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Abstract

New developments in the study of brain are among the most exciting frontiers of
contemporary neuroscientific research for the clinical practitioner. Increasing knowl-
edge of neurocomplications and of their discrete localization in the various regions of
brain permits new modes of pharmacological management of some major neurological
disorders like autism. The research work reported in this scheme is undertaken with an
objective to explore the potential molecular targets (AC/cAMP/PKA/CREB) for the
development of newer therapeutics strategies (forskolin) for the management of neuro-
logical disorders and associated symptoms. Studies aimed at addressing these questions
have fallen into two main categories: in-vivo behavioral paradigms and in-vitro differ-
entiation biochemical, morphological and histopathological analysis. Therefore, first
time, we aim to gather the propensity of mitochondrial cofactors, neuropathological
mechanisms and various diagnostic methods to explore the clinical therapeutic strate-
gies to ameliorate the neurodevelopmental disorder autism.

Keywords: neurodegeneration, autism, mitochondrial dysfunction, adenylyl cyclase,
forskolin

1. Introduction

Neurological disorders are a heterogeneous group of diseases of the nervous system having

different etiologies. They represent illnesses of the selective regions of the brain and nervous
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tissues which control vital physiological functions such as learning and memory, posture and

coordination of movements of nerves/muscles [1]. A variety of CNS disorders including

Alzheimer’s disease (AD), Parkinson’s disease, Huntington’s disease, amyotrophic lateral

sclerosis (ALS), autism spectrum disorders, brain abscess, multiple sclerosis, spinal cord injury,

and cerebral stroke, traumatic brain injury are characterized primarily by neurodegeneration

and neuroinflammation [2].

Intracellular molecules also known as secondary messengers such as cyclic nucleotides i.e.

cAMP and cGMP play a critical role in neuronal signaling and synaptic plasticity by activation

of several pathways like cAMP/PKA/CREB, cGMP/PKG/CREB and factors like brain-derived

neurotrophic factor (BDNF) [3], semaphorins [4], netrin-1&16 [5], nerve growth factor (NGF)

[6], Neurotrophins 3,4,5-inhibitory factors associated with myelin and myelin associated gly-

coprotein [MAG] [7]. These pathways and factors are well known to help in neuronal survival,

neurogenesis and protect neurons from injury [8].

Elevation of cAMP causes both short- and long-term increase in synaptic strength [9] and

stimulates cholinergic neuronal cells to release acetylcholine [10]. But, the levels of cAMP and

cGMP are reported to be decreased in neuropathological conditions including cerebral stroke

and AD [11].

It has been reported that cerebral ischemia-induced energy failure also leads to reduction in

the levels of key signaling molecules such as cAMP and cGMP and results in disruption of

cAMP/PKA/CREB [11] and cGMP/PKG/CREB signaling pathways [12]. On the other hand it

had been reported to impair hippocampal long-term potentiation (LTP), a neurophysiological

correlate of memory [13], by inhibiting the activation of both cAMP/PKA/CREB [14] as well as

cGMP/PKG/CREB pathways in ICH pathology [15]. The pyramidal CA1 neurons of hippo-

campus, involved in learning and memory become vulnerable target in cerebral stroke [16].

Further, cAMP or cGMP dependent CREB phosphorylation has too been reported to induce

long term memory (LTP) [17] and inhibit apoptotic and necrotic cell death [18].

CREB is a transcriptional factor responsible for synthesis of proteins which are important for

the growth and development of synaptic connections and increase in synaptic strength [19].

Thus, agents that enhance cAMP/PKA/CREB &cGMP/PKG/CREB pathways have potential

for the treatment of stroke [73], AD and other neurological diseases [20]. cAMP and cGMP

mediate signaling of several neurotransmitters including serotonin, acetylcholine, glutamate

and dopamine, which play important role in cognitive functioning [21]. The activation of the

cAMP-dependent protein kinase [PKA] significantly inhibits TNF-α [22] and inducible nitric

oxide synthase [iNOS] in astrocytes and macrophages [23] which are implicated in

neuroinflammation [22] and oxidative stress, respectively [24]. cAMP system is closely

involved in the regulation of BDNF expression too [25] which play important role in neuro-

nal survival [3], synaptic plasticity [26], learning and memory [27]. Further elevation of

cAMP and cGMP levels is known to restore the energy levels [28], reduce excitotoxic damage

[29], prevent Aβ-mediated neurotoxicity [14], enhance biosynthesis and release of neuro-

transmitters [22], inhibit apoptotic and necrotic cell death [30] leading to improvement in

cognitive functioning [31]. Central administration of cAMP and cGMP has been reported to
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enhance neuronal survival [32] and memory performance [31]. In view of the above, the

enhancement and prolongation of cAMP and cGMP signaling can thus be helpful in dealing

with neurodegenerative disorders including ICH. This can be accomplished by activating the

adenylyl cyclase enzyme, which metabolizes these cyclic nucleotides. Forskolin a major

diterpenoid isolated from the roots of Coleus forskohlii directly activates the enzyme adenylyl

cyclase, thereby increasing the intracellular level of cAMP and leading to various physiolog-

ical effects.

Despite substantial research into neuroprotection, treatment options are still limited to sup-

portive care and the management of complications. Currently available drugs provide symp-

tomatic relief but do not stop progression of disease. Thus, the development of new

therapeutic strategies remains an unmet medical need. Failure of current drug therapy may

be due to their action at only one of the many neurotransmitters involved [33] or their inability

to up regulate signaling messengers reported to have important role in neuronal excitability

[34], neurotransmitter biosynthesis and release [35], neuronal growth and differentiation [30],

synaptic plasticity and cognitive functioning [36].

2. Experimental animal model of PPA-induced neurotoxicity

Administration of PPA to rodents, results in CNS lesions that selectively target right lateral

ventricle associated within striatum, cortex, cerebellum, hippocampus, amygdala recapitulat-

ing the regional and neuronal specificity of pathologic events especially in autism [37]. The

mitochondrial toxin PPA interferes with the conversion of succinate to fumarate in TCA cycle,

responsible for the generation of FADH2 utilized in the complex-II in mitochondrial electron

transport chain (ETC) by which it direct inhibits the activity of the mitochondrial metabolic

enzyme succinate dehydrogenase and reduced the definite amount of NADH where it con-

sumed in complex-I with the help of an enzyme complex-I (NADPH oxidase) as well as

involve in the dysregulation of complex-IV (cytochrome c oxidase), is the final protein complex

in the ETC helping to establish a transmembrane difference of proton electrochemical potential

that the complex-V (ATP synthase) then uses to synthesize ATP [38].PPA has now become an

experimental tool to study neuronal susceptibility and motor phenotypes that are characteris-

tic of autism (Figure 1) [39].

In rats, PPA-induced lesions in brain region that are associated with elevated lactate levels

resulted in increased NMDA-receptor binding. PPA toxicity arises from secondary excitotoxic

mechanisms, whereby energy depletion within vulnerable neurons facilitates abnormal activa-

tion of NMDA receptors and subsequent Ca2+ influx [40]. Stimulating energy generation by

administering creatine markedly attenuates PPA toxicity and ameliorates lesion volume, lac-

tate production and ATP depletion in PPA-treated rats [41]. Numerous reports assert that PPA

toxicity is associated with increased oxidative damage within the CNS. The involvement of

impairments in intrinsic anti-oxidant protection pathways after PPA administration is further

supported by observations of reduced glutathione (GSH) levels in autistic brain [42].
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2.1. Propionic acid and autism

Propionic acid (PPA) is a short chain fatty acid formed endogenously in the human body as an

intermediate of fatty acid metabolism and a metabolic end product of enteric gut micro biota

such as clostridia and propionic bacteria [43–46]. MacFabe et al. and Shultz et al. have demon-

strated that PPA intraventricularly infused to rats provides a suitable animal model to study

autism. Being a weak organic acid, PPA exists in ionized and nonionized forms at physiological

pH allowing it to readily cross lipid membranes, including the gut-blood and blood-brain

barriers. PPA and other short-chain fatty acids (i.e., butyrate and acetate), affect diverse physio-

logical processes such as cell signaling, neurotransmitter synthesis and release, mitochondrial

Figure 1. PPA-induced neurotoxicity; selective mitochondrial inhibition.

Figure 2. Intraventricular injection of PPA-inducing neurotoxic effect in mitochondrial respiratory chain (ETC).
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function, lipid metabolism, immune functions, gap junctional gating, and modulation of gene

expression through DNA methylation and histone acetylation [47]. Initial studies using this

rodent model revealed that repeated brief infusions of PPA into the lateral cerebral ventricles

(i.e., AP 1.3 mm, ML 1.8 mm, and DV 3.0 mm) of adult rats produced behavioral, biochemical,

electrophysiological and neuropathological effects consistent with those seen in autism [43]. PPA

through oxidative mechanisms inhibits Na+/K+ ATPase and increases glutamate receptor sensi-

tivity which can enhance neural depolarization leading to neural hyper excitability in brain

regions linked to locomotor activity (Figure 2).

Mitochondrial dysfunction has been well established to occur and play an important role in the

pathogenesis of autism [48]. Preliminary magnetic resonance spectroscopy studies showed

decreased synthesis of ATP and a disturbance of energy metabolism in the brain of individuals

with autism. PPA is also capable of altering dopamine, serotonin, GABA and glutamate

systems in a manner similar to that observed in autism [49].

3. List of proposed parameters can be evaluated on the basis of behavioral

and biochemical alterations in neurotoxic experimental animal models of

autism

Proposed experimental design of propionic acid-induced behavioral and biochemical estima-

tions (Figure 3)

1. Measurement of body weight

2. Measurement of brain weight

3. Behavioral parameters

Spatial navigation task in Morris water maze, spontaneous locomotor activity, string test for

grip strength, elevated plus maze test, beam crossing task, force swim test, rota rod apparatus

4. Estimation of biochemical parameters

Preparation of homogenate, estimation of biochemical parameters in serum and tissue homogenate

such as protein estimation, lactate dehydrogenase (LDH) assay, estimation of malondialdehyde

(MDA) levels, glutathione levels, superoxide dismutase (SOD) activity, catalase activity, acetyl

cholinesterase (AChE) levels, determination of protein carbonyl (PC), nitrite levels

5. Estimation of biochemical parameters in serum and urine

Estimation of total urea, estimation of uric acid, estimation of biochemical parameters in tissue

homogenate for mitochondrial complex activity

6. Preparation of crude mitochondrial fraction from rat whole brain homogenate

Complex-1 activity (NADPH dehydrogenase), complex-II activity (succinate dehydrogenase/

SDH), complex IV activity (cytochrome oxidase), complex-V activity (ATP synthase)

7. Estimation of biochemical parameters in serum

Neuroprotective Strategies of Blood-Brain Barrier Penetrant “Forskolin” (AC/cAMP/PKA/CREB Activator)… 5



Estimation of complete blood count (CBC) such as determination of different hematological

parameters, such as red blood cells (RBC), white blood cells (WBCs), hemoglobin (HB), hemat-

ocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean

corpuscular hemoglobin concentration (MCHC), red blood cell distribution width (RDW),

neutrophils%, lymphocytes%, monocytes%, eosinophil’s%, basophils%, mean platelet volume

(MPV), platelet distribution width (PDW)%, plateletcrit (PCT)% and platelets (PLTs) was

measured in rat serum or blood sample

8. Miscellaneous

Estimation of blood glucose levels, triglycerides levels, total cholesterol levels, serum C-reactive

protein (CRP) levels

9. Inflammatory parameters in tissue homogenate-enzyme-linked immunosorbent assay (ELISA)

Estimation of TNF-α, interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10)

10. Estimation of biochemical parameters in urine

Urine output, urine dipstick test

11. Histopathological and morphological sections studies

12. Immunohistochemistry

4. Future perspectives and treatment approach

Phytochemicals drugs have been used since ancient times as medicines for treatment of a range

of diseases. Medicinal plants have played a key role in world health. In spite of the great

Figure 3. Proposed experimental design: propionic acid-induced behavioral and biochemical estimations.
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advances observed in modern medicine in recent decades, plants still make an important

contribution to health care. Medicinal plants are distributed worldwide, but they are most

abundant in tropical countries. Over the past decade, interest in drugs derived from higher

plants, especially the phototherapeutic ones, has increased expressively. It is estimated that

about 25% of all modern medicines are directly or indirectly derived from higher plants.

Phytomedicines are standardized herbal preparation consisting of complex mixtures of one or

more plants which are used in most countries for the management of various diseases. Other

characteristics of phytochemicals are their wide therapeutic use and great acceptance by the

population. In contrast to modern medicines, phytochemicals are frequently used to treat

chronic diseases. Phytochemicals are normally marketed as standardized preparations in the

form of liquid, solid, or various preparations. Compared with well-defined synthetic drugs,

phytochemicals exhibit some marked differences, namely:

• The empirical use in folk medicine is a very important characteristic.

• They have a wide range of therapeutic use and are suitable for chronic treatments.

• The occurrence of undesirable side effects seems to be less frequent with herbal medicines,

but well-controlled randomized clinical trials have revealed that they also exist.

• They usually cost less than synthetic drugs

5. Forskolin (Coleus forskohlii)

Coleus forskohlii known as phashana bedi (Telugu) a medicinal plant found in the Indian

subcontinent is widely used in the Indian system of medicine. Forskolin (FSK) (also known as

Colonels) is labdane diterpene that is obtained from the tuberous roots of Coleus forskohlii,

which belongs to the family of Lamiaceae. Coleus Forskohlii is one of the world’s most

researched plant in which FSK is believed to be the plant’s most active constituent. C. forskohlii

has been used as an important folk medicine in India. C. forskohlii is a perennial herb and

grows wild in arid and semi-arid regions of India, Nepal and Thailand; the roots have long

been used in Ayurvedic medicine [50]. In traditional medicine, C. forskohlii is commonly used

in different countries for various health disorders including cardiovascular diseases, hyperten-

sion, asthma, glaucoma and Alzheimer’s disease. Its further use in promoting lean body mass,

treating mood disorders and its anticancer activities is well known.

6. Medicinal properties of forskolin

Traditionally, the roots have been used as condiments in pickles, for preparation of pickles.

Forskolin has positive effect against a wide range of conditions such as asthma, glaucoma,

hypertension, hair loss, cancer, and obesity [51]. C. forskohlii extract (standardized to contain

95% forskolin) is potentially useful in skin care formulations, particularly as a conditioning

age. In traditional Indian systems of medicine, the roots of C. forskohlii are used as a tonic.

Other therapeutically relevant properties include anthelmintic action and efficacy in the
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management of skin infections and eruptions. The plant is also used traditionally in veterinary

practice (Table 1). Essential oil in tubers of this plant has potential uses in food flavoring industry

and can be used as an antimicrobial agent and has very attractive and delicate odor with spicy

note. A labdane diterpenoid is considered the active secondary metabolite because of its ability

to activate the enzyme adenylyl cyclase (Ac) thereby increasing the intracellular level of cAMP

and leading to various physiological effects [52]. FSK is shown to exert a 6–400 fold increase in

levels of cAMP. Cyclic AMP is a “second messenger” hormone signaling system as its synthesis

triggers the action of various hormones, enzymes and other biological activities that have

profound effects on local cells, as well as systemic effects, in some instances, on the entire body

[53]. FSK by passes the adrenoreceptors, increasing cAMP levels directly, thereby stimulating

lipolysis. FSK has also been shown to counteract the decreased response of fat cells to epineph-

rine, associated with aging. FSK also accelerates lipolysis through the activation of hormone-

sensitive lipase [54]. It is primarily via the increased synthesis of cyclic AMP that C. Forskohlii

may exert its medicinal influences on a significant number of common health conditions.

S.No. Pharmacological activity Mechanism of action Ref. No

i. Anti-depressant FSK stimulated AC activity in rat brain and leads to

enhancement of the coupling between stimulatory GTP-

binding protein (G protein) and AC catalytic molecules

FSK stimulates AC and regulates brain-derived neurotrophic

factor (BDNF) and TrkB expression in the rat brain

92

ii. Anti-Alzheimer’s FSK-induced abipolar neuron-like cell morphology and it

enables neurogenin-2 (Ngn2) to convert human fibroblasts

into cholinergic neurons

Neuronal differentiation of adult rat neural progenitor cells

(NCP’s) was achieved

93

iii. Anti-cancer Restoration of PP2A activity with forskolin that inhibit Akt

and ERK activity and block proliferation and induce caspase-

dependent apoptosis in AML cell lines.

Forskolin inhibited the in-vivo leukemogenesis of imatinib

sensitive and resistant BCR/ABL+ 32Dcl3 cells in mice

94

iv. Antispasmodic activity increase of cAMP inhibit cramping or smooth muscle

contraction

95

v. Anti-Glaucoma Stimulates Adenylate cyclase which stimulates the ciliary

epithelium to produce cyclic adenosine monophosphate

(cAMP) that results in decreased aqueous humor inflow

there by decrease in IOP

Reduction of intra ocular pressure

96

vi. Cardioprotective amelioration of

Mitochondrial dysfunction in

cardiomyopathy

It reduces diastolic blood pressure without increasing

myocardial oxygen consumption.

Reduction of INa (cardiac Na + current) and overproduction

of mitochondrial ROS in deoxycorticosterone acetate

(DOCA) mouse myocytes by activating PKA and PKC

97

vii. Anti-asthmatic Forskolin activation of cAMP inhibits human basophil and

mast cell degranulation, resulting in subsequent

bronchodilation

98
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7. FSK and brain

7.1. FSK-binding sites

3H-forskolin has, for example, been found to bind to both a high and a low affinity site in rat

brain membranes [55] and the capacity of the high affinity forskolin-binding site has been

shown to be increased by the activation of N-proteins by guanine nucleotides [56]. High

affinity [3H] FSK-binding sites have been mapped autoradiographically in rat brain area such

as caudate-putamen, nucleus accumbens, olfactory tubercle, globus pallidus, substantia nigra

and the hilus of the area dentata [57] and exhibit a markedly heterogeneous distribution.

S.No. Pharmacological activity Mechanism of action Ref. No

viii. Anti-psoriasis Decreased cGMP levels that are associated with cell

proliferation and thus decrease cell division.

Normalizing the cAMP /cGMP ratio

99

ix. Hepatoprotective activity Repair of hepatic tissue damage, normalization of

inflammatory hepatic and necrosis

Forskolin increases cAMP accumulation, and therefore

stimulates lipolysis.

100

x. Anti-inflammatory Reduction in the level of Interleukin-1β, 6 and 8

Overexpression of TANK-binding kinase 1 (TBK1) reduced

phosphorylation of hormone-sensitive lipase (HSL) in

response to FSK

Inhibit mast cell degranulation

101

xi. Anti-diabetic activity FSK predominantly decreased basal glucose in healthy rats

and attenuated the severity of hyperglycemia in diabetic rats

FSK increase intracellular cAMP, which, together with the

increase in ATP, enhance the priming of insulin granules

102

xii. Anti-platelet aggregation Antagonizes the action of platelet-activating factor (PAF).

Reduction in the extent of platelet aggregation

Induced a partial deaggregation of ADP- or collagen-

aggregated human platelets

103

xiii. Inhibition

of human neutrophil degranulation

Anti-histaminic activity

cAMP-mediated phosphodiesterase inhibition.

Reduction in the histamine release from human basophiles

and mast cells by modulating the release of mediators of the

immediate hypersensitivity reaction, through activation of

AC

104

xiv. Smooth muscle relaxant Increase both the cytosolic Ca2+ concentration and the

cytosolic NO concentration ([NO]c) in the endothelial cells

leads to cause vasodilatation

Increases uterine smooth muscle AC

105

xv. Hydrodynamic alterations in collecting

tubule

Anti-cystic fibrosis

FSK resulted in increase in osmotic water flux and hydraulic

conductivity of the rabbit cortical collecting tubule

FSK leads to cyst formation in culture media

106

Table 1. Pharmacological action of FSK.
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7.2. Role of FSK in brain

FSK may activate Ac by interacting with two sites, one which may be directly located on the

cyclase molecule, and the other which is associated with OJ somehow formed by the inter-

actions with the N, protein. FSK, a commonly used activator of Ac [55], elevates the

stimulation-induced release of several transmitters, such as acetylcholine, noradrenaline

and 5-hydrdoxytryptamine, from brain or synaptosomes and markedly increasing the rate

of conversion of ATP to cyclic AMP [58]. FSK directly reduces certain K + �potassium

currents in addition to its action on Ac. cAMP could increase the apparent number of Na,

K-ATPase sites by either direct or indirect mechanisms. cAMP could increase the number of

Na, K-ATPase sites by increasing cell Na + or decreasing K + though there are reports of Na,

K-ATPase stimulation that may be independent of cation changes. FSK elevates electrically

evoked acetylcholine release in the hippocampus independently of Ac activation [58]. FSK

appears to provide a new clue for elucidating the physiological role of cAMP in the synaptic

transmission in the sympathetic ganglia. FSK exerts two opposite pharmacological actions

at the synapse, i.e. a facilitation of transmitter release at the presynaptic site and a depres-

sant action on nicotinic acetylcholine receptor at the postsynaptic site. FSK reduced the

amplitude shock stimulation of preganglionic nerve. FSK induces a reversible AChR desensiti-

zation at the junctional and extrajunctional regions in rat [59]. FSK, an activator of Ac, could

increase transmitter release presynaptically in CA1 neurons. FSK directly stimulates Ac and

thereby increases cyclic AMP activity, which is known to influence neurite outgrowth and

membrane trafficking in neurons. Increased cyclic AMP activity may have multiple effects on

cells including changing the direction of growing neurites [60] and increasing the density of

clathrin-coated pits and coated vesicles at plasma membranes coincident with an increased

synthesis of clathrin light chain. The cAMP effector system enhanced by FSK is involved in the

release of dopamine from dopaminergic nerve endings in the neostriatum [61]. FSK increased

dopamine formation in rat striatal slices, rat striatal synaptosomes, rat hypothalamic synapto-

somes and bovine retinal slices [62].

8. Neuroprotective action of FSK

8.1. FSK against neuroinflammation

An increase in intracellular cAMP levels through FSK to play an important role in modulating

the cytokine production. Intracellular cAMP has been reported to depress the accumulation of

tumor necrosis factor (TNF-α) an mRNA by inhibiting the transcriptional processes. Elevation of

intracellular cAMP levels induced by PDE inhibitors, FSK, prostaglandin E2, or cell-permeable

cAMP analogue also inhibited the secretion of IL-1b, whereas it increased IL-1b mRNA levels

from lipopolysaccharide-stimulated human monocytes. Although the regulatory modality of IL-

8 production by cAMP is still unclear and depends on the cell type, enhanced cAMP appears to

have favorable effects at least on airway cells by suppressing IL-8 production [63]. Therefore,

enhanced cAMP levels by have also FSK been recognized to reverse the increased pulmonary

microvascular permeability associated with ischemia reperfusion (Figure 4) [64].
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8.2. Forskolin against neurooxidation

Oxidative stress may play a role in the development and clinical manifestations of autism.

Both central and peripheral markers of oxidative stress have been reported in autism.

Peripheral markers have included lipid peroxidation levels. Increases in these markers cor-

related with loss of previously acquired language skills in autism. Furthermore, metabolic

markers of oxidative stress have been identified including abnormal levels of metabolites

signifying impaired methylation and increased oxidative stress in autism [65]. The oxidative

stress in autism may be caused by an imbalance between the generation of ROS and the

defense mechanism against ROS by antioxidants. An increase in reactive oxygen species

(ROS) results in damage to proteins, DNA, and lipids. Specifically, the interaction between

ROS and nitric oxide (NO) results in the nitration of tyrosine residues in proteins and can

alter protein conformation and function [66]. Oxidative DNA damage is also considered to

play an important role in the pathology of a number of diseases like Parkinson’s disease,

tardive dyskinesia, metal intoxication syndromes, Down’s syndrome, and possibly also in

schizophrenia, Huntington’s disease, and Alzheimer’s disease. Reactive oxygen species

including superoxide (O2.–), hydroxyl (.OH), hydrogen peroxide (H2O2), singlet oxygen

(1O2) and nitric oxide (NO•) can cause cellular injury when they are generated excessively

or the enzymatic and nonenzymatic antioxidant defense systems are impaired [67].

Figure 4. Neuroprotective action of forskolin-mediated AC/cAMP/PKA/CREB activation.
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Moreover, FSK-mediated cAMP/PKA/CREB activation were found to inhibit LPS- and

cytokine-mediated production of NO as well as the expression of iNOS, whereas compounds

(H-89 and (Rp)-cAMP) that decrease PKA activity stimulated the production of NO and the

expression of iNOS in rat primary astrocytes [68].

8.3. Forskolin against mitochondrial dysfunctioning

The brain is strongly dependent on the ATP production of the cell energy-producing organelle,

the mitochondrion. There is a large body of evidence involving mitochondrial dysfunctions in

ASD. Palmieri and Persico, regarding ASD, oxidative phosphorylation (OXPHOS) in the

mitochondrion requires at least 80 proteins, of which only 13 are encoded by the mtDNA,

while mitochondrial functioning has been estimated to need the participation of approxi-

mately 1500 nuclear genes. Mitochondrial dysfunction is present in the brains of individuals

with ASD and may play a role in its core cognitive and behavioral symptoms. Alternatively,

mitochondria can be damaged by endogenous stressors associated with ASD such as elevated

pro-inflammatory cytokines resulting from an activated immune system or other conditions

associated with oxidative stress. Oxidative stress may be a key link between mitochondrial

dysfunction and ASD as reactive oxygen species (ROS) generated from pro-oxidant environ-

mental toxicants and activated immune cells can result in mitochondrial dysfunction. Excess

production of free radicals or impaired antioxidant mechanisms may cause oxidative stress:

impaired mitochondrial function then leads to further oxidative stress and a vicious negative

cycle can ensue. Instead, abnormal functioning appears secondary to excessive Ca2+ levels.

Mitochondrial dysfunctioning caused depletion of ATP, that further decrease the level of

cAMP. Forskolin, increase in intracellular cAMP, through the phosphorylation of CREB which

perform neuroprotective functioning associate with mitochondrial dysfunctioning [69].

8.4. Forskolin against cognitive dysfunction

Autistic brain which may reflect enhanced cortical plasticity which is defined as the process of

microstructural construction of synapses occurring during development and the remodeling of

these synapses during learning [70]. Enhanced synaptic plasticity triggers a regional reorgani-

zation of brain functions that account for both the unique aspects of autism and its variability

[71]. Activation of cAMP/PKA has been mainly implicated in stimulating learning and mem-

ory. FSK activate cAMP/CREB in hippocampal region [72].

8.5. Possible involvement of FSK in PPA-induced autism

Summarizing the whole information given above, FSK confirmed a versatile role in autism

where it activates the AC/cAMP-mediated PKA/CREB activation. Moreover, on other side FSK

act as a co-activator in brain that follows the GS pathway through the activation of D1 receptor.

There is least availability of selective AC activation and so far only limited reports suggest

beneficial effect of FSK in neurodegeneration animal model.
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9. Conclusion

In conclusion, the current study strongly confirms that the administration of propionic acid

induces brain lesions that are similar to the behavioral, histological, morphological, biochemical,

neurochemical, and pathological features of autism. After Chronic administration of propionic

acid in the rats as proven by motor dysfunctions, biochemical and neurochemical alternations.

The literature finding in the current study reveals that adenylyl cyclase activator, that is, FSK-

mediated cAMP/CREB activation, might be a unique platform for the prevention of neurodegen-

erative diseases. Thus in conclusion, neuroprotective and neuro restoration effects of FSKmay be

due to favorable modulation of CREB-mediated signaling. The involvement of cAMP/PKA/CREB

pathway, anti-oxidant, anti-inflammatory and neuroprotective effect of test drug FSKmay be the

possible mechanisms at least in part underlying the observed effects (Figure 4).

Furthermore, with cAMP/PKA/CREB signaling in regulation of neuronal functioning, the

future studies can be designed to investigate the protective and therapeutic potency of

forskolin in animal models of brain hemorrhage, Huntington’s disease and Parkinson’s disease

and to find out if cAMP-mediated CREB pathway is equally implicated in the disease patho-

genesis or progression. So, now we can finally conclude the significant mitochondrial restor-

ative effects of the FSK may be due to showing its improved motor and cognitive functions as

well as to restore the energy levels and antioxidant and anti-inflammatory defense system.
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