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Chapter

Electrostatic Waves in Magnetized
Electron-Positron Plasmas
Ian Joseph Lazarus

Abstract

The behavior of arbitrary amplitude linear and nonlinear electrostatic waves that
propagate in a magnetized four component, two-temperature, electron-positron
plasma is presented. The characteristics of the dispersive properties of the associ-
ated linear modes using both fluid and kinetic theory are examined. The fluid
theory analysis of the electrostatic linear waves shows the existence of electron
acoustic, upper hybrid, electron plasma and electron cyclotron branches. A kinetic
theory analysis is then used to study the acoustic mode, in particular the effect of
Landau damping, which for the parameter regime considered is due to the cooler
species. Consequently, it is found that a large enough drift velocity is required to
produce wave growth. Nonlinear electrostatic solitary waves (ESWs), similar to
those found in the broadband electrostatic noise observed in various regions of the
earth’s magnetosphere is further investigated. A set of nonlinear differential equa-
tions for the ESWs, which propagate obliquely to an external magnetic field is
derived and numerically solved. The effect of various plasma parameters on the
waves is explored and shows that as the electric driving force is increased, the
electric field structure evolves from a sinusoidal wave to a spiky bipolar form. The
results are relevant to both astrophysical environments and related laser-induced
laboratory experiments.

Keywords: electrons, positrons, electrostatic waves, nonlinear waves

1. Introduction

Electron-positron plasmas play a significant role in the understanding of the
early universe [1, 2], active galactic nuclei [3], gamma ray bursts (GRBs) [4], pulsar
magnetospheres [5, 6] and the solar atmosphere [7]. These plasmas are also impor-
tant in understanding extremely dense stars such as white dwarfs and pulsars,
which are thought to be rotating neutron stars. The existence of these plasmas in
neutron stars and in the pulsar magnetosphere is well documented [8]. The possi-
bility for the co-existence of two types of cold and hot electron-positron populations
in the pulsar magnetosphere has been suggested by [9] which was inspired by the
pulsar model [10]. In their model, accelerated primary electrons moving on curved
magnetic field lines emit curvature photons which produce electron-positron pairs.
The secondary particles then produce curvature radiation, hence producing new
electron-positron pairs, and so on. Therefore, both the electron and positron
populations can be subdivided in two groups of distinct temperatures, one modeling
the original plasma, and the second the higher-energy cascade-bred pairs. It is also
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known that in astrophysical and cosmic plasmas, a minority of cold electrons and
heavy ions exist along with hot electron-positron pairs [11]. Hence, the formation of
two temperature multispecies plasmas is possible due to the outflow of the electron-
positron plasma from pulsars entering into an interstellar cold, low-density
electron-ion plasma [12].

Investigations into electron-positron plasma behavior have focused primarily on
the relativistic regime. It is however plausible that nonrelativistic astrophysical
electron-positron plasmas may exist, given the effect of cooling by cyclotron emis-
sion [13]. The study of nonrelativistic astrophysical electron-positron plasmas
therefore plays an important role in understanding wave fluctuations. Due to the
equal charge to mass ratio for these oppositely charged species, only one frequency
scale exists and due to this symmetry, there exists different physical phenomena to
the conventional electron-ion plasmas. Further, the frequent instabilities that arise
in space plasma and astrophysical environments (e.g., solar flames and auroras),
involve the growth of electrostatic and electromagnetic waves which gives rise to a
growing wave mode. In particular, the linear behavior of the electrostatic modes
using fluid and kinetic theory approaches allows one to understand the effect of
plasma parameters such as the propagation angle, cool to hot temperature ratios,
density ratios and the magnetic field strength on the waves.

Investigations conducted have focused on modulational instabilities and wave
localization [14], envelope solitons [15], multidimensional effects [16]. Large
amplitude solitons and electrostatic nonlinear potential structures in electron-
positron plasmas having equal hot and cold components of both species have been
studied by a number of authors [17–19]. In one such study [20], using the two-fluid
model with a single temperature they investigated linear and nonlinear longitudinal
and transverse electrostatic and electromagnetic waves in a nonrelativistic electron-
positron plasma in the absence and presence of an external magnetic field. They
found that several of the modes present in electron-ion plasmas also existed in
electron-positron plasmas, but in a modified form. Collective modes in nonrelativ-
istic electron-positron plasmas using the kinetic approach was studied by [21]. The
author found that the dispersion relations for the longitudinal modes in the
electron-positron plasma for both unmagnetized and magnetized electron-positron
plasmas were similar to the modes in one-component electron or electron-ion
plasmas. Moreover, the hybrid resonances present in the former are not found in an
electron-positron plasma.

The understanding of nonlinear wave structures which gives rise to electrostatic
solitary wave (ESWs) in space is important since it is known that satellite measure-
ments using high-time resolution equipment aboard spacecraft S3-3 [22], Viking
[23], Geotail [24], Polar [25], and Fast [26] have indicated the presence of Broad-
band Electrostatic Noise (BEN) in the auroral magnetosphere at altitudes between
3000 km to 8000 km and beyond. These observations have shown the presence of
electrostatic solitary waves (ESWs), which are characterized by their spiky bipolar
pulses. Hence, the study of nonlinear wave behavior in electron-positron plasmas
propagating at oblique angles to an ambient magnetic field is explored to under-
stand electrostatic solitary waves in space. Specifically, the spiky nature of the
electrostatic potential structures and the effects of the propagation angle, cold and
hot drift velocities, cool to hot density and temperature ratios and Mach number on
the ESWs are examined.

In this chapter a two-temperature magnetized four component electron-positron
plasma model is used to study linear wave modes using both the fluid and kinetic
approaches as well as the behavior of the nonlinear structures of these electrostatic
solitary waves (ESWs) which plays an important role in space and astrophysical
environments.
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2. Linear waves in electron-positron plasmas: fluid theory approach

Let us consider a homogeneous magnetized, four component electron-positron
plasma, consisting of cool electrons and cool positrons with equal temperatures and
equilibrium densities denoted by Tc and n0c, respectively, and hot electrons and hot
positrons with equal temperatures and equilibrium densities denoted by Th and n0h,
respectively. The temperatures are expressed in energy units and wave propagation
is taken in the x-direction at an angle θ to the ambient magnetic field B0, which is
assumed to be in the x–z plane.

Assuming that the hot isothermal species are described by the Boltzmann distri-
bution, their densities are, respectively

neh ¼ n0h exp
eϕ

Th

� �

(1)

and

nph ¼ n0h exp
�eϕ

Th

� �

, (2)

where neh (nph) is the density of the hot electrons (positrons) and ϕ is the

electrostatic potential.
Using Boltzmann distribution of hot electrons and positrons is justified pro-

vided they have sufficiently high temperatures, much greater than that of cooler
species such that their thermal velocities parallel to the magnetic field exceed the
phase velocity of the modes so that they are able to establish the Boltzmann
distribution. The magnetic field effects on hot species are not felt since the per-
turbation wavelengths are shorter than their gyroradii such that both hot electrons
and positrons follow essentially straight line orbits across the magnetic field
direction.

The dynamics of cooler isothermal species are governed by fluid equations,
namely the continuity equations,

∂njc
∂ t

þ ∇: njcvjc

� �

¼ 0, (3)

the equations of motion,

∂vjc

∂ t
þ vjc:∇vjc ¼ �εj

e

m
∇ϕþ εj

e

m
vjc � B0

� �

� γTc

njcm
∇njc, (4)

where εj = + 1(�1) for positrons (electrons), j ¼ e pð Þ for the electrons (posi-
trons). The system is closed by the Poisson equation

ε0
∂
2ϕ

∂x2
¼ �e npc � nec þ nph � neh

� �

: (5)

In the above equations, nj and vj are the number densities and fluid velocities
respectively of the jth species. In order to derive the linear dispersion relation,
equations (3)–(5) are linearized. For perturbations varying as exp i kx� ωtð Þð Þ, ∂=∂t
is replaced with �iω and ∂=∂x with ik. Hence the perturbed densities for the
electrons and positrons become

3

Electrostatic Waves in Magnetized Electron-Positron Plasmas
DOI: http://dx.doi.org/10.5772/intechopen.80958



nec ¼ � n0cek
2
ϕ

m

 !

ω2 �Ω
2 cos 2θ

ω4 � ω2 3k2v2tc þΩ
2

� �

þ 3k2v2tcΩ
2 cos 2θ

 !

: (6)

and

npc ¼
n0cek

2
ϕ

m

 !

ω2 �Ω
2 cos 2θ

ω4 � ω2 3k2v2tc þ Ω
2

� �

þ 3k2v2tcΩ
2 cos 2θ

 !

: (7)

From equations (1) and (2), the perturbed densities for the hot species are given
by,

neh ¼ noh
eϕ

Th
(8)

and

nph ¼ �noh
eϕ

Th
: (9)

Substituting equations (6)–(9), into Poisson’s equation (5), the general disper-
sion relation for the two temperature electron-positron plasma is found to be

ω2 ω2 � Ω
2

� �

� 3k2v2tc ω2 �Ω
2 cos 2θ

� �

� k2 v2ea
1þ 1

2 k
2
λ2Dh

ω2 �Ω
2 cos 2θ

� �

¼ 0 (10)

where vea ¼ n0c=n0hð Þ1=2vth is the acoustic speed of the electron-positron plasma,
analogous in form to the electron acoustic speed in an electron-ion plasma [27]. The

thermal velocity of the cool species is vtc ¼ Tc=mð Þ1=2, Ωj ¼ Ω ¼ qjBo=m is the gyro-

frequency of the electrons and positrons and λdh ¼ ε0Th=n0he
2ð Þ1=2 is the Debye

length of the hot species.
It is noted that the study of linear electrostatic waves using a simple fluid model

cannot handle the possible Landau damping of the modes. Hence, Landau damping
is not significant since phase velocities are far away from the thermal velocities of
either the hot or cooler species, i.e., vth ≫ vϕ ≫ vtc with Th ≫Tc. The effects of the
temperature variation on the acoustic mode in terms of Landau damping using
kinetic theory are discussed in the next section.

For a single species electron-positron plasma, with temperature Tc, equation
(10) reduces to,

ω4 � ω2
Ω

2 þ 3k2v2tc
� �

þ 3k2v2tcΩ
2 cos 2θ ¼ 0: (11)

This is identical to the dispersion relation of [20] for their single temperature
electron-positron model.

For wave frequencies much lower than the gyrofrequency and satisfying
ω≪Ω cos θ, the associated electron-acoustic (or positron-acoustic) mode is found
to be,

ω2 ¼ k2v2ea cos
2θ

1þ 1
2 k

2
λ2Dh

þ 3k2v2tc cos
2θ: (12)
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Taking short wavelength limit (k2λ2Dh ≫ 1), the dispersion relation equation (10)
reduces to,

ω4 � ω2 3k2v2tc þ ω2
UH

� �

þ 3k2v2tc þ 2ω2
pc

� �

Ω
2 cos 2θ ¼ 0, (13)

where

ω2
UH ¼ Ω

2 þ 2ω2
pc (14)

is the upper hybrid frequency associated with the cooler species [20], with

ωpc ¼ noce
2=ε0mð Þ1=2 as the plasma frequency of the cooler species. If one solves

equation (13) in the limit 3k2v2tc þ ω2
UH

� �2
≫4 3k2v2tcΩ

2 cos 2θ þ 2ω2
pcΩ

2 cos 2θ
� �

, one

obtains for the upper hybrid mode,

ω2
þ ¼ 3k2v2tc þ ω2

UH

� �

�
3k2v2tc þ 2ω2

pc

� �

Ω
2 cos 2θ

3k2v2tc þ ω2
UH

, (15)

Taking the negative square root of equation (13) yields

ω2
� ¼

3k2v2tc þ 2ω2
pc

� �

Ω
2 cos 2θ

3k2v2tc þ ω2
UH

, (16)

In order to gain physical insight into the solution space of the dispersion relation,
the two extreme limits of equation (10) will now be considered, viz. pure perpen-
dicular and pure parallel propagations.

2.1 Case I: pure perpendicular propagation

Considering the pure perpendicular (θ ¼ 90o) limit, the general dispersion rela-
tion (10), reduces to:

ω4 � ω2
Ω

2 þ 3k2v2tc þ
k2v2ea

1þ 1
2 k

2
λ2dh

 !

¼ 0: (17)

Hence the normal mode frequencies are, ω ¼ 0, which is a nonpropagating
mode, and

ω2 ¼ Ω
2 þ 3k2v2tc þ

k2v2ea
1þ 1

2 k
2
λ2dh

: (18)

Taking the short wavelength limit (k2λ2dh ≫ 1) of the above relationship, one
obtains,

ω2 ¼ ω2
UH þ 3k2v2tc: (19)

showing that the behavior of the upper hybrid mode for the two temperature

model is due to the cooler species, where ω2
UH ¼ Ω

2
p þ 2ω2

pc.
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Now taking the long wavelength limit (k2λ2dh ≪ 1) of the dispersion relation for
perpendicular propagation, equation (18) reduces to

ω2 ¼ Ω
2 þ k2 3v2tc þ v2ea

� �

: (20)

This is the cyclotron mode for the electron-positron plasma with contributions
from both the thermal motion of the adiabatic cooler species and the acoustic
motion due to the two species of different temperatures. To try and understand the
physical implications, the above expression for the dispersion relation can be writ-
ten as,

ω2 ¼ Ω
2 þ k2v2ea 1þ 3

Tc

Th

n0h
n0c

� �

: (21)

For Tc=Th ≪ 1, one requires n0h ≫ n0c, i.e., a plasma dominated by the hot spe-
cies, in order for the second term in brackets to affect the dispersive properties of
the wave.

2.2 Case II: pure parallel propagation

Considering the limit of parallel propagation (θ ¼ 0o), the general dispersion
relation (10) reduces to,

ω4 � ω2
Ω

2 þ 3k2v2tc þ
k2v2ea

1þ 1
2 k

2
λ2dh

 !

þΩ
2 3k2v2tc þ

k2v2ea
1þ 1

2 k
2
λ2dh

 !

¼ 0, (22)

from which it can be shown

ω2 ¼ 1

2
Ω

2 þ 3k2v2tc þ
k2v2ea

1þ 1
2 k

2
λ2dh

� Ω
2 � 3k2v2tc �

k2v2ea
1þ 1

2 k
2
λ2dh

 !" #

: (23)

There exist two possible solutions. Taking the positive sign of the relevant term
in equation (23) as the first option yields,

ω2
þ ¼ Ω

2, (24)

which is a constant frequency, nonpropagating cyclotron mode.
Now taking the negative sign of the term in equation (23) yields the normal

mode frequency

ω2
� ¼ 3k2v2tc þ

k2v2ea
1þ 1

2 k
2
λ2dh

, (25)

which may be written for k2λ2dh ≪ 1 as

ω2
� ¼ k2v2ea 1þ 3

Tc

Th

n0h
n0c

� �

, (26)

which is identified fundamentally, as the electron-acoustic mode, with a correc-
tion term to its phase velocity due to the thermal motion of the cooler species.

In the limit k2λ2dh ≫ 1, one obtains
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ω2
� ¼ 3k2v2tc þ 2ω2

pc (27)

Equating equations (24) and (27) in the limit k2λ2dh ≫ 1, the critical k value for
which the two modes may couple is determined to be,

kλdð Þcrit ¼
Th

3Tc

n0c
n0

� �1=2 n0

n0cR
2 � 2

� �1=2

: (28)

A numerical analysis of the general dispersion relation can be performed focus-
ing on the effects of the density and temperature ratios of the hot and cool electrons
and positrons. If one normalizes the fluid speeds by the thermal velocity vth =

Th=mð Þ1=2, the particle density by the total equilibrium plasma density

n0 ¼ n0c þ n0h, the temperatures by Th, the spatial length by λD ¼ ε0Th=n0e
2ð Þ1=2,

and the time by ω�1
p ¼ n0e

2=ε0mð Þ�1=2
in equation (10), you get the normalized

general dispersion relation,

ω
04 � ω

02 1

R2 þ 3k
02 Tc

Th
þ k

02n
0
0c

n
0
0h þ 1

2 k
02

 !

þ cos 2θ

R2 3k
02 Tc

Th
þ k

02n
0
0c

n
0
0h þ 1

2 k
02

 !

¼ 0, (29)

where ω
0 ¼ ω=ωp, k

0 ¼ kλD, n
0
0h ¼ n0h=n0, n

0
0c ¼ n0c=n0 and R ¼ ωp=Ω is a mea-

sure of the plasma densities and the strength of the magnetic field. A typical result
can be seen in Figure 1 [28] for the normalized real frequency as a function of the
normalized wavenumber showing the acoustic and cyclotron branches for a range
of propagation angles.

3. Linear waves in electron-positron plasmas: kinetic theory approach

In this section the kinetic theory approach is used to study the acoustic mode
that was investigated in the previous section using fluid theory. The focus is on this
mode since it is a micro-instability arising from resonances in velocity space. This
instability is kinetic in nature and the growth rate of the wave is a function of the
slope of the velocity distribution function. When the wave phase velocity along B0

sees a negative slope of the velocity distribution ∂ f 0=∂V∥ <0
� �

, the particles on

Figure 1.
Normalized real frequency as a function of the normalized wavenumber showing the acoustic and cyclotron
branches for various angles of propagation θ = 0o (solid), 9o (dotted), 22:5o (broken), 45o (dashddot) and 90o

(longbroken). The fixed plasma parameters are R ¼ 0:333, Tc=Th ¼ 0:01 and n0c=n0h ¼ 0:11.
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average will gain energy from the wave, consequently the wave losses energy and
becomes damped, an effect known as Landau damping. The wave mode is hence
subjected to Landau damping and wave enhancement. Therefore the focus in this
section is primarily on the effect of the temperatures of the plasma species.

The same plasma model as in the previous section is considered, i.e., a four
component magnetized electron-positron plasma, consisting of cool electrons and
cool positrons with equal temperatures and equilibrium densities denoted by Tc and
n0c respectively, and hot electrons and hot positrons with equal temperatures and
equilibrium densities denoted by Th and n0h, respectively.

We begin by deriving the general dispersion relation where each species j has an
isotropic, drifting Maxwellian velocity distribution with temperatures Tj drifting
parallel to the magnetic field B0 ¼ B0ẑ, with drift velocities Voj.

Hence, the equilibrium velocity distribution for the electron and positron species
is chosen to be,

f α0 ¼ nα0

2πv2tj

� �3
2

exp
� V2

x þ V2
y þ Vz � Voj

� �2
h i

2v2tj

8

<

:

9

=

;

, (30)

The Vlasov equations are,

∂ f α
∂ t

þV:∇f α þ
qα
m

EþV� Bð Þ: ∂ f α
∂V

¼ 0, (31)

and the equations of motion for the electrons and positrons is given by,

m
dV

dt
¼ qα EþV� Bf g, (32)

where j ¼ c hð Þ for the cool (hot) species and α ¼ ec, pc, eh and ph for the cool
electrons, cool positrons, hot electrons and hot positrons respectively, and

vtj ¼ Tj=m
� �1=2

is the thermal velocity of the jth species.
Following standard techniques for electron-ion plasmas [29], the general kinetic

dispersion relation for the four component, two temperature electron-positron
plasma is given by

k2 þ 2

λ2Dc

1þ ω� k:Voc
ffiffiffi

2
p

k∥vtc
∑
∞

p¼�∞
Z zpc
� �

Γpc

" #

þ 2

λ2Dh

1þ ω� k:Voh
ffiffiffi

2
p

k∥vth
∑
∞

p¼�∞
Z zph
� �

Γph

" #

¼ 0,

(33)

where λDc,h ¼ ε0Th=n0c,he
2ð Þ1=2 is the Debye length for the cool (hot) species and

zpj is the argument of the plasma dispersion function or Z-function [30] and is given
by,

zpj ¼
ω� k:Voj � pΩj

ffiffiffi

2
p

k∥vtj
, (34)

where,
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Γpj ¼ e�αj Ip αj
� �

, (35)

and

αj ¼
k2⊥v

2
tj

Ω
2
j

, (36)

where Ip is the modified Bessel function of order p. The components of k parallel
(perpendicular) to B0 are given by k∥ (k⊥) respectively, while Voc and Voh are the
drift velocities of the cool (hot) species, respectively.

3.1 Approximate solutions of the kinetic dispersion relation

The general dispersion relation (33) can be numerically solved without any
approximations. However, to get some insight into the solutions, here, approximate
expansions of the plasma dispersion function are used to obtain analytical expres-
sions for the frequency and growth rate of the acoustic mode.

In proceeding, for the temperatures it is assumed that Th ≫Tc � 0ð Þ. In addition
low frequency modes satisfying ∣ω∣≪Ω are considered. The series expansion of the
Z-function [30] is given by

Z zð Þ ¼ i
ffiffiffi

π
p

e�z2 � 2z 1� 2z2

3
þ 4z4

15
�…

	 


for ∣z∣≪ 1 and (37)

Z zð Þ ¼ i
ffiffiffi

π
p

δe�z2 � 1

z
1þ 1

2z2
þ 3

4z4
þ…

	 


for ∣z∣≫ 1: (38)

where for ∣z∣≫ 1, δ ¼
0, Im zð Þ>0
1, Im zð Þ ¼ 0

2, Im zð Þ <0

8

>

<

>

:

Assuming the drift of the electrons and positrons to be weak (i.e., small Voc and
VohÞ [31] and ∣ω∣≪Ω,

zpc ¼
ω� k:Voc � pΩ

ffiffiffi

2
p

k∥vtc
≈

�pΩ
ffiffiffi

2
p

k∥vtc
for p 6¼ 0 (39)

and

zph ¼
ω� k:Voh � pΩ

ffiffiffi

2
p

k∥vth
≈

�pΩ
ffiffiffi

2
p

k∥vth
for p 6¼ 0: (40)

Then for the cool species,

∑
∞

p¼�∞
Z zpc
� �

Γpc ≈Z
ω� k:Voc
ffiffiffi

2
p

k∥vtc

 !

Γoc þ ∑
∞

p¼1
Z

pΩ
ffiffiffi

2
p

k∥vtc

 !

þ Z
�pΩ
ffiffiffi

2
p

k∥vtc

 !( )

Γpc:

(41)

From the definition of the Z-function, Z ξð Þ þ Z �ξð Þ ¼ 0, hence

∑
∞

p¼�∞
Z zpc
� �

Γpc ≈Z zocð ÞΓoc: (42)
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Taking the cooler species to be stationary, Voc is therefore set to zero, allowing
only the hot species to drift. Then,

zoc ¼
ω
ffiffiffi

2
p

k∥vtc
: (43)

For modes satisfying ω=k∥ ≫ vtc, one may assume ∣zoc∣≫ 1, i.e., the wave phase
speed along Bo is much larger than the cool electron thermal speed. For instability
(i.e., a growing wave with Im zð Þ>0), δ is set equal to zero in equation (38). Hence
using the series expansion equation (38), equation (41) becomes

∑
∞

p¼�∞
Z zpc
� �

Γpc ≈ � 1

zoc
� 1

2z3oc
� 3

4z5oc

	 


Γoc: (44)

Similarly, using the series expansion equation (37) (where e�z2
oh ≈ 1 for ∣zoh∣≪ 1),

we have for the hot species,

∑
∞

p¼�∞
Z zph
� �

Γph ≈ i
ffiffiffi

π
p

� 2zoh þ
4z3oh
3

� �

Γoh: (45)

It is noted that for relatively high temperature Th, the thermal velocity of the hot
species is much larger than the wave phase velocity. Hence, for large Th, we have
assumed that ∣zoh∣≪ 1.

Substituting (44) and (45), λD, λDc and λDh, into the dispersion relation (33),

whereas before λD ¼ ε0Th=n0e
2ð Þ1=2, gives

k2λ2D þ 2
n0c
n0
Tc

Th

i
ffiffiffi

π
p

zoce
�z2oc � 1

2z2oc
� 3

4z4oc

	 


þ 2
n0h
n0

1þ i
ffiffiffi

π
p

zohΓoh

� �

¼ 0: (46)

For the cool species we have assumed ∣αc∣ ¼ ∣k2⊥v
2
tc=Ω

2∣ ¼ k2ρ2c ≪ 1 (where ρc is
the gyroradius of the cool species), i.e., long wavelength fluctuations in comparison
to ρc. Since in general for ∣x∣≪ 1 we can write Γp xð Þ ¼ e�xIp xð Þ≈ x=2ð Þp 1=p!ð Þ
1� xð Þ, hence we have Γoc ≈ 1.

Second and higher order terms in zoh are also neglected since we have assumed
∣zoh∣≪ 1. Setting ω ¼ ωr þ iγ and assuming γ=ωr ≪ 1 one may write

1

ω2
≈

1

ω2
r

1� 2iγ

ωr

� �

: (47)

Using the above manipulation the dispersion relation equation (46) becomes

k2λ2D þ 2

n0c
n0
Tc

Th

i
ffiffiffi

π
p ωr þ iγ

ffiffiffi

2
p

k∥vtc

 !

e�z2oc �
k2∥v

2
tc

ω2
r

1� 2iγ

ωr

� �

�
3k4∥v

4
tc

ω4
r

1� 2iγ

ωr

� �2
" #

þ 2
n0h
n0

1þ i
ffiffiffi

π
p ωr þ iγ � k:Voh

ffiffiffi

2
p

k∥vth

 !

Γoh

" #

¼ 0:

(48)

Taking the real part of equation (48) with the charge neutrality condition
noc þ noh ¼ 1, gives

ω2
r ¼

k2v2ea cos
2θ

1þ 1
2 k

2
λ2Dh

þ 3k2v2tc cos
2θ, (49)
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where cos θ ¼ k∥=k and vea ¼ n0c=n0hð Þ1=2vth is the acoustic speed of the
electron-positron plasma. It is noted that equation (49) is consistent with the
expression (12) obtained from fluid theory.

The approximate solution of the growth rate is determined by taking the imag-
inary part of equation (48), and hence solving for γ, one finds

γ ¼
ω4
r

k3∥

π
8

� �1=2 m
Th

� �3=2
� Th

Tc

� �3=2
e�z2oc þ n0h

n0c

� �

k:Voh

ωr
� 1

� �

Γoh

	 


1þ 6k2∥
Tc
m

ω2
r

h i : (50)

We note that in equation (50), it is the cooler species that provides the Landau

damping, i.e., the velocity distribution function sees a negative slope ∂f 0=∂V∥ <0
� �

.
It is also seen from equation (50) that for an unstable mode (γ>0), it is necessary
that V0h>ωr=k∥, i.e., the drift velocity parallel to B0 of the hot species has to be
larger than the phase velocity to overcome the damping terms.

Normalizing the fluid speeds by the thermal velocity vth = Th=mð Þ1=2, the particle
density by the total equilibrium plasma density n0 ¼ n0c þ n0h, the temperatures by

Th, the spatial length by λdj ¼ ε0Tj

n0je2

� �1=2
, and the time by ω�1

p ¼ n0e
2

ε0m

� ��1=2
, one may

write the normalized real frequency as,

ω2
r ¼

2n0ck
2
∥λ

2
d

2 1� n0cð Þ þ k2λ2d
þ 3k2∥λ

2
d

Tc

Th
, (51)

and the approximate normalized growth rate as,

γr ¼

ω4
r

k3∥λ
3
d

π
8

� �1=2 1�n0c
n0c

� �

k
!
:
Voh

!

ωr
� 1

 !

Γoh

" #

1þ 6k2∥
Tc
Th

ω2
r

	 
 , (52)

For a fixed value of kλd, the real frequency increases with an increase in the cool
to hot temperature ratio. This can be seen from the approximate analytical expres-
sion (51). Figure 2 displays the normalized growth rate as a function of the nor-
malized wavenumber for varying cool to hot species temperature ratios Tc=Th. It is
noted that as the Tc=Th decreases, the growth rate increases, implying that the

Figure 2.
Normalized growth rate as a function of the normalized wavenumber. The fixed parameters are R ¼ 0:333,
Voh ¼ 0:5, n0c ¼ 0:1 and θ ¼ 45o. The parameter labeling the curve is the cool to hot temperature ratio
Tc=Th ¼ 0:005 (solid), 0.01 (dotted), and 0.02 (broken).
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instability is more easily excited with lower temperature ratios. This may be
explained as follows. As the temperature of the cooler species is increased, the
associated Landau damping increases, resulting in a reduction of the overall growth
rate. It is noted that a cutoff kλd value is reached beyond which the mode is damped.

4. Nonlinear electrostatic solitary waves in electron-positron plasmas

The study of nonlinear effects in electron-positron plasmas is important since
these plasmas exhibit different wave phenomena as compared to electron-ion
plasmas. It is therefore important to understand the nonlinear structures, especially
the solitary waves that exist in electron-positron plasmas. Satellite observations in
the Earth’s magnetosphere have shown the existence of electrostatic solitary waves
which forms part of broadband electrostatic noise (BEN) and electrostatic solitary
waves (ESWs) in various regions of the Earth’s magnetosphere. The characteristic
features of these ESWs are solitary bipolar pulses and consist of small scale, large
amplitude parallel electric fields. These large amplitude spiky structures have been
interpreted in terms of either solitons [32] or isolated electron holes in the phase
space corresponding to positive electrostatic potential [33]. Given that electron-
positron plasmas are increasingly observed in astrophysical environments, as well as
in laboratory experiments [34], the above mentioned satellite observations also lead
one to explore if such nonlinear structures are also possible in electron-positron
plasmas. There is a distinct possibility that a pulsar magnetosphere can support
coexistence of two types of cold and hot electron-positron populations [10, 35, 28].
In this section we investigate nonlinear electrostatic spiky structures in a magne-
tized four component two-temperature electron-positron plasma.

4.1 Basic equations

The model considered, as in the previous section is a homogeneous magnetized,
four component, collisionless, electron-positron plasma, consisting of cool electrons
(ec) and cool positrons (pc) with equal temperatures Tc and initial densities
(nec0 ¼ npc0), and hot electrons (eh) and hot positrons (ph) with equal temperatures
Th and densities (neh0 ¼ nph0). Wave propagation is taken in the x-direction at an

angle θ to the magnetic field B0, which is assumed to be in the x-z plane.
The continuity and momentum equations for the four species are given by

∂nj
∂t

þ ∂ njvjx
� �

∂x
¼ 0 (53)

∂vjx
∂t

þ vjx
∂vjx
∂x

þ 1

njm

∂pj
∂x

¼ � εje

m

∂ϕ

∂x
þ εjΩvjy sin θ (54)

∂vjy
∂t

þ vjx
∂vjy
∂x

¼ εjΩvjz cos θ � εjΩvjx sin θ (55)

∂vjz
∂t

þ vjx
∂vjz
∂x

¼ �εjΩvjy cos θ, (56)

where εj = + 1(�1) for positrons (electrons) and j ¼ ec, pc, eh, ph for the cool
electrons, cool positrons, hot electrons, and the hot positrons, respectively.

The density of the cool electrons (positrons) is nec (npc), and that of the hot
electrons (positrons) is neh (nph).
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The general equation of state for the four species is given by

∂pj
∂t

þ vjx
∂pj
∂x

þ 3pj
∂vjx
∂x

¼ 0, (57)

The system is closed by the Poisson equation

ε0
∂
2ϕ

∂x2
¼ �e npc � nec þ nph � neh

� �

: (58)

In the above equations, nj, vj and pj are the densities, fluid velocities and pres-

sures, respectively, of the jth species. Ω ¼ Ωe ¼ Ωp ¼ eB0=m is the cyclotron fre-
quency. Here m = me = mp is the common mass of the electrons and the positrons.
Adiabatic compression, γ ¼ 2þNð Þ=N =3, is assumed, where N =1 implies one
degree of freedom.

Upon linearizing and combining equations (53)–(58) and taking the limit

vtc ≪ω=k≪ vth, where vth ¼ Th=mð Þ1=2 and vtc ¼ Tc=mð Þ1=2 are the thermal velocities
of the hot (cool) species, the dispersion relation equation for a magnetized two-
temperature four component electron-positron plasma, where all species are
governed by the fluid equations is,

ω4 � ω2
Ω

2 þ 2ω2
s þ 3k2v2tc

� �

þ 2ω2
sΩ

2 cos 2θ ¼ 0: (59)

where ωpc,ph ¼ n0c,he
2=ε0mð Þ1=2 are the plasma frequencies of the cool and hot

species respectively and ωs ¼ ωpc= 1þ 2=3k2λ2Dh

� �1=2
and λDh ¼ ε0Th=nohe

2ð Þ1=2.
Solving the above dispersion relation gives the cyclotron mode,

ω2
þ ¼ Ω

2 þ 2ω2
s þ 3k2v2tc

� �

� 2ω2
sΩ

2 cos 2θ

Ω
2 þ 2ω2

s þ 3k2v2tc
(60)

and the acoustic mode,

ω2
� ¼ 2ω2

sΩ
2 cos 2θ

Ω
2 þ 2ω2

s þ 3k2v2tc
, (61)

4.2 Nonlinear analysis

In the nonlinear regime, a transformation to a stationary frame
s ¼ x� Vtð Þ Ω=Vð Þ is performed, and v, t, x and ϕ are normalized with respect to vth,

Ω
�1, ρ ¼ vth=Ω, and Th=e, respectively. V is the phase velocity of the wave. In

equations (53)–(57), ∂=∂t is replaced by �Ω ∂=∂sð Þ and ∂=∂x by Ω=Vð Þ ∂=∂sð Þ, and the
diving electric field amplitude is defined as E ¼ � ∂ψ=∂sð Þ, where ψ ¼ eϕ=Th.

Integrating equation (53) and using the initial conditions nec0 ¼ n0 and vecx ¼ v0
at s ¼ 0, yields the normalized velocity for the cool electrons in the x-direction.

vecx ¼ � neco
nec

� �

V � v0ð Þ þ V (62)

Similarly the cool positrons, hot electrons and hot positrons velocities are deter-
mined. Substituting these into the normalized form of equations (53)–(57), gives
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the following set of nonlinear first-order differential equations for the cool electron
species in the stationary frame.

∂ψ

∂s
¼ �E (63)

∂E

∂s
¼ R2M2 npcn � necn þ nphn � nehn

� �

(64)

∂necn
∂s

¼ n3ecn EþM sin θvecyn
� �

nec0
n0

� �2
M� δcð Þ2 � 3 Tc

Th
pecnnecn

(65)

∂vecyn
∂s

¼ Mnecn
M� δcð Þ

n0
nec0

� �

� M� M� δcð Þ
necn

nec0
n0

� �� �

sin θ þ veczn cos θ

	 


(66)

∂veczn
∂s

¼ � n0
nec0

� �

necnvecynM cos θ

M� δcð Þ (67)

∂pecn
∂s

¼ 3pecnn
2
ecn EþM sin θvecyn
� �

nec0
n0

� �2
M� δcð Þ2 � 3 Tc

Th
pecnnecn

(68)

The set of differential equations for the cool positrons are given by,

∂npcn
∂s

¼
n3pcn

M� δcð Þ2
n0
npc0

� �2

�E�M sin θvpcyn
� �

(69)

∂vpcyn
∂s

¼ Mnpcn
M� δcð Þ

n0
npc0

� �

M� M� δcð Þ
npcn

npc0
n0

� �� �

sin θ � vpczn cos θ

	 


(70)

∂vpczn
∂s

¼ n0
npc0

� �

npcnvpcynM cos θ

M� δcð Þ (71)

∂ppcn
∂s

¼
3ppcnn

2
pcn �E�M sin θvpcyn
� �

npc0
n0

� �2
M� δcð Þ2 � 3 Tc

Th
ppcnnpcn

(72)

Similar sets of differential equations can be derived for the hot electrons and hot
positron species. The velocities are normalized with respect to the thermal velocity

of the hot species vth ¼ Th=mð Þ1=2 and the densities with respect to the total density
n0. The equilibrium density of the cool (hot) electrons is nec0 neh0ð Þ, and that of the
cool (hot) positrons npc0 nph0

� �

, with nec0 þ neh0 ¼ npc0 þ nph0 ¼ n0. R ¼ ωp=Ω,

where ωp ¼ n0e
2=ε0mð Þ1=2 is the total plasma frequency, M ¼ V=vth is the Mach

number and δc,h ¼ v0c,0h=vth is the normalized drift velocity of cool (hot) species at s
=0. The system of nonlinear first-order differential equations can now be solved
numerically using the Runge-Kutta (RK4) technique [36]. The initial values can be
determined self consistently where the actual normalized electric fields are given by
Enorm ¼ � 1=Mð Þ ∂ψ=∂sð Þ and wave propagation is taken almost parallel to the ambi-
ent magnetic field B0.

Numerical results to investigate the effect of parameters such as the electric
driving force E0, densities nec0 and nph0, temperature ratio Tc=Th, Mach number M,

drift velocities δc,h and propagation angle θ on the wave can be explored. A typical
numerical result is seen in Figure 3a–d [37] showing the evolution of the system for
various driving electric field amplitudes E0. It is seen that as E0 increases, the
electric field structure evolves from a sinusoidal wave to a sawtooth structure. For a
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higher E0 value of 3.5, the potential structure has a spiky bipolar form showing that
as the period of the wave increases and the frequency of the wave decreases.

5. Conclusion

Linear and nonlinear electrostatic waves in a magnetized four component two-
temperature electron-positron plasma have been investigated. In the linear analysis
fluid and kinetic theory approaches are employed to describe the wave motion. The
fluid theory approach focused on the wave dynamics of both the acoustic and
cyclotron branches. Solutions of the dispersion relation from fluid theory yielded
electron-acoustic, upper hybrid, electron plasma and electron cyclotron branches.
Perpendicular and parallel wave propagation was examined showing its influence
on the dispersive properties of the wave. The kinetic theory approach further
examined Landau damping effects on the acoustic mode, analyzing the frequency
and growth rate of the wave. The analysis shows that a large enough drift velocity
(Voh) is required to produce wave growth. Both fluid and kinetic theory show
excellent agreement for the real frequencies of the acoustic mode and solutions of
the corresponding dispersion relation can be explored as a function of several

Figure 3.
Numerical solution of the normalized electric field for the parameters M = 3.5, θ = 2o, R =10.0, δc = δh = 0.0,
nec0=n0 = npc0=n0 =0.5, Tc=Th = 0.0, and E0 = (a) 0.05 [linear waveform], (b) 0.5 [sinusoidal waveform],
(c) 1.5 [sawtooth waveform] and (d) 3.5 [bipolar waveform].
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plasma parameters. In the nonlinear analysis, the two-fluid model is used to derive a
set of differential equations for the electrostatic solitary waves in a magnetized two-
temperature electron-positron plasma. In particular, electrostatic solitary waves and
their electric fields, similar to those found in the Broadband Electrostatic Noise are
explored. For the onset of spiky ESWs, it is noted that as the wave speed increases, a
larger driving electric field is required.
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