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Chapter

The Enigma of Identifying New 
Cattle Tick Vaccine Antigens
Ala E. Tabor

Abstract

Several reviews have summarised cattle tick Rhipicephalus (Boophilus) microplus 
vaccine candidate discoveries by comparing efficacies and localisation characteris-
tics. However, few have re-analysed all the reported proteins using modern bioin-
formatics tools. Bm86 was developed as a successful vaccine in the 1980s; however, 
global efficacies vary from 45 to 100%. Subsequent vaccines, including four pub-
lished patents, were discovered by targeting enzymes important for blood digestion 
and/or metabolism or by targeting genes shown to disrupt tick survival following 
RNA interference experiments. This chapter analyses published vaccine candidates 
using InterPro, BLASTP, SignalP, TMHMM and PredGPI tools to confirm whether 
each reported protein is likely to be secreted, membrane associated or intracellular. 
Conversely, these proteins are considered as ‘exposed’, ‘exposed’ and ‘concealed’ 
or ‘concealed’, respectively. Bm86 was always described as a ‘concealed’ antigen; 
however, the protein has a confirmed signal peptide and GPI anchor which suggests 
it is anchored to the cell membrane and exposed on the surface of gut cells. It is the 
only tick vaccine with a GPI anchor. Secreted vaccine candidates appear to have 
promise and exhibit higher efficacies if delivered with an ‘intracellular’/‘concealed’ 
antigen. Improvements in tick genomics and bovine immunomic resources will 
assist to identify robust new cattle tick vaccines.

Keywords: cattle tick, vaccines, bioinformatics, Bm86, review, Rhipicephalus 
microplus

1. Introduction

Cattle ticks (Rhipicephalus (Boophilus) microplus) and the diseases they carry 
affect almost 80% of the world’s population of domestic cattle at an economic burden 
approximately $US 25–30 billion per annum [1]. The R. (B.) microplus taxonomic 
status is based upon Cytochrome c oxidase I (COX1) mitochondrial gene sequencing. 
There are three clades of R. (B.) microplus, plus R. (B.) australis and R. (B.) annulatus 
which are monophyletic with a different R. (B.) microplus clade [2, 3]. A recent study 
expanded this analysis and showed that R. (B.) australis is most similar to a large R. 
(B.) microplus clade (A) which has worldwide distribution, whereas R. (B.) annulatus 
is similar to R. (B.) microplus clade B predominantly from China [4]. An additional 
R. (B.) microplus clade C consists of Malaysian and Indian isolates [3]. Separation of 
species from several continents using morphological characters was not consistent 
with the above COI sequence clades and suggested that in some regions there exists 
a mixture of both R. (B.) microplus and R. (B.) australis [4]. It has been noted that 
more crossing studies need to be undertaken using geographically diverse wild strains 
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and preferably not ‘inbred’ colony isolates of R. (B.) microplus before conclusions 
on clades and species relationships can be confirmed. Publications and sequences 
reviewed here are most likely to be from different R. (B). microplus clades and R. (B.) 
australis but will be referred to collectively as Rhipicephalus microplus.

Regardless of the above seemingly complicated taxonomic status, the treatment 
of cattle tick infestations is either addressed by vaccination using Bm86-based 
vaccines: TickGARDPLUS (now discontinued) or GAVAC™ and most commonly 
through the application of chemical acaricides [5]. Bm86 vaccines have diverse 
efficacies reported worldwide (45–100%), but in a few isolated countries, the 
vaccines have worked well apart from the need for multiple annual boosts to achieve 
adequate efficacies [1, 5, 6]. Ticks are also quite capable of developing resistance to 
acaricides; thus vaccine research continues globally [7] to identify conserved and 
immunogenic alternatives to Bm86.

The first notion that tick guts could be the source of viable tick vaccines was 
reported in 1979 [8] where native tick gut and organ extracts protected guinea 
pigs and cattle from Dermacentor andersoni ticks. The authors also suggested that 
this vaccine would affect tick feeding and reproduction and would be ideal for 
‘Boophilus microplus’ as all tick stages feed on the same host [8]. A gut protein 
named Bm86 was discovered in the 1980s as a protective antigen isolated from R. 
microplus in Australia [9]. The most notable characteristics at this time was the 
presence of epidermal growth factor (EGF) domains which are highly conserved 
extracellular domains associated with membrane-bound or secreted proteins 
(https://www.ebi.ac.uk/interpro/entry/IPR000742).

Bm86 is also a glycosylphosphatidylinositol (GPI)-anchored protein and as such 
is modified post-translationally [10]. It has been proposed that Bm86 is secreted 
and anchored to gut digestive cells through its C terminus [11]. Using immunogold 
labelling Bm86 was found to be located on the microvilli of gut digest cells [12]. 
The immune response induced by Bm86 was hypothesised to be mediated through 
host complement and anti-Bm86 antibodies which damage the tick gut surface 
affecting egg viability [13, 14]. However, the actual function of this tick protein has 
never been determined. Nonetheless, the early successes of Bm86 vaccines such as 
TickGARDPLUS in Australia and GAVAC™ in Cuba provided researchers with the 
necessary fervour to identify alternative vaccine candidates to potentially be either 
‘broad spectrum’ (i.e. cross protective for different tick species) or with a longer 
duration of immunity compared to Bm86-based vaccines.

2. Methods

Previously reviewed antigen types were summarised as ‘secreted’, ‘intracellular’ 
or ‘membrane associated’ [1]. In this review, each antigen was analysed in silico to 
confirm previously described localisations. Each ORF was submitted to InterPro 
to determine if the candidate antigen had domains or motifs representative of 
conserved protein families including the predicted GO Terms associated with 
‘biological process’, ‘molecular function’ and ‘cellular component’ (https://www.
ebi.ac.uk/interpro/) [15]. InterPro also predicts the presence of signal peptides and 
transmembrane helices; however these were examined separately using the SignalP 
4.1 server (http://www.cbs.dtu.dk/services/SignalP/) [16, 17] and the TMHMM 
server v. 2 (http://www.cbs.dtu.dk/services/TMHMM/). GPI anchor predictions 
were undertaken using PredGPI (http://gpcr.biocomp.unibo.it/predgpi/pred.htm) 
[18]. The BLASTP server was employed to confirm published sequence identities 
(https://blast.ncbi.nlm.nih.gov/Blast.cgi). This analysis was limited to vaccine 
candidates reported as screened against R. microplus ticks in cattle challenge trials.
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3. Results and discussion

Table 1 summarises BLASTP and InterPro analyses of published R. microplus 
recombinant vaccines which have cattle (or other ruminant) trial data. Table 2 
summarises localisations of these vaccine candidates analysed through SignalP, 
TMHMM and PredGPI and provides known trial data, references and patents (if 
applicable).

3.1 Secreted antigens

Most tested antigens are predicted to be secreted with no membrane-associated 
moieties (transmembrane helices or GPI anchors) (Table 2). The idea of selecting 
secreted proteins may have been cultivated to identify putative antigens that are 
more immunogenic in comparison to Bm86 and therefore boosted by natural tick 
challenge. The latter is usually associated with the injection of proteins by tick sali-
vary glands. Studies have also shown that tick gut proteins also elicit host antibody 
responses; however perhaps gut protein-based vaccines are less immunogenic, that 
is, Bm86, which requires multiple annual boosts.

Two secreted proteins were also isolated from salivary gland and gut fractions 
similarly to how Bm86 was originally derived: 5′ nucleotidase [19] and Bm91 
angiotensin converting enzyme-like protein [20, 21]. However, neither demon-
strated notable vaccine efficacies to warrant further development (Table 2).

In other studies, successful vaccine candidates were identified in other tick 
species, that is, Ixodes ricinus (sheep tick) Ferritin-2 at 96% efficacy [22]. The 
researchers subsequently mined the R. microplus (BmGI) database for a R. microplus 
IrFerritin-2 homologue [22, 23], and RmFerritin-2 was patented at 64% vaccina-
tion efficacy [24]. Ferritin-2 was discovered in the sheep tick when studying iron 
homeostasis and it was found to be required for optimal tick feeding. In addition, 
unlike other tick ferritins, it was found to be unique without functional orthologs in 
vertebrate hosts [25].

Metalloproteases were targeted as vaccine candidates as these proteins were 
considered crucial for the maintenance of blood meal-related functions in other 
tick species [26, 27]. After an examination of five R. microplus metalloprotease 
GenBank sequences (AAZ39657.1-AAZ39661.1; Untulan et al., 2005, unpublished), 
it was found that Bmi-MP4 (AAZ39660.1) was expressed in female organs and 
male ticks and exhibited potential antigenic properties in comparison to other R. 
microplus metalloproteases [28]. A Bmi-MP4 metalloprotease vaccination study 
in Brazil yielded 60% efficacy as reported in 2015 [29], with no patent published 
(Table 2). A different Brazil-based study identified an unrelated metalloprotease 
Rm239/Sequence 82 (31% identity with Bmi-MP4, data not shown) as a component 
of a cocktail vaccine of four proteins achieving 73% protection in a tick challenge 
trial [30]. These proteins were identified through a salivary gland transcriptome 
study; thus in this instance the researchers were targeting secreted salivary proteins. 
Interestingly, the proteins selected were highly up-regulated in male ticks found 
on tick susceptible cattle which were not known to induce antibodies in naturally 
infected bovines [30]. Note that these two metalloproteases (Bmi-MP4 and Rm239/
Sequence 82) and the Bm91 angiotensin converting enzyme-like protein described 
above all possess the GO:0008237 pertaining to ‘metallopeptidase activity’ (Table 1).  
As metalloproteases are members of a large protein family [31], this may lead to 
differences between strains or clades of R. microplus causing variable vaccination 
responses. Metalloproteases have been considered as vaccine candidates for other 
parasite species such as hookworm and human amebiasis, but no commercial 
products have emerged [32, 33].
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Antigen description GenBank accession/

BLASTP hit

InterPro analysis GO term predictions (InterPro)3

Biological process Molecular function Cellular 

component

Secreted

Angiotensin converting 
enzyme-like (Bm91)

AAB04998.1 Family peptidase M2, peptidyl-
dipeptidase A

GO:0006508 proteolysis GO:0008237 GO:0008241 
metallopeptidase and peptidyl-

dipeptidase activity

GO:0016020 
membrane

1Extra-cellular matrix protein 
(Rm39)

No significant hit No significant hit — — —

Ferritin-2 CK1905282 Ferritin homologous 
superfamily

GO:0006826 iron ion 
transport

GO:0006879 cellular iron 
ion homeostasis

GO:0008199 ferric iron binding —

1Immunoglobulin G-binding 
protein C (Rm76)

AAB68803.1 GM2-AP, lipid-recognition 
domain superfamily

GO:0006689 ganglioside 
catabolic process

GO:0008047 enzyme activator activity —

Metalloprotease Bmi-MP4 AAZ39660.1 Metallopeptidase homologous 
superfamily

GO:0006508 proteolysis GO:0008237 metallopeptidase —

1Metalloprotease (Rm239) BAF43574.1 — GO:0008237 metallopeptidase —

5’ Nucleotidase AAB38963.1 5’-Nucleotidase/apyrase GO:0009166 nucleotide 
catabolic process

GO:0000166 nucleotide binding
GO:0016787 hydrolase activity

GO:0016788 hydrolase activity-ester 
bonds

GO:0046872 metal ion binding

—

1Proteinase inhibitor domain 
(Rm180)

XM_011553087.1 Pancreatic trypsin inhibitor 
Kunitz domain superfamily

— GO:0004867 serine-type endopeptidase 
inhibitor activity

—

‘SILK’ No significant hit No significant hit — — —

Membrane associated
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Antigen description GenBank accession/

BLASTP hit

InterPro analysis GO term predictions (InterPro)3

Biological process Molecular function Cellular 

component

Aquaporin AIT69684.1 Aquaporin-like GO:0055085 
transmembrane transport

GO:0015267 channel activity GO:0016020 
membrane

Bm86/Bm95 M29321 EGF-like domains — — —

Intracellular

60S acidic ribosomal protein 
P0

AGQ49465.1 Ribosomal protein L10P GO:0042254 ribosome 
biogenesis

— GO:0005622 
intracellular

Glutathione S-transferase 
Haemaphysalis longicornis

AAQ74441.1 GST, Mu class homologous 
superfamily

GO:0008152 metabolic 
process

GO:0004364 GST activity
GO:0005515 protein binding

—

Subolesin and akirin chimeras ABZ89745.1 
AGI44632.1

Akirin protein family — — —

Trypsin inhibitor 1-BmTI-6 P83606.2 CK1867262 Pancreatic trypsin inhibitor 
Kunitz domain superfamily

— GO:0004867 serine-type endopeptidase 
inhibitor activity

—

Vitellin AAA92143.1 Lipovitellin-phosvitin complex, 
lipid transport protein

GO:0006869 lipid 
transport

GO:0005319 lipid transporter activity —

1Four proteins conform a cocktail vaccination [30]; see Table 2 for vaccine efficacies.

2Sourced from the BmGI database [23].
3Nil predictions denoted by a dash.

Table 1. 
Reported Rhipicephalus (Boophilus) microplus antigens with published vaccine challenge efficacies1 analysed using InterPro (GO terms, domains, protein family identification) including relevant 
GenBank accessions2.
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Antigen 

description

Published 

efficacy2

Signal P3 TMHMM3 PredGPI3 References 

and 

patents4

Secreted

Angiotensin 
converting enzyme-
like (Bm91)

7% reduction 
egg viability

Secreted — — [20, 21]

‘Extracellular matrix 
protein’ Rm39/
Sequence811

~73% in 
mix of four 

proteins

Unknown — — [30, 37]4

Ferritin-2 64% Secreted — — [22–24]4

Immunoglobulin 
G-binding protein C 
Rm76/Sequence761

~73% in 
mix of four 

proteins

1Incomplete 
ORF (likely 

secreted)

— — [30, 37]4

Metalloprotease 
Bmi-MP4

60% Secreted — — [29, 74]

Metalloprotease 
Rm239/Sequence821

~73% in 
mix of four 

proteins

1Incomplete 
ORF (likely 

secreted)

— — [30, 37]4

5’ Nucleotidase No protection Secreted — Weakly 
probable

[19]

Proteinase inhibitor 
domain Rm180/
Sequence791

~73% in 
mix of four 

proteins

1Incomplete 
ORF (likely 

secreted)

— — [30, 37]4

‘SILK’ 62% Secreted — — [38, 39]

Membrane associated

Aquaporin 73% — Four 
transmembrane 

helices

— [40]4, [41]

Bm86/Bm95 45–100% Secreted — Highly 
probable

[53]4, [75, 
76]

Intracellular

60S acidic ribosomal 
protein P0—peptide

96% — — — [55, 56]4, 
[77]

Glutathione 
S-transferase 
Haemaphysalis 

longicornis

57% — — — [60]

Subolesin and akirin 
chimeras

83% (deer) 
60–75%

— — — [39, 53]4, 
[76]

Trypsin inhibitor 
1-BmTI-6

32% — — — [23, 67]

Vitellin Native 
protein 68%, 
recombinant 
0% (sheep)

— — — [70]

1Four proteins conform a cocktail vaccination with ‘Rm’ names [30] and ‘sequence’ names from corresponding patent 
[37].

2Efficacy from cattle tick challenge trial unless otherwise stated in parentheses.

3Nil predictions denoted by a dash.
4Denotes published patent record.

Table 2. 
Reported Rhipicephalus (Boophilus) microplus antigens with published vaccine challenge efficacies analysed 
using SignalP (secretion), TMHMM (transmembrane helices) and PredGPI (GPI anchor) including relevant 
references and patents.
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The second protein in the above-described cocktail with Rm239/Sequence 
82 metalloproteinase was Rm180/Sequence 79 which has a proteinase inhibitor 
domain (IPR002223: pancreatic trypsin inhibitor Kunitz domain) similar to a 
trypsin inhibitor on the ‘intracellular’ list (Tables 1 and 2), also tested in Brazil. 
Rm180/Sequence 79 in contrast is likely to have a signal peptide based on its top 
BLAST hit, and this new proteinase inhibitor does not appear to have any homology 
with known tick proteins (data not shown). Trypsin inhibitors are serine protease 
inhibitors potentially involved with tick blood meal digestion through the inhibi-
tion of trypsin (a serine protease which hydrolyses proteins).

The third protein within the cocktail was Rm76/Sequence 76 (also secreted) 
which is an immunoglobulin G (IgG)-binding protein C possessing domain 
IPR036846 ganglioside GM2 activator associated with lipid recognition function 
(Table 1). The top BLASTP hit for this protein is AAB68803.1 Rhipicephalus appen-
diculatus IgG-binding protein C at 88% identity. Tick immunoglobulin-binding 
proteins have been examined previously in several other tick species including 
R. appendiculatus, Rhipicephalus haemaphysaloides and Ixodes scapularis [34–36] and 
are thought to function as tick defences against host antibodies. Rm 239/Sequence 
82 (metalloprotease) and Rm76/Sequence 76 (IgG-binding C) were shown to be the 
most immunogenic proteins in the cocktail vaccine based on antibody titres, pre-
dicted T cell epitopes and antibody boosting during tick challenge [30]. The fourth 
protein in this cocktail Rm39/Sequence 81 did not return any significant hits using 
BLAST or InterPro thus could not be examined using the parameters in the tables. 
The vaccine cocktail consisting of the trypsin inhibitor (Sequence 79), IgG-binding 
protein C (Sequence 76), metalloprotease (Sequence 82) and the unknown protein 
(Sequence 81) has been patented [37]. All sequences were published in the associ-
ated patent [37] without signal peptide regions.

‘SILK’ protein was predicted from an expressed sequence tag (EST) library pre-
pared from male R. microplus ticks in response to Anaplasma marginale infection, 
and it was thought to be similar to arachnid flagelliform silk proteins [38]. However, 
no significant hits of the R. microplus EST to a ‘SILK protein’ sequence could be 
confirmed in this study. The protein has not been exploited further as an anti-tick 
or anti-Anaplasma transmission vaccine; however, at 62% efficacy [39] perhaps 
further study is warranted. No patent has been published.

3.2 Membrane-bound antigens

Apart from Bm86, the only other published antigen with a membrane asso-
ciation was aquaporin. Aquaporin does not have a GPI anchor as Bm86 but has 
four transmembrane helices predicted by TMHMM (Table 2). A reported 73% 
trial efficacy has been published and the data patented [40, 41]. The protein was 
identified in tick gut transcriptome studies and predictably functions as a water-
conducting channel. An aquaporin was previously suggested as vaccine candidate 
for the human blood fluke Schistosoma japonicum with six predicted immunogenic 
epitopes and an integral membrane structure [42]. No further testing has been 
reported which is common for many human vaccine candidates. Perhaps the tick 
aquaporin vaccine will inspire further investigations of similar orthologs in human 
parasite infections.

Bm86 is thus the only protein with a confirmed GPI anchor that has been 
examined as a tick vaccine candidate. GPI-anchored proteins are conserved in 
eukaryotes and are luminal secretory cargo proteins with several functions across 
mammals and parasites [10, 43]. Notably, the R. microplus 5′ nucleotidase (listed 
as a ‘secreted protein’) was predicted to have a ‘weakly probable GPI anchor’, and 
it is known that mammalian 5′ nucleotidases possess GPI anchors [10]. In terms 
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of vaccine candidates, GPI-anchored proteins have been investigated in several 
parasite species such as Leishmania amazonensis [44], Plasmodium falciparum [45], 
Schistosoma mansoni [46], Theileria annulata [47] and Babesia bovis [48] and have 
appeared to be associated with host invasion. In mammals, certain GPI-anchored 
proteins are cytokines with complement regulation functions [10]. Further studies 
pertaining to the discovery of tick salivary or gut proteins with GPI anchors have 
not been reported.

3.3 Intracellular antigens

Although Bm86 is cited as a ‘concealed antigen’ [49, 50], it appears to be a 
combination of ‘exposed’ and ‘concealed’ based on localisation predictions includ-
ing a signal peptide (Table 2). Antigens in the ‘intracellular’ category do not have 
predicted signal peptides, GPI anchors or transmembrane helices and thus perhaps 
should be considered as truly ‘concealed’. Several intracellular antigens have been 
investigated as tick vaccine antigens; however, results have been variable and 
seemingly dependent on delivery mechanisms as host antibodies need to target the 
protein that resides intracellularly.

Subolesin from the akirin protein family (Table 1) has been investigated in 
several tick species as a putative vaccine candidate [51] with the first R. microplus 
ORF described in GenBank as accession ABZ89745.1 (Shao et al. 2008, unpublished). 
Studies have confirmed that subolesin is involved in blood ingestion and reproduc-
tion in 2006 [52]; however, no predicted GO terms or other localisation predictions 
were identified in this study to confirm any of these putative functions (Tables 1 
and 2). Subolesin was recently patented with Bm86 as a dual vaccine emulsion at a 
reported patented efficacy of 100% [53]. This dual vaccine is currently being testing 
by the CATVAC consortium in Morocco [7]. It is unknown if the varied efficacies 
of Bm86 will affect the activity of this dual vaccine or whether the short duration 
of immunity will continue to be an issue as for Bm86-based vaccines. Previously, a 
strong phenotypic knockdown of Rhipicephalus sanguineus ticks was observed using 
RNA interference through the silencing of subolesin and Rs86 (R. sanguineus Bm86 
homologue) [54].

The 60S acidic ribosomal protein P0 has demonstrated 96% efficacy using a 
peptide fragment in cattle tick challenge trials in Cuba [55]. This is otherwise a con-
served ribosomal protein, and the peptide region selected had significant sequence 
differences from the host ortholog. This vaccine has been patented and is under 
further trial testing also through CATVAC [7, 56]. Previously, gene silencing of this 
intracellular protein was found to be lethal to Haemaphysalis longicornis ticks [57]. 
Ubiquitin (also an intracellular protein) when silenced is also found to be lethal to 
R. microplus ticks [58] but was not found to be an effective vaccine candidate [59].

Haemaphysalis longicornis glutathione S-transferase (GST) showed some cross 
protection against R. microplus in a cattle trial [60]; however, further investigation 
as a tick vaccine candidate has not been reported. GSTs have been examined by sev-
eral researchers as candidate parasite vaccines, for example, for hookworm, schisto-
somiasis and trichinellosis [61–63], at varying degrees of efficacy. GST proteins are 
considered as common ‘housekeeping’ genes forming a large protein superfamily 
present in eukaryotes and prokaryotes [64]. They function as detoxifying enzymes 
and thus in ticks may function in response to acaricides or in response to tick-borne 
pathogens and or stress [65, 66].

Trypsin inhibitors are serine protease inhibitors potentially involved with 
blood meal digestion as described above. A BmTI-6 sequence was identified in the 
BmGI database [23] and while native protein vaccine efficacies were high (73%), 
the corresponding recombinant protein efficacy was poor at 32% [67, 68] (Table 2).  
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This particular trypsin inhibitor is not predicted to be secreted (Table 2) thus may 
have a function different from gut digestion. The protein sequence reported by 
Andreotti et al. [67] is identical to BmTI-6 P83606.2 [69]. Alternatively, a ‘secreted’ 
trypsin Inhibitor showed promise within the cocktail vaccine described above [37]. 
As stated for metalloproteases, trypsin inhibitors are also members of large dynamic 
protein families which may circumvent host immune responses if administered as 
vaccines.

Vitellin was investigated as a native vaccine candidate showing some promise in 
sheep trials through a reduction in female ticks and their weights and a reduction in 
tick oviposition [70]. However, the recombinant form had no vaccine effect (Table 2),  
and no further studies were conducted. Vitellin is a high molecular weight yolk 
lipoglycoprotein, and in ticks and insects, it is synthesised in female fat bodies as a 
large precursor polypeptide—vitellogenin [70]. In insects, vitellogenin is processed 
into vitellin polypeptides by specific proteolytic cleavages during passage into 
haemolymph and/or upon receptor-mediated endocytosis by the developing oocyte 
[71, 72]. Tick vitellogenins are crucial for egg development and oviposition as dem-
onstrated when silencing of three H. longicornis vitellogenin genes [73]. There are 
no reports of vitellin or vitellogenin as vaccine candidates in other species to date; 
however, this could be because they exist in arthropods (ticks and insects) rather 
than other ‘pathogenic’ species of parasites.

The investigation of intracellular vaccine candidates appears to less likely lead 
to a successful outcome. Perhaps some of these proteins could be delivered in dual 
emulsions as shown above for Bm86 and subolesin for a strong vaccination effect. It 
seems prudent to suggest that an intracellularly localised vaccine candidate requires 
a mechanism whereby host antibodies are able to access cells internally in order to 
be active against feeding ticks.

3.4 Other potential protein features

G protein-coupled receptors (GPCRs), also known as ‘seven-(pass)-transmem-
brane domain receptors’ are associated with many diseases and as such are the 
targets of several treatments. They are receptors for pheromones, hormones and 
neurotransmitters and could potentially be targeted as tick vaccine candidates [78]. 
Most literature associated with GPCR studies in ticks to date are acaricide-related 
and not associated with vaccines.

3.5 Protective immune response

The identification of tick vaccine candidates since the discovery of Bm86 
appears to be haphazard in that selection has involved either targeting an enzyme 
involved with feeding or metabolism or to target a gene that showed diminished 
tick survival following RNA interference silencing. Neither of these approaches is 
directly linked to the development of a protective immune response which is funda-
mental for a protective vaccine. Many different experiments have been undertaken 
describing effective tick immune responses in different breeds of cattle including 
different mixtures of Bos indicus (naturally tick resistant) and Bos taurus (innately 
tick susceptible) cattle. These studies have also been undertaken in many different 
geographic regions with the use of highly divergent tick infestation protocols. The 
latter is particularly problematic where in some instances tick-naïve cattle cannot be 
sourced, and researchers treat the cattle for ticks prior to artificial tick infestations 
and subsequent immune studies. This topic has been reviewed in detail elsewhere 
and will not be repeated here [79]. The latter review summarised that there are 
different immune responses in tick-susceptible and tick-resistant breeds of cattle. 
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Perhaps different R. microplus tick vaccine candidates will need to be developed for 
different cattle breeds and crosses? Is the tick host response in tick-resistant breeds 
of cattle a result of superior immune function or genetic differences or a combina-
tion of both? One theory is that naïve tick-resistant breeds are readily primed with 
epithelial γδ T cells able to respond to larval ticks, whereas susceptible breeds need 
to recruit these T cells to the larval bite sites [80, 81]. This immune cell recruitment 
phase seems to manifest in an inefficient immune response in susceptible breeds. 
It has been a challenge to demonstrate this phenomenon in all immune studies due 
to the common practise of studying previously exposed cattle in several published 
experiments, reviewed previously [79].

3.6 Further research

Reverse vaccinology or genome-based approaches have been reviewed else-
where, and promise in this approach has been reported [1]. Studies have used EST 
and transcriptome sequence databases to mine for potential tick antigens using 
a variety of approaches [1, 30]. Tick genomics has only recently become possible 
due to the availability of new ‘long read’ sequencing technologies and a dramatic 
decrease in the cost of sequencing large repetitive genomes [82, 83]. Bovine-specific 
immunology resources are also increasing [84, 85] with earlier research relying on 
human models for the major histocompatibility complex predictions. In combina-
tion with new genome sequences and bovine immunomic resources, a modern 
approach to identify robust tick candidates could perhaps finally be developed.

4. Conclusions

Although several approaches have been examined, one way to determine the 
true significance of a particular antigen or protein is to examine the current-pub-
lished patents associated with cattle tick (R. microplus) vaccines. Upon examination 
of all patents and publications with cattle trial data to date, there are mixed features 
for R. microplus vaccine candidates with either secreted, membrane-bound or 
intracellular localisations which can also be described as ‘exposed’, ‘a combination 
of exposed and concealed’ and ‘concealed, respectively. Intracellularly localised 
antigens are truly ‘concealed’ and in comparison to ‘secreted’ antigen types have 
highly variable outcomes. The key to identifying efficacious vaccine candidate(s) is 
to determine how best to stimulate a long-term protective immune response. This 
may also be feasible through new vaccine delivery options such as nanotechnologies 
or liposomes which may enhance the immunity to previously identified vaccine 
candidates.
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