1 and Nuclear Factor-κB which 
in turn regulate epithelial to mesenchymal transition, invasion and motility of 
CRC [89]. HSP90 has been shown in various studies to be overexpressed in CRC 
and may serve as a potential biomarker for CRC. In a small study of histological 
adenocarcinoma samples with an iTRAQ labeling method and QStar LC-MS/MS 
approach, a total of 82 altered proteins were found in CRC patients, which included 
overexpression of HSP90α and significant downregulation of Gelsolin. The results 
also suggested that HSP70 had decreased expression in the same samples [90]. 
Further validation using immunoprecipitation, MALDI-TOF-MS and immunoblot-
ting confirmed that HSP90α is overexpressed in tumor cells and is correlated with 
poor prognosis and metastatic disease [91]. Plasma HSP90α serum levels were also 
significantly elevated in an analysis of 77 CRC patients compared to controls [92], 
thus highlighting the potential biomarker utility of this protein.
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3.4 Matrix metalloproteinases and their tissue inhibitors

Matrix metalloproteinases (MMPs) are a diverse class of at least 25 zinc-dependent 
endopeptidases, which have important physiological applications and have also been 
implicated in the invasion, progression and metastasis of CRC. Accordingly, MMPs 
have been implicated as therapeutic targets, diagnostic and prognostic biomarkers. 
MMP subclasses have been demonstrated in various types of cancer, including breast 
and melanoma, and therefore are not cancer specific biomarkers [93].

3.4.1 MMP1 and MMP13: collagenases

MMP1 functions to degrade type I, II and III collagen. MMP13 is structur-
ally similar to MMP1, and likewise it also cleaves collagens, as well as degrading 
extracellular matrix proteins including fibrillar collagen, fibronectin, tenascin C 
and aggrecan core protein 1 [94]. Demonstration by immunostaining of 133 CRC 
samples showed that MMP1 expression was significantly correlated with hematog-
enous colorectal metastasis [95]. Increased expression is also associated with poor 
prognostic factors such as invasion level, lymph node and hepatic metastasis [96]. 
Similarly, MMP13 overexpression in CRC has also been shown to be associated with 
poor prognosis [93].

3.4.2 MMP2 and MMP9: gelatinases

The gelatinase group of MMPs also function to degrade the extracellular matrix; 
their main substrates being collagen and gelatin. Overexpression of MMP2 may 
promote CRC invasiveness due to its degradation of β1 integrins, thereby enhancing 
motility and decreasing cell adhesion [97]. Quantification of tumor, normal tissue 
and plasma samples using ELISA in 72 patients identified upregulation of MMP1, 
MMP2, MMP3 and MMP9 in carcinoma. MMP2 overexpression was also signifi-
cantly associated with lymph node metastasis [98].

3.4.3 MMP7: matrilysin

MMP7 promotes tumor invasion by proteolytic cleavage of extracellular matrix 
proteins such as proMMP2 and proMMP9, and it is also involved in cellular prolifera-
tion and apoptosis regulation. Overexpression of MMP7 is found in 80% of CRC [99], 
and is associated with poor prognosis. This protein has been shown to have a sensitiv-
ity of greater than 92% to identify colonic adenomas in mouse models, Additionally 
mouse models have implicated overexpression of MMP7 in tumourigenesis [100, 101] 
whilst in humans, MMP7 has been implicated in progression of adenoma to carcinoma. 
Accordingly, MMP7 has been demonstrated in numerous studies using IHC to be 
overexpressed in adenoma and various stages of carcinoma [102–104].

3.4.4 MMP12: metalloelastase

MMP12 is predominantly expressed in macrophages and degrades a wide range 
of substrates. MMP12 levels have been shown to be overexpressed in CRC, however 
this increased expression is associated with decreased risk of hepatic metastasis and 
decreased vascular endothelial growth factor expression [105, 106]. It is therefore 
postulated that MMP12 may have a protective role; a notion supported by a range of 
pro-tumourigenic effects being recorded following MMP12 inhibition [106, 107]. 
Conversely, along with MMP7 and MMP10, elevated serum levels of MMP12 have 
been suggested to be associated with poor CRC prognosis [108].
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3.4.5 Tissue inhibitors of metalloproteases

Tissue inhibitors of metalloproteases (TIMPs) have been implicated in tumouri-
genesis. TIMP1 overexpression is associated with advanced stages of CRC [109]. 
IHC studies have demonstrated a significant correlation between TIMP2 expression 
in inflammatory cells, increasing tumor size, lymph node involvement and pres-
ence of metastasis [110]. TIMP3 has been described as independent prognostic 
marker for CRC, where strong cytoplasmic staining has been associated with longer 
survival in rectal cancer patients [111].

3.5 Annexins

Annexins are phospholipid-binding membrane-binding calcium regulated 
proteins from a multigene family. They function in membrane processes such as 
structural control as well as cell transport and as linkers between membranes, or 
between membranes and cytoskeleton as well as calcium regulated exocytosis. In 
humans the annexin family consists of subfamilies; A1–A11 and A13 [112]. The 
sensitivities of annexins A3, A4, and A11 peptides for detecting early-stage CRC 
have been reported to exceed those of CEA, and as such these peptides are promis-
ing biomarkers for early detection of CRC [26].

A shotgun proteomics analysis (LC-MS/MS) of extracellular vesicle proteins 
with selected reaction monitoring performed on CRC cell culture lines has demon-
strated annexin A3, annexin A4, and annexin A11 overexpression, particularly in 
early stage CRC patients. Reported sensitivities of annexin A3, A4, A11 for stage one 
disease are in the range of 82.1–85.7%, and for stage two disease between 89.3–
96.4% [26], therefore highlighting a potential role for these annexins as an early 
stage disease biomarker. Notably, the same study reported the sensitivity of CEA for 
early stage disease to be as low as 38.8% [26]. Importantly, progressive increases in 
annexin A3 abundance have been shown to strongly correlate with disease progres-
sion from normal tissue, to adenoma and finally to carcinoma [26].

Confirmation of Annexin A2 overexpression in a small cohort of histological 
samples has been described using a 2D-LC-MS/MS approach with iTRAQ labeling; 
with results being validated with immunoblot and IHC [90]. Conversely a study 
examining serum levels of Annexin A2 found that the protein was significantly 
lower in CRC patients compared to healthy controls; Annexin A2 levels were also 
inversely related to tumor size and stage [113]. In addition to Annexin A2, altered 
Annexin A4 expression has been demonstrated in CRC via the application of a label 
free LC-MS/MS approach, with validation in CRC serum samples confirming its 
overexpression and thus potential as a biomarker of the disease [114]. Annexin A10 
is not frequently overexpressed in CRC with an estimated elevation being recorded 
in only 5.8% of patients. However, it too is associated with poor overall survival and 
poorer progression-free survival particularly in late stage cancers. As such, Annexin 
A10 may be considered as a prognostic marker when present [115], similarly 
annexin A13 expression is associated with lymph node metastasis, however it is not 
associated with tumor stage or differentiation [116].

3.6 Complement component proteins

3.6.1 Complement component C3

Complement component C3 (C3), and its fragment C3 anaphylatoxin (C3a), 
overexpression has been demonstrated in fecal, serum and histological samples 
from CRC patients. C3 is also a component of the innate immune system, with 
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functions including promotion of phagocytosis, local inflammatory responses 
and aiding in the adaptive immune response. C3 may also have a role in host 
cell damage when up regulated and aid in foreign pathogen invasion [117]. C3 
overexpression in stool samples of CRC was demonstrated in two different cohort 
studies [118, 119], the second also showing a down-regulation of Proteinase 3 
(PRTN3) and ataxia-telangiectasia mutated protein (ATM). Elevated levels of 
C3a overexpression were further demonstrated in serum samples using SELDI-
TOF-MS and validated with MS and ELISA; the authors reporting a sensitivity of 
96% and specificity of 96.21%. They also found C3a to be increased in the serum 
of 81.6% of adenomas [120].

3.6.2 Complement component C9

Complement component C9 (C9) is a constituent of the complement system 
that has important functions in the innate immune system. It is a terminal constit-
uent of the membrane attack complex (MAC) and thereby aids in immune system 
response to cell death [121]. Changes in C9 expression have been described in both 
fecal and plasma samples, in a series of 315 stool samples using a combination of 
LC separation, LTQ-FT hybrid MS and QE-Label free-MS; C9 and C3 in addition 
with S100A8, S100A9 were found to be overexpressed [118]. A UHPLC–LC-MS 
approach and plasma-based immunoassay using 187 proteins previously described 
in the literature, demonstrated significant elevation of C9 in CRC plasma samples 
[23]. Similarly, an analysis of 31 CRC plasma samples revealed overexpression of 
C9 compared to healthy controls as well as reduced expression of Apolipoprotein 
AI [122].

3.7 S100 proteins

S100 are a family calcium-binding proteins, which consists of 24 members 
subdivided into three groups; broadly those with intracellular regulatory func-
tions only, extracellular functions only and those with both intracellular and 
extracellular functions [123]. The proteins, S100A8 and S100A9, form a hetero-
complex that is postulated to function in myeloid differentiation, cell transport, 
nuclear factor interaction and calcium related phagocytosis [123]. Mouse 
models have demonstrated accumulation of S100A8/A9 positive cells in areas 
of dysplasia and adenoma as well as promotion of MAPK and NF-κB activation 
signaling pathways [124]. IHC staining has demonstrated overexpression of 
S100A8, S100A9, Adenosylhomocysteinase (AHCY) and Nm23-H1 in CRC tumor 
cell cytoplasm, in the same study, S100A8 and S100A9 were also significantly 
increased in the plasma of CRC patients [36]. S100A8 has also been shown to 
have increased expression at progressive CRC stages (Duke’s A-D) compared with 
controls [125]. Minichromosome maintenance complex component 4 (MCM4) 
and S100A9 overexpression have also been shown in proximal colonic fluid 
mouse proteome, using label free MS [126]. The same study identified Chitinase 
3 like 1 (CHI3L1) protein overexpression in adenomas and advanced adenomas 
and CRC, the overexpression was further confirmed to be present in the serum 
of all three patient subtypes compared to controls [126]. A 2DGE LC-MS/MS 
based analysis of Dukes stage B CRC also identified S100A9, HSP60 and TCTP as 
overexpressed proteins. In addition to histological and plasma samples, S100A8 
and S100A9 have been shown to be overexpressed in fecal samples also using 
a LC-MS/MS approach [118, 119]. Additionally, S100A11 has been identified 
among a cohort of 23 upregulated proteins in CRC samples using a combined 
targeted LC-MS/MS and SRM approach [22].
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4. Conclusions

The development of non-invasive modalities with high patient compliance that 
can unequivocally detect and diagnose early stage CRC will afford the greatest 
opportunity for early intervention strategies to treat asymptomatic patients and 
ultimately improve the survival of patients with CRC. However, current screening 
methods are inadequate and there remains a pressing need to establish reliable 
biomarkers of early stage CRC disease. The resolution that is now achievable with 
advanced quantitative MS-based proteomic workflows and instrumentation hold 
the promise of unlocking the secrets of early stage disease that could be exploited 
to prevent or cure CRC. However, the inherent issues that have plagued MS-based 
biomarker discovery projects over the last 20 years moderate optimism. Sample 
size, particularly in the early stage setting, coupled with the wide dynamic range of 
blood plasma and the observed low concentrations of early stage specific individual 
protein biomarkers and the lack of reproducibility of MS investigations have meant 
that no new biomarkers of early stage CRC have entered the clinical setting since 
the discovery of CEA.

Over the coming years, the limitations of most current MS-based biomarker 
discovery projects will be resolved, mostly thanks to the recent developments in 
sophisticated techniques and technologies that not only simplify pre-analytical 
issues but address analytical limitations. Improvements in sample preparation 
techniques that potentially do away with immunodepletion, or the enrichment 
techniques that are currently absolutely necessary for the successful implementa-
tion of MS-based plasma biomarker investigation, will increase the reproduc-
ibility of future projects [127]. Analytic techniques that employ wider MS/MS 
windows for the simultaneous detection and quantification of low-abundant 
potential biomarkers using SWATH-MS strategies are important developments 
that will continue to arm our ever-evolving arsenal of MS technologies and 
resolve the issue of both detection and quantitation of low-abundant potential 
marker of early stage disease.

It is likely in the age of proteogenomics, that the greatest increase in resolution 
of early stage disease markers will come from the high-throughput simultaneous 
detection and quantification of protein and non-protein based biomarkers. Indeed, 
the combination of ctDNA and protein biomarkers in patient plasma with resect-
able pancreatic ductal adenocarcinomas showed a staggering 99.5% specificity, 
providing hope of early stage diagnosis for one of the most aggressive forms of 
gastrointestinal cancer [128]. Non-invasive blood tests combining non-protein 
and protein biomarkers represents an exciting approach for the early detection of 
any cancer type and holds the greatest potential for the increased survival of CRC 
patients worldwide.
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Acronyms and abbreviations

CA 19-9 cancer/carbohydrate antigen 19-9
CEA carcinoembryonic antigen
CRC colorectal cancer
ELISA enzyme-linked immunosorbent assay
FIT fecal immunochemical test
HSP heat shock protein
IHC immunohistochemistry
iTRAQ isobaric tags for relative and absolute quantitation
LC liquid chromatography
LC-MS/MS liquid chromatography tandem mass spectrometry
MS mass spectrometry
MMP matrix metalloproteinase
MRM multiple reaction monitoring
PRM parallel reaction monitoring
RP-HPLC reversed-phase high performance liquid chromatography
TMA tissue microarray
TMT tandem mass tag
TNM tumor, node, metastases, classification for malignant tumors
SRM selected reaction monitoring
2DE two-dimensional gel electrophoresis
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