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Chapter

Hydrodynamic Methods and Exact
Solutions in Application to the
Electromagnetic Field Theory in
Medium
Sergey G. Chefranov and Artem S. Chefranov

Abstract

The new Vavilov-Cherenkov radiation theory which is based on the relativistic
generalization of the Landau theory for superfluid threshold velocity and Abraham
theory of the electromagnetic field (EMF) in medium is represented. The new
exact solution of the Cauchy problem in unbounded space is obtained for the
n-dimensional Euler-Helmholtz (EH) equation in the case of a nonzero-divergence
velocity field for an ideal compressible medium. The solution obtained describes the
inertial vortex motion and coincides with the exact solution to the n-dimensional
Hopf equation which simulates turbulence without pressure. Due to the introduc-
tion of a fairly large external friction or by introducing an arbitrary small effective
volume viscosity, a new analytic solution of the Cauchy problem for the three-
dimensional Navier-Stokes (NS) equation is obtained for compressible flows. This
gives the positive solution to the Clay problem (www.clamath.org) generalization
on the compressible NS equation. This solution also gives the possibility to obtain a
new class of regular solutions to the n-dimensional modification of the Kuramoto-
Sivashinsky equation, which is ordinarily used for the description of the nonlinear
propagation of fronts in active media. The example for potential application of
the new exact solution to the Hopf equation is considered in the connection of
nonlinear geometrical optics with weak nonlinear medium at the nonlocality
of the small action radii.

Keywords: hydrodynamics, compressibility, viscosity, turbulence, vorticity, EMF
waves, Abraham theory, photon in medium

1. Introduction

The main subject of the nonlinear optic theory is a nonlinear activity of a
medium where electromagnetic field (EMF) is propagated.

In this connection, the analogy between electromagnetic and hydrodynamic
phenomena, which was noted yet by Helmholtz and Maxwell [1], is considered. In
more recent papers, also different types of this analogy are used [2–4] and give
possibility to open new ways for the solution of some nonlinear hydrodynamic
problems on the basis of this analogy.
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However up to now, there are only a few examples of the direct mathematical
correspondence between hydrodynamics and EMF theory, which gives resolution
of the EMF problems on the basis of hydrodynamics [5, 6].

Thus in [5] there is an exact mathematical correspondence between the solutions
for the point electric dipole potential and velocity potential obtaining for the rigid
sphere moving with constant speed in the ideal incompressible fluid.

In [6] an exact correspondence is established between the mathematical
description of the single vortex velocity on the sphere and the Dirac magnetic
monopole (DMM) [7] vector potential. Similar analogy with DMM was noted also
for the vortices in quantum superfluid He-3A [8–11].

Moreover, in [6], it was proved that the hydrodynamic equations do not allow
the existence of a solution in the form of a single isolated vortex on sphere, but
allow the exact solution in the form of two antipodal point vortices (which have the
same value but different signs of circulation and located on the sphere on the
maximal possible distance from each other). This result gives the first theoretical
base for the proposition that DMM also cannot exist in the single form, but they
must be included in the structure of point magnetic dipole, which is confirmed by
all observations and experiment data.

Here we consider some examples of the application of hydrodynamic methods
for the problems of EMF interaction with medium which may be important in the
field of nonlinear optics.

In Part 1 of the chapter, we give the example for demonstration of the new
mechanism of the Vavilov-Cherenkov radiation (VCR), which is obtained only
on the basis of relativistic generalization to the Landau theory of superfluid
threshold velocity [12]. In analogy with the Landau criterion its relativistic
generalization is deduced for the determination of threshold conversion of medium
Bose-condensed excitation into Cherenkov’s photon. Thus, the VCR arises only due
to the reaction of medium on the electric charge moving with super threshold
velocity [13–15]:

V0 > Vth ¼ c=n∗; n∗ ¼ nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � 1
p

, n > 1; n∗ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p� �

=n, n < 1 (1)

In (1), с is the light speed in vacuum and n is the medium refractive index.
In contraposition to the classic VCR theory [16–18], the new VCR theory in

[13–15] and (1) admits the conditions for effective and direct VCR realization
even for high-frequency transverse waves of EMF in isotropic plasma when
n < 1 in (1). This is possible in the new VCR theory only because it is based on the
Abraham theory for EMF in a medium where photons have nonzero real mass
of rest, which determines necessary (in energy balance equation) energy
difference for the medium when the medium emits photon VCR only for the
condition (1).

In the second part of this chapter, we consider a new exact solution of nonlinear
hydrodynamic equations. This gives corresponding possibility of its application to
the problems of nonlinear EMF and other wave propagation in active and dissipa-
tive medium, where the Kuramoto-Sivashinsky equation [19–21] is used, giving the
generalization of the Korteweg-de Vries (KdV) equation. Indeed, in nonlinear optic
the KdF equation may describe the EMF wave propagation (for the case when
electric wave E is propagating along axis x):

∂E

∂t
þ σE

∂E

∂x
þ σ0

∂
3E

∂x3
¼ 0 (2)
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On the other side, the problem of the propagation of a flame front (generated by
a self-sustained exothermal chemical reaction) may be considered on the basis of
the simplified version of the Sivashinsky equation ∇ [21]:

∂f

∂t
� 1

2
Us r

!
f

� �2

¼ γ0 f (3)

In the one-dimensional case, (3) is the same as (2) if E ¼ ∂f=∂x;Us ¼ �σ and if

we replace (for the case γ0 < 0) σ0∂
3E=∂x3 ! �γ0E.

In Eq. (3), the function x3 ¼ f x1; x2; tð Þ determines the flame front which repre-
sents the interface between a combustible matter (x3 > 0) and the combustion
products (x3 < 0); Us and γ0 are constant positive quantities which characterize the
front velocity and the combustion intensity, respectively. For γ0 ¼ 0 Eq. (3) coin-
cides with the Hamilton-Jacobi equation for a free nonrelativistic particle. In the
two-dimensional case (more exactly, in its modification with account for the exter-
nal friction with the coefficient μ when μ ¼ �γ0), the exact solution of the n-
dimensional Hopf equation modification with μ 6¼ 0

∂ui
∂t

þ uk
∂ui
∂xk

¼ �μui; i, k ¼ 1, ::, n (4)

(for the inertial motion of compressible medium with velocity ui) gives also the

exact solution of Eq. (3) when the velocity of compressible medium u
!¼ �Usr

!
f .

The common solution of 1D, 2D, and 3D equations (4) in Euler variables is first
time obtained in [22–26]. On the basis of this solution, we give the positive answer
to the generalization of the Clay problem [27] on the case of compressible medium
motion with nonzero divergence of velocity field [23–26]. The existence and
smoothness of this solution for all time may take place only for super threshold
friction μ > μth ¼ 1=t0 (here t0 is the minimal finite time of singularity realization
for solution of the Hopf equation (4)) or for any finite volume viscosity [22–26].
This gives the possibility to obtain also exact solutions in nonlinear optic when
equations of Kuramoto-Sivashinsky type are used for EMF wave propagation in
nonlinear medium.

1.1 New theory of the Vavilov-Cherenkov radiation (VCR)

The Vavilov-Cherenkov radiation (VCR) phenomenon has justly become an
inherent part of modern physics. The VCR in a refractive medium was experimen-
tally discovered by Cherenkov and Vavilov [28] more than half a century ago. This
was also the time when Tamm and Frank [16, 17] developed the electromagnetic
macroscopical theory of this phenomenon, which, as well as the VCR discovery,
was marked later by a Nobel Prize. The Tamm-Frank theory appeared to be very
similar to the Heaviside theory, which had been forgotten for a century [29].

The Heaviside-Tamm-Frank (HTF) theory demonstrated that the cylindrically
symmetrical EMF, created in a medium by an electron, which moves rectilinearly
with the constant velocity V0, does not exponentially reduce only in the case of the
super threshold electron velocity V0≥c=n. According to the HTF theory, this field
must be identical to the VCR field, observed in the experiment [28].

However, such direct identification is not in agreement with the basic micro-
scopical conception that VCR photons are radiated by a medium and not by an
electron itself [16, 30]. The latter can serve only for the initiation of such radiation
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by the medium. The phenomenological quantum theory of the VCR, developed by
Ginzburg [18] on the basis of the Minkowski EMF theory in medium, still does not
take into consideration the changes of the radiating medium energy state, which
might be necessary for the VCR realization. As we show the latter, this is so because,
in contrast to the Abraham EMF theory, for the momentum of photon in the
Minkowski EMF theory, the corresponding photon mass of rest in medium always
has only exact imaginary (with zero real part) value and cannot be taken into
account in the energy balance equation for the VCR.

Thus, the classic theory of the VCR phenomenon leaves a question of the energy
mechanism of the VCR effect open. Indeed, to elaborate this mechanism, we need
to find out the necessary possible changes of the energy state of the medium itself,
which ensure the VCR effect realization.

The suggested theory is based on directly using the Abraham momentum of
photon:

p
!
A ¼ εph

cn
k
!
, n > 1; pA

!¼ εphn

c
k
!
, n < 1; k

!
¼ V

!
ph

V
!

ph

�

�

�

�

�

�

(5)

In (5) εph is the photon energy and V
!

ph its velocity in medium.

For the Minkowski EMF theory, the momentum of photon in medium with n > 1

has the form: p
!
M ¼ εphn

c k
!

For (5), the real nonzero photon rest mass mph is determined from the known

relativistic equation m2
phc

2 ¼ ε2
ph

c2 � p2A, and from (5), we have

mph ¼
εph

c2n

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � 1
p

, n > 1; mph ¼
εph

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p

, n < 1 (6)

In the new VCR quantum theory [13–15], the energy ΔEm ¼ mphc
2 may corre-

spond to the energy of a medium long-wave Bose excitation which can transform
into the VCR photon only when the super threshold condition (1) takes place. Thus,
the value ΔEm must be taken into account in the energy balance equation for VCR
realization possibility (when mediummust lose this energy when the VCR photon is
arising from it), and this new VCR theory is provided in [13, 14]. In [15] we also
give examples where it is easy to obtain experimental and observational evidence of
the difference between Abraham’s and Minkowski’s EMF theories when the VCR
may be observed during the electron beam transfer through the medium which is
the light of intense laser or when high-energy cosmic rays go through the relict
background radiation.

To obtain a relativistic generalization of the Landau criterion [12] for the VCR
realization, it is necessary to use the energy balance equation for the VCR (includ-
ing in it the value of medium energy loss ΔEm ¼ mphc

2, where mph may be taken

from (6)) in the coordinate system moving with the initial electron velocity V
!

0

[13, 14]:

mec
2 1� Γ0Γ1 1�

V
!

0V
!

1

� �

c2

0

@

1

A

2

4

3

5 ¼ εphΓ0 1�
V
!

0V
!

ph

� �

c2
�mphc

2

εph

2

4

3

5 (7)

where V
!

1 is the velocity of electron after VCR photon arising. In (7)

Γα ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2
α

c2

q

, where α ¼ 0 or α ¼ 1 and mphc
2=εph ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2
ph

c2

q

according to (6).
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For example, in the case n > 1 in (7), we have Vph ¼ c=n and in the right-hand side

of (7) A ¼ 1�
V
!

0V
!

ph

� �

c2 � mphc
2

εph
¼ 1� V0

c cos θ �
ffiffiffiffiffiffiffiffi

n2�1
p

n .

The left-hand side of (7) is always negative (it is zero only for the case when the

initial and finite velocity of the electron are the same V
!

0 ¼ V
!

1).
In the nonrelativistic limit when V0≪c; Vph≪c from (7) for εp > 0, the Landau

criterion [12] may be obtained: εV � p
!
V
!

0

� �

< 0; εV ¼ εp 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2
p

c2

q
� �

ffi εpV
2
p

2c2 .

Then εV ¼ Vpp
2 is the only kinetic energy of excitation (in [12] these are vorton

elementary excitations).
Thus for the possibility of arising VCR photon with positive energy εph > 0, it is

necessary to have in the right-hand side of (7) the negative value of A < 0 or
inequality:

cos θ >
c

V0n∗
(8)

where the value n∗ nð Þ > 1 for any cases of n > 1 or n < 1 as it shown in (1). From
the condition cos θj j ≤ 1 in (8), the value of threshold velocity in (1) is obtained.

The conditions (8) and (1) give the necessary condition for arising VCR, and
from (8) it is possible to obtain the maximal angle of the VCR cone of rays. The
classic VCR theory gives good correspondence to experiment only in the determi-
nation of position for the maximum of intensity in the VCR cone of rays, but not to
the maximal angle of this cone. In [13, 14] it is shown that the new VCR theory
gives a better agreement with the experiment [28] than classical VCR theory when
describing the threshold edge of the VCR cone of rays.

According to [28] the VCR effect is observed in the whole region of angles

0 ≤ θ ≤ θA,Bmax with the maximum of radiation intensity I θð Þ at the angle
θ ¼ θ

A,B
0 < θA,Bmax. Here Index A corresponds to gamma rays of ThC″, and the Index B

corresponds to the VCR induced by Ra. Thus, I θð Þ ¼ 0 when θ > θA,Bmax. In the [31]
the same result was also obtained for VCR realization through the direct use of high-
energy electron beam.

In the classic VCR theory in (1) and (8), the value n∗ must be replaced with the
value n for the case with n > 1.

Let us introduce the values βA
∗
; βB

∗
which correspond to θA,Bmax of experiment [28]

when (8) is used for evaluation of parameter β ¼ V0=c and the analogy values βA; βB

for the classic VCR theory.
For example, when the medium where the VCR arising is water (H2O), where

n ¼ 1:333, n∗ ¼ 2:247, and for the values cos θAmax ¼ 0:6691; cos θBmax ¼ 0:7431 from

(8), we obtain βA
∗
¼ 0:6718; βB

∗
¼ 0:6049 which are smaller than 1, as they need

from the relativity theory. For the classic VCR theory, the result is not
corresponding to the inequality β ¼ V0=c < 1 of the relativity theory because from

the classic VCR theory, βA ¼ 1:1177; βB ¼ 1:0064 may be obtained. The same results
obtained for all other media are considered in the experiment [28, 31] (see [13, 14]).

Thus, the classic VCR theory gives good correspondence with experiment [28]

only in the determination of angle θA,B0 , but not of the angle θA,Bmax. In this connection

the classic VCR theory tied only with interference maximum at θ ¼ θ
A,B
0 and does

not consider at all the energetic base for threshold arising of this coherent VCR.
Actually, this is clearer for the case of plasma with n < 1, where the classic VCR
theory total excludes the possibility of the VCR in the form of transverse
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high-frequency EMF waves. The present new VCR theory gives this possibility due
to the transformation of a longitudinal Bose-condensed plasmon into transverse
VCR photon, during the scattering of a plasmon on the relativistic electron [14, 37].

Moreover in this new VCR theory, the VCR phenomenon has the same nature as
for numerous physical systems where dissipative instability is realized when
corresponding excitations in a medium become energetically favorable at some
super threshold conditions [12, 32–36].

1.2 Exact solution of hydrodynamic equations

Fundamental turbulence problem was unsolved during many years by virtue of
the absence of analytical, time-dependent, smooth-at-all-time solutions of the
nonlinear hydrodynamic equations. A few exact solutions are known in hydrody-
namics, but none of these solutions is time-dependent and defined in unbounded
space or in space with periodic boundary conditions [38–40].

The importance of this problem is determined by stability and predictability
problems in all fields of science where solutions and methods of hydrodynamics are
used. In this connection in 2000, the problem of the existence of smooth time-
dependent hydrodynamic solutions was stated as one of the seven Millennium Prize
Problems (MPPs) by the Clay Institute of Mathematics [27]. MPPs relate only to
incompressible flows “since it is well known that the behavior of compressible flows
is abominable” [41].

Here we show that even for a compressible case, it is possible to obtain exact
analytical, time-dependent, smooth-at-all-time solutions of Hopf equation (4)
(which gives also new class solution also for vortex typ. 2D and 3D Euler equation)
when any viscosity of super threshold friction is taken into account [22–26].

With the aim to introduce effective volume viscosity (in addition to external
friction in (4)), let us consider the n-dimensional Hopf equation (4) in the moving
with velocity Vi tð Þ coordinate system, where V i tð Þ is a random Gaussian delta-
correlated in-time velocity field for which the relations hold:

V i tð ÞV j τð Þ
� 	

¼ 2νδijδ t� τð Þ
Vi tð Þh i ¼ 0

(9)

In (9) δij is the Kronecker delta, δ is Dirac-Heaviside delta function, and the
coefficient ν characterizes the action of the viscosity forces. In the general case, the
coefficient ν can be a function of time when describing the effective turbulent vis-
cosity, but also it can coincide with the constant kinematic viscosity coefficient when
the random velocity field considered corresponds to molecular fluctuations. We will
restrict our attention to the consideration of the case of constant coefficient ν in (9).

Thus, the initial equation (4) (for the case μ ¼ 0) takes the form:

∂ui
∂t

þ uj þ V j tð Þ

 � ∂ui

∂xj
¼ 0 (10)

As shown in Appendix, in the case of an arbitrary dimensionality of the space
(n = 1, 2, 3, etc.), Eq. (10) has the following exact solution (see also [22–26]):

ui x
!
; t

� �

¼
ð

dnξu0i ξ
!� �

δ ξ
!
� x

! þ B
!

tð Þ þ tu0
!

ξ
!� �� �

det Â (11)

where Bi tð Þ ¼
Ð

t

0

dt1Vi t1ð Þ, Â � Anm ¼ δnm þ t ∂u0n
∂ξm

, det Â is the determinant of the

matrix Â, and u0i x
!
� �

is an arbitrary smooth initial velocity field. The solution (11)
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satisfies Eq. (10) only at such times for which the determinant of the matrix Â is

positive for any values of the spatial coordinates det Â > 0.
In the case of the potential initial velocity field, the solution (11) is potential for

all successive instants of time, corresponding to a zero-vortex field. On the con-
trary, in the case of nonzero initial vortex field, the solution also determines the
evolution of velocity with a nonzero vortex field. In [42] the potential solution to

the two-dimensional Hopf equation (4) (or when B
!
¼ 0 in (12)) was obtained only

in the Lagrangian representation which also exactly follows from (11) for n = 2. It is
important to understand that here in (11) we have a solution in Euler variables,
which is firstly obtained in [22] for n = 2 and n = 3. From the solution of (10) or (4)
in Lagrangian variables, it is unreal to obtain a solution of (4) or (10) in Euler
variables. From the other side, it is easy to obtain a solution in Lagrangian variables
if we have a solution in Euler variables as in (11).

For example, in the one-dimensional case (n = 1) in (11), we have

det Â ¼ 1þ t du01dξ1
, and the solution (11) coincides exactly with the solutions

obtained in [43, 44]. The solution (11) can be obtained if we use the integral
representation for the implicit solution of Eq. (10) in the form

uk x
!
; t

� �

¼ u0k x
! � B

!
tð Þ � t u

!
x
!
; t

� �� �

with the use of the Dirac delta function (see

Appendix or [22, 23]).
After averaging over the random field Bi tð Þ (with the Gaussian probability

density), from (11) we can obtain the exact solution in the form:

uih i ¼
ð

dnξu0i ξ
!� �

det Â
�

�

�

�

1

2
ffiffiffiffiffiffiffi

πνt
p
 �n exp �

x
! � ξ

!
�tu0

!
ξ
!� �� �2

4νt

2

6

4

3

7

5
(12)

As distinct from (11), the average solution (12) of Eq. (10) is already arbitrarily
smooth on any unbounded time interval and not only providing the positiveness of

the determinant of the matrix Â.

If, on the other side, we neglect the viscosity forces when B
!

tð Þ ¼ 0 in (11), the
smooth solution (11) is defined, as was already noted, only under the condition

det Â > 0 [22–26] (see Appendix). This condition corresponds to a bounded time
interval 0 ≤ t < t0, where the minimum limiting time t0 of existence of the solution
can be determined from the solution to the following nth-order algebraic equation
(and successive minimization of the expression obtained, which depends on the
spatial coordinates, with respect to these coordinates):

det Â tð Þ ¼ 1þ t
du01 x1ð Þ

dx1
¼ 0, n ¼ 1

det Â tð Þ ¼ 1þ tdivu0
! þt2 det Û012 ¼ 0, n ¼ 2

det Â tð Þ ¼ 1þ tdivu0
! þt2 det Û012 þ det Û013 þ det Û023


 �

þ t3 det Û0 ¼ 0, n ¼ 3

(13)

where det Û0 is the determinant of the 3 � 3 matrix U0nm ¼ ∂u0n
∂xm

, and

det Û012 ¼ ∂u01
∂x1

∂u02
∂x2

� ∂u01
∂x2

∂u02
∂x1

is the determinant of a similar matrix in the two-

dimensional case for the variables x1; x2ð Þ. In this case det Û013, det Û023 are the
determinants of the matrices in the two-dimensional case for the variables x1; x3ð Þ
and x2; x3ð Þ, respectively.
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In the two-dimensional case, the condition in the form of Eq. (13) exactly
coincides with the collapse condition obtained in [42] in connection with the prob-
lem of propagation of a flame front investigated on the basis of the Kuramoto-
Sivashinsky Eq. (3). In this case for exact coincidence, it is necessary to replace

t ! b tð Þ ¼ Us exp γ0tð Þ�1ð Þ
γ0

in (13).

In the one-dimensional case, when n = 1, from Eq. (13) we can obtain the
minimum time of appearance of the singularity t0 ¼ 1

max
du01 x1ð Þ

dx1

�

�

�

�

�

�

> 0. In particular,

for the initial distribution u01 x1ð Þ ¼ a exp � x21
L2

� �

, a > 0, it follows that t0 ¼ L
a

ffiffi

e
2

p

obtained for the value x1 ¼ x1max ¼ L
ffiffi

2
p . In this case the singularity itself can be

implemented only for positive values of the coordinate x1 > 0 when Eq. (13) has a
positive solution for time.

This means that the singularity (collapse) of the smooth solution can never occur
when the initial velocity field is nonzero only for negative values of the spatial
coordinate x1 < 0.

Similarly, we can also determine the vortex wave burst time t0 for n > 1. For (13)
in the two-dimensional case (when the initial velocity field is divergence-free) for

the initial stream function in the form ψ0 x1; x2ð Þ ¼ a
ffiffiffiffiffiffiffiffiffiffi

L1L2

p
exp � x21

L2
1
� x22

L2
2

� �

, a > 0,

we obtain that the minimum time of existence of the smooth solution is equal to

t0 ¼ e
ffiffiffiffiffiffiffi

L1L2

p

2a .

In the example considered, this minimum time of existence of the smooth
solution is implemented for the spatial variables corresponding to points on the

ellipse
x21
L2
1
þ x22

L2
2
¼ 1.

In accordance with (13), the necessary condition of implementation of the
singularity is the condition of existence of a real positive solution to a quadratic
(when n = 2) or cubic (when n = 3) equation for the time variable t. For example, in
the case of two-dimensional flow with the initial divergence-free velocity field

div u0
!¼ 0, in accordance with (13), the necessary and sufficient condition of

implementation of the singularity (collapse) of the solution in finite time is the
condition:

detU012 < 0 (14)

For the example considered above from (14), there follows the inequality
x21
L2
1
þ x21

L2
2
> 1

2. When this inequality is satisfied, for n = 2 there exists a real positive

solution to the quadratic equation in (13) for which the minimum collapse time

t0 ¼ e
ffiffiffiffiffiffiffi

L1L2

p

2a > 0 given above is obtained.

On the contrary, if the initial velocity field is defined in the form of a finite

function which is nonzero only in the domain
x21
L2
1
þ x22

L2
2
≤

1
2, then the inequality (14) is

violated, and the development of the singularity in a finite time turns out already to
be impossible, and the solution remains smooth in unbounded time even regardless
of the viscosity effects.

The condition of existence of a real positive solution of Eq. (13) (e.g., see (14))
is the necessary and sufficient condition of implementation of the singularity
(collapse) of the solution, as distinct from the sufficient but not necessary
integral criterion which was proposed in [45] (see formula (38) in [45]) and has
the form:
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dI

dt

� �

t¼0

¼ �
ð

d3x div u0
!

det 2Û0 > 0; I ¼
ð

d3xdet 2Û (15)

In fact, in accordance with this criterion proposed in [45], the collapse of the
solution is not possible in the case of the initial divergence-free velocity field, i.e.,

when div u0
!¼ 0. However, in this case the violation of criterion (15) does not

exclude the possibility of the collapse of the solution by virtue of the fact that the
criterion (15) does not determine the necessary condition of implementation of the
collapse. Actually, in the example considered above (in determination of the mini-

mum time of implementation of the collapse t0 ¼ e
ffiffiffiffiffiffiffi

L1L2

p

2a ) for two-dimensional com-

pressible flow, the initial condition corresponded just to the initial velocity field

with div u0
!¼ 0 in (13) when n = 2.

On the basis of the solution (11), using (13) and the Lagrangian variables a
!

(where x
!¼ x

!
t; a

!
� �

¼ a
! þtu0

!
a
!
� �

), we can represent the expression for the

matrix of the first derivatives of the velocity Û im ¼ ∂ui
∂xm

in the form:

Û im a
!
; t

� �

¼ Û0ik a
!
� �

A�1
km a

!
; t

� �

(16)

In this case the expression (16) exactly coincides with the formula (30)
given in [45] for the Lagrangian time evolution of the matrix of the first derivatives
of the velocity which must satisfy the three-dimensional Hopf equation (10) (when

B
!

tð Þ ¼ 0 in (10)). In particular, in the one-dimensional case when n = 1, in the
Lagrangian representation from (11) and (13), we obtain a particular case of the
formula (16):

∂u x; tð Þ
∂x

� �

x¼x a;tð Þ
¼

du0 að Þ
da

1þ t du0 að Þ
da

(17)

where a is the coordinate of a fluid particle at the initial time t ¼ 0.
The solution (17) also coincides with the formula (14) in [45] and describes the

catastrophic process of collapse of a simple wave in a finite time t0 whose estimate is
given above on the basis of the solution to Eq. (13) in the case n ¼ 1 with the use of
the Euler variables.

Let us take into account only the external friction. For this purpose it is neces-
sary to consider the case with μ > 0 in Eq. (4). In this case we can also obtain the

exact solution from the expression (11) (for the case when in (11) B
!
¼ 0) changing

in them the time variable t by the variable τ ¼ 1� exp �tμð Þ
μ

(see (31) in Appendix and

[22, 23]). The new time variable τ now varies within the finite limits from τ ¼ 0
(when t ¼ 0) to τ ¼ 1

μ
(as t ! ∞). This leads to the fact that in the case of fulfillment

of the inequality

μ >
1

t0
(18)

for given initial conditions, the quantity det Â > 0 for all times since the
necessary and sufficient condition of implementation of the singularity (13)
will be not satisfied because the change t ! τ tð Þ must also be carried out in the
condition (13).
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Providing (18), the solution to the n-dimensional EH equation is smooth on an
unbounded interval of time t. The corresponding analytic vortical solution to the
three-dimensional Navier–Stokes equation also remains smooth for any t≥0 if the
condition (18) is satisfied [22–26].

Note that under the formal coincidence of the parameters μ ¼ �γ0 (see the
Sivashinsky equation (3) in Introduction), the equality τ tð Þ ¼ b tð Þ takes place
providing the implementation of the singularity (13) when n = 2 and in
accordance with the solution of the Kuramoto-Sivashinsky equation in [42] and
the regularization of this solution for all times if (18) takes place.

Moreover the example of interesting prosperity for the direct application for
solution (11) (see also (12)–(18)) may be done in the connection of the results [46],
where the description of light propagation in a nonlinear medium on the basis of the
Burgers-Hopf equation is done.

Indeed, in [46], the model of light propagation in weak nonlinear 3D Coul-Coul’s
medium with small action radii of nonlocality is represented. In [46], it was stated
that in the geometric optic approach, this model is integrated and described by
the Veselov-Novikov equation which has a 1D reduction in the form of the
Burgers-Hopf equation. The last equation is considered in connection with
nonlinear geometrical optics when 1D reduction is made for the case when the
refractive index has no dependence on one of the space coordinates. It is
important when the property of nonlinear wave finite-time breakdown for
Burgers-Hopf solutions is considered in the application to the case of nonlinear
geometrical optics. These solutions are useful for modeling of dielectrics which
have impurities which induced sharp variations of the refractive index.
Indeed, in the points of breakdown, the curvature of the light rays obtained
discontinues property as it takes place at the boundary between different
media [46].

In [46], the only hodograph method is used for the Burgers-Hopf (or Hopf
equation which is obtained from the Burgers’ equation in the limit of zero
viscosity) equation solution in this connection. Thus the direct analytical
description of the 1D–3D solutions to the Hopf equation in the form (11) gives
the new possibility also for the nonlinear optic problem which is considered in
[46]. For example, according to this solution, it is possible to obtain the impor-
tant effect of avoidance of finite-time singularities when viscosity or friction
forces are taken into account (when condition (18) takes place for the case of
external friction).

2. Conclusions

Here we represent some examples where hydrodynamic methods and solutions
may be useful for different problems in nonlinear optics. In these examples, the
medium itself has the first degree of importance in realization of all mentioned
phenomena. Indeed, the main future of the Vavilov-Cherenkov radiation is that
the medium is the source of this radiation instead of any kinds of bremsstrahlung
radiations by moving charged particles. The VCR theory presented here for the first
time takes into account the real mechanism of VCR by the medium itself, excited by
a sufficiently fast electron. It can also be shown only from the microscopic theory,
but not from the macroscopic one stated in [16]. The first step in this direction was
made in [47] also on the basis of the Abraham theory where it is proposed that the
Vavilov-Cherenkov radiation is emitted by the medium in a nonequilibrium polar-
ization state which is arising due to the parametric resonance interaction of the
medium with a fast-charged particle.
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The second example, which is represented here, also gives new perspectives
on the basis of the new exact solution (in the Euler variables) for n-dimensional
Hopf equation because this equation is known as the possible model for weak
nonlinear optic problems [46]. The importance of the new solution is connected
with its Euler form in dependence from space variables, which are not represented
in the solution of the Burgers-Hopf equation well known before (see [45] and
others).

A. Exact solution of n-D Hopf equation (n = 1, 2, 3)

The Appendix presents a procedure for deriving the exact solution of the 3D
Hopf equation.

The Hopf equation in the n-dimensional space (n = 1..3) is as follows:

∂ui
∂t

þ ul
∂ui
∂xl

¼ 0 (19)

When the external friction coefficient tends to zero in Eq. (4), μ ! 0, Eq. (4)
also coincides with the Hopf equation (19).

In the unbounded space, the general Cauchy problem solution for Eq. (19) under

arbitrary smooth initial conditions u
!
0 x

!
� �

may be obtained as follows (see also in

[22, 23]):
Eq. (19) may be represented in an implicit form as follows:

ui x
!
; t

� �

¼ u0i x
! � t u

!
x
!
; t

� �� �

¼
ð

dnξu0i ξ
!� �

δ ξ
!
� x

! þt u
!

x
!
; t

� �� �

(20)

In (20), δ is the Dirac delta function. Using known (see farther) properties of the
delta function, it is possible to express the delta function in (20) with the help of an
identity true for the very velocity field meeting Eq. (19):

δ ξ
!
� x

! þt u
!

x
!
; t

� �� �

� δ ξ
!
� x

! þtu0
!

ξ
!� �� �

det Â
�

�

�

� (21)

In (21), the matrix Â depends only on the initial velocity field and is as follows:

Â � Akm ¼ δkm þ t
∂u0k ξ

!� �

∂ξm
(22)

To infer (21), it is necessary to use the following delta-function property that is

true for any smooth function Φ
!

ξ
!� �

:

δ Φ
!

ξ
!� �� �

¼
δ ξ

!
�ξ0

!� �

det ∂Φk

∂ξm

� �

ξ
!
¼ξ0

!

�

�

�

�

�

�

�

�

(23)

In (23), the values ξ0
!

are defined from the solution of the equation

Φ
!

ξ0
!� �

¼ 0 (24)
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To prove (23), it is necessary to use Taylor series decomposition wrt ξ
!
near

ξ
!
¼ ξ0

!
for the argument of the delta function Φ

!
ξ
!� �

when in the limit ξ
!
! ξ0

!
taking

into account (24), we get

δ Φk ξ
!

0

� �

þ ∂Φk

∂ξm

� �

ξ
!

¼ξ
!

0

ξm � ξ0mð Þ þ O ξ
!
� ξ

!
0

� �2
 !

¼ δ
∂Φk

∂ξm

� �

ξ
!
¼ξ
!

0

ξm � ξ0mð Þ
 !

(25)

Using variable substitution in the argument of the right-hand side of (25) (of the

type Âx
!¼y

!
and taking into account that d x

!¼ dy
!

det Âj j [48]), we get from the right-

hand side of (25) the right-hand side of (23).

When in (23), Φ
!

ξ
!� �

�ξ
!
� x

! þ tu0
!

ξ
!� �

and det ∂Φk

∂ξm
¼ detAkm where Akm is

from (22); then Eq. (24) is reduced to the following equation:

ξ0
!

� x
! þ tu0

!
ξ0
!� �

¼ 0 (26)

The solution of Eq. (26) is as follows:

ξ0
!

¼ x
! � tu

!
x
!
; t

� �

(27)

This can be verified substituting (27) into (26) and taking into account that the
general implicit solution of the equation (19) can be represented as

u
!

x
!
; t

� �

¼ u0
!

x
! � t u

!
x; tð Þ

� �

that is used in (20).

Let us use a known property of the delta function that for any smooth function

f
!

x
!
� �

, the following equality f
!

x
!
� �

δ x
! � x

!
0

� �

¼ f
!

x
!
0

� �

δ x
! � x0

!
� �

holds. That is

why, in the general case, it is possible to multiply both sides of (23) by det
∂Φk ξ

!
 �

∂ξm

�

�

�

�

�

�

�

�

getting the following:

δ ξ
!
� ξ0

!� �

¼ δ Φ
!

ξ
!� �� �

det
∂Φk ξ

!� �

∂ξm

�

�

�

�

�

�

�

�

�

�

�

�

(28)

From (28) and (27), identical holding of the equality (21) follows.
Taking into account (21), from (20), we get an exact general (for any smooth

initial velocity fields) solution of the Cauchy problem for Eq. (19) as

ui x
!
; t

� �

¼
ð

dnξu0i ξ
!� �

δ ξ
!
� x

! þ tu0
!

ξ
!� �� �

det Â, (29)

where det Â ¼ det δmk þ t
∂u0m ξ

!
 �

∂ξk

� �

. That solution of Eq. (19) is considered

under the following condition:

det Â > 0 (30)

That is why, sign of det Â is absent in (29). The condition (30) provides
smoothness of the solution only on the finite-time interval defined above from (13).

12

Nonlinear Optics ‐ Novel Results in Theory and Applications



We can check that the very (29) under condition (30) exactly satisfies Eq. (19)
by direct substitution of (29) in (19). The solution (29) describes not only potential
but also vortex solutions of Eq. (19) in two- and three-dimensional cases for any

smooth initial velocity field u0
!

x
!
� �

that was not known earlier for the solutions of

Eq. (19) [22–26].
The solution (29) of Eq. (19) allows getting an exact solution of Eq. (10) if in (29)

to make a substitution: x
!!x

! � B
!

tð Þ that yields Eq. (10) representation as in (11).
The solution (29) also can be described as an exact solution of Eq. (4) for μ > 0

if in (29) to substitute:

t ! 1� exp �tμð Þ
μ

(31)

A.1 The direct validation of the solution

To verify the solution (29) satisfies Eq. (19), let us substitute (29) in Eq. (19).
Then we get from (19):

ð

dnξ u0i ξ
!� �

∂det Â

∂t
δ ξ

!
� x

! þ tu0
!

ξ
!� �� �

� u0iu0m det Â
∂δ ξ

!
� x

! þtu0
!

ξ
!� �� �

∂xm

2

4

3

5

þ
ð

dnξ

ð

dnξ1F ¼ 0

(32)

where

F � u0m ξ1
!� �

det Â ξ1
!� �

δ ξ1
!

� x
! þ tu0

!
ξ1
!� �� �

u0i ξ
!� �

det Â ξ
!� �

∂δ ξ
!
�x

!þtu0
!

ξ
!
 �
 �

∂xm
.

To transform sub-integral expression in (32), the following identities shall be
used:

∂δ ξ
!
� x

! þ tu0
!

ξ
!� �� �

∂xm
¼ �A�1

km

∂δ ξ
!
� x

! þ tu0
!

ξ
!� �� �

∂ξk
(33)

∂ det Â

∂t
� ∂u0m

∂ξk
A�1

km det Â (34)

∂

∂ξk
A�1

km det Â
� �

� 0 (35)

The identity (33) is obtained from the relationship (obtained by differentiating

the delta function having argument as a given function of ξ
!
)

∂δ ξ
!
�x

!þ tu0
!

ξ
!
 �
 �

∂ξk
¼ � ∂δ ξ

!
�x

!þ tu0
!

ξ
!
 �
 �

∂xl
Alk after multiplying it both sides by the inverse

matrix A�1
km (where AlkA

�1
km ¼ δlmи and δlm is the unity matrix or the Kronecker

delta).
The validity of the identities (34) and (35) is proved by the direct checking. In

the one-dimensional case, when Â ¼ 1þ t du01dξ1
¼ det Â; Â

�1 ¼ det Â
� ��1

, it obvi-

ously follows directly from (34) and (35). Further, in Item 3, the proof of the
identities (34) and (35) of the two- and three-dimensional cases is given.
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Taking into account (33)–(35), from (32), we get

ð

dnξδ ξ
!
� x

! þ  tu0
!

ξ
!� �� �

A�1
km det Â u0i

∂u0m
∂ξk

� ∂

∂ξk
u0iu0mð Þ

� �

þ
ð

dnξ

ð

dnξ1F1 ¼ 0

(36)

where the sub-integral expression in the second term of the left-hand side of
(36) is as follows:

F1 ¼ u0m ξ1
!� � ∂u0i ξ

!� �

∂ξk
det Â ξ1

!� �

det Â ξ
!� �

A�1
km ξ

!� �

δ ξ
!
� x

! þ tu0
!

ξ
!� �� �

δ ξ1
!

� x
! þ tu0

!
ξ1
!
Þ

� ��

(37)

To transform (37), it is necessary to use the following identities:

δ ξ
!
� x

! þ tu0
!

ξ
!� �� �

δ ξ1
!

� x
! þ tu0

!
ξ1
!� �� �

� δ ξ
!
� x

! þ tu0
!

ξ
!� �� �

δ ξ1
!

� ξ
!
þ t u0

!
ξ1
!� �

� u0
!

ξ
!� �� �� � (38)

δ ξ1
!

� ξ
!
þ t u0

!
ξ1
!� �

� u0
!

ξ
!� �� �� �

�
δ ξ1

!
� ξ

!� �

det Â
(39)

In (39), as it is noted above, det Â > 0, and that is why the sign is not used in the
denominator of (39).

The identity (38) is a consequence of the noted above property of the delta
function (see discussion before the formula (28)).

To infer the identity (39), it is necessary to consider in the argument of the delta
function a Taylor series decomposition of the function

u0k ξ
!
1

� �

¼ u0k ξ
!� �

þ ∂u0k
ξ1
!
Þ

∂ξ1m

� �

ξ1
!
¼ξ

!
ξ1m � ξmð Þ þ O ξ

!
1� ξ

!� �2
 

near the point

ξ1
!
¼ξ

!
. Then the left-hand side of (39) has the form δ Â ξ1

!
�ξ

!� �� �

similar to that of

the right-hand side of (25), and according to (23), we get from here the identity
(39).

After the application of the identity (39) to the expression (37), defining the
form of the second term in (36), from (36), we get

ð

dnξδ ξ
!
� x

! þ tu0
!

ξ
!� �� �

A�1
km det Â u0i

∂u0m
∂ξk

� ∂

∂ξk
u0iu0mð Þ þ u0m

∂u0i
∂ξk

� 


¼ 0 (40)

Equality (40) holds identically due to the identical equality to zero of the
expression in the brackets in the sub-integral expression in (40).

Thus, we have proved that (29) exactly satisfies the Hopf equation (19) for any

smooth initial velocity fields on the finite-time interval under condition det Â > 0
in (13).

A.2 The validation of identities (34) and (35)

In the two-dimensional case, the elements of the inverse matrix A�1
km and the

determinant of the matrix Â are
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A�1
11 ¼ 1þ t∂u02=∂ξ2

det Â
; A�1

12 ¼ � t∂u01=∂ξ2

det Â
; A�1

21 ¼ � t∂u02=∂ξ1

det Â
; A�1

22 ¼ 1þ t∂u01=∂ξ1

det Â
(41)

det Â ¼ 1þ t
∂u01
∂ξ1

þ ∂u02
∂ξ2

� �

þ t2
∂u01
∂ξ1

∂u02
∂ξ2

� ∂u01
∂ξ2

∂u02
∂ξ1

� �

(42)

Here, (42) corresponds to the formula (13) for n = 2.
Using (41), it is possible to show that the following equality holds (in the left-

hand side of (43), summation is assumed on the repeating indices from 1 to 2):

∂u0m
∂ξk

A�1
km det Â ¼ ∂u01

∂ξ1
þ ∂u02

∂ξ2
þ 2t

∂u01
∂ξ1

∂u02
∂ξ2

� ∂u01
∂ξ2

∂u02
∂ξ1

� �

(43)

From (42), it follows that the right-hand side of (43) exactly matches ∂det Â
∂t

obtained when differentiating over time in (42). This proves the identity of (34) in
the two-dimensional case.

To prove the identity (35), let us introduce

Bm ¼ ∂

∂ξk
A�1

km det Â
� �

(44)

Using (41), one gets from (44)

B1 ¼
∂

∂ξ1
1þ t

∂u02
∂ξ2

� �

� ∂

∂ξ2
t
∂u02
∂ξ1

� �

� 0 (45)

B2 ¼
∂

∂ξ1
�t

∂u01
∂ξ2

� �

þ ∂

∂ξ2
1þ t

∂u01
∂ξ1

� �

� 0 (46)

The identities (45) and (46) confirm the truth of the identity (35) in the two-
dimensional case.

Similarly, the identity (35) is proved in the three-dimensional case. For that, we

need the following representation of the entries of the inverse matrix Â
�1

[49]:

A�1
11 ¼ 1

det Â
1þ t

∂u02
∂ξ2

� �

1þ t
∂u03
∂ξ3

� �

� t2
∂u02
∂ξ3

∂u03
∂ξ2

� 


;

A�1
12 ¼ 1

det Â
t2
∂u01
∂ξ3

∂u03
∂ξ2

� t 1þ t
∂u03
∂ξ3

� �

∂u01
∂ξ2

� 


;

A�1
13 ¼ 1

det Â
t2
∂u01
∂ξ2

∂u02
∂ξ3

� t 1þ t
∂u02
∂ξ2

� �

∂u01
∂ξ3

� 


;

A�1
21 ¼ 1

det Â
t2
∂u02
∂ξ3

∂u03
∂ξ1

� t 1þ t
∂u03
∂ξ3

� �

∂u02
∂ξ1

� 


;

A�1
22 ¼ 1

det Â
1þ t

∂u01
∂ξ1

� �

1þ t
∂u03
∂ξ3

� �

� t2
∂u01
∂ξ3

∂u03
∂ξ1

� 


;

A�1
23 ¼ 1

det Â
t2
∂u01
∂ξ3

∂u02
∂ξ1

� t 1þ t
∂u01
∂ξ1

� �

∂u02
∂ξ3

� 


;

A�1
31 ¼ 1

det Â
t2
∂u02
∂ξ1

∂u03
∂ξ2

� t 1þ t
∂u02
∂ξ2

� �

∂u03
∂ξ1

� 


;

A�1
32 ¼ 1

det Â
t2
∂u01
∂ξ2

∂u03
∂ξ1

� t 1þ t
∂u01
∂ξ1

� �

∂u03
∂ξ2

� 


A�1
33 ¼ 1

det Â
1þ t

∂u01
∂ξ1

� �

1þ t
∂u02
∂ξ2

� �

� t2
∂u01
∂ξ2

∂u02
∂ξ1

� 


(47)
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From (44), in the three-dimensional case, we get on the basis of (47) that all
three components of the vector Bm � 0. For each m ¼ 1, 2, 3, we get identical
zeroing separately for the sum of terms proportional to t and separately for the sum
of the terms proportional to t2.

For example, in the expression for B1 the sum of terms proportional to the first

degree of time has the form t ∂

∂ξ1

∂u02
∂ξ2

þ ∂u03
∂ξ3

� �

� ∂
2u02

∂ξ2∂ξ1
� ∂

2u03
∂ξ3∂ξ1

h i

� 0, and similarly we

can show the vanishing of the sum of twelve terms proportional to the square of
time. Thus, the identity (35) is also proved in the three-dimensional case.

Proof of the identity (34) also is possible in the 3D case on the basis of (47) and
(13) but is related to the cumbersome transformations.

Author details

Sergey G. Chefranov1,2* and Artem S. Chefranov1

1 Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences,
Moscow, Russia

2 Plasma Physics and Pulse Power Research Laboratory, Technion-Israel Institute of
Technology, Haifa, Israel

*Address all correspondence to: schefranov@mail.ru; csergei@technion.ac.il

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

16

Nonlinear Optics ‐ Novel Results in Theory and Applications



References

[1]Maxwell G. Selected Works on the
Electro-Magnetic Field Theory.
Moscow, Mir, 1952

[2] Kambe T. Fluid Dynamics Research.
2010;42:055502

[3] Kuznetsov AP, Kuznetsov SP,
Trubetskov DI. Isvestia Vusov, PND.
2015;23:5

[4] Kambe T. New scenario of
turbulence theory and wall-bounded
turbulence: Theoretical significance.
arXiv. Jun 2017. 1610.05975v2 (Physics
> Fluid Dynamics)

[5] Feinman R, Leiton R, Sands M.
Feinman Lectures in Physics. Vol. 5.
Moscow, Mir, 1964

[6] Chefranov SG, Mokhov II,
Chefranov AG. The hydrodynamic
singular vortex on the sphere and the
Dirac monopole. arXiv. 2017.
1711.04124v1 (Physics > Fluid
Dynamics )

[7] PAM D. Proceedings of the Royal
Society A. 1931;133:60

[8] Blaha S. Physical Review Letters.
1976;36:874

[9] Volovik GE, Mineev VP. Soviet
Physics. JETP Letters. 1976;23:647

[10] Volovik GE et al. arXiv. 1999.
cond-mat/9911486v2

[11] Volovik GE. Proceedings of the
National Academy of Sciences of the
United States of America. 2000;97:2431

[12] Landau LD. Soviet Physics. JETP
Letters. 1941;11:592

[13] Chefranov SG. Physical Review
Letters. 2004;93:254801

[14] Chefranov SG. JETP. 2004;99:296

[15] Chefranov SG. JETP. 2016;123:12

[16] Tamm IM. Journal de Physique.
1939;1:139

[17] Frank IM. Physics Review. 1943;75:
1862

[18]Ginzburg VL. Journal de Physique.
1940;2:441

[19] Kuramoto Y, Tsuzuki T. Progress in
Theoretical Physics. 1976;55:356

[20] Sivashinsky GI. Physica D:
Nonlinear Phenomena. 1982;4:227

[21] Sivashinsky GI. Annual Review of
Fluid Mechanics. 1983;15:179

[22] Chefranov SG. Soviet Physics –
Doklady. 1991;36(4):286

[23]Chefranov SG, Chefranov AG. Exact
time dependent solution to the 3D
Euler-Helmholtz and Riemann-Hopf
equations for the vortex flow of
compressible medium and the Sixth
Millennium Prize Problem. arXiv. 2017.
1703.07239v3 (Physics > Fluid
Dynamics)

[24] Chefranov SG, Chefranov AG.
Cardiometry. 2017. 10 www.
cardiometry.net

[25] Chefranov SG, Chefranov AG. The
6th International Conference 10th
Anniversary Program “Turbulent
Mixing and Beyond”. Abdus Salam
International Centre for Theoretical
Physics; 14–18 August 2017; Trieste,
Italy

[26] Chefranov SG, Chefranov AG.
Proceedings of Euromech/Ercoftac
Colloquium 589 “Turbulent Cascades

17

Hydrodynamic Methods and Exact Solutions in Application to the Electromagnetic Field Theory…
DOI: http://dx.doi.org/10.5772/intechopen.80813



II”; 5–7 December 2017. Lyon, France:
Ecole Central de Lyon Ecully

[27] Feffermann CB. Existence and
Smoothness of the Navier-Stokes
Equation, The Millennium Prize
Problems. Vol. 57. Cambridge, MA: Clay
Mathematics Institute; 2006. www.
claymath.org

[28] Cherenkov PA. Physical Review.
1937;52:378

[29] Bolotovsky BM. Oliver Heaviside.
Moscow: Nauka; 1985

[30] Landau LD, Lifshitz EM.
Electrodynamics of Continuous
Mediums. Moscow: Nauka; 1982. p. 553.
republished by Pergamon Press, Oxford,
1984

[31] Collins GB, Reiling. Physical
Review. 1938;54:499

[32] Tailor JB. Physical Review Letters.
1974;33:1133

[33] Chefranov SG. JETP Letters. 2001;
73:274

[34] Chefranov SG, Chefranov AG.
JETP. 2014;146:373

[35] Chefranov SG, Chefranov AG.
Doklady Physics. 2015;60:327

[36] Chefranov SG, Chefranov AG.
JETP. 2016;122:925

[37] Ryazanov MI. Soviet Physics –
Doklady. 1964;18:238

[38]Monin AS, Yaglom AM. Statistical
Hydromechanics. Saint-Petersburg:
Gidrometeoizdat; 1992

[39] Batchelor GK. An Introduction to
Fluid Dynamics. Cambridge: Cambridge
University Press; 1970

[40] Landau LD, Lifshitz EM. Fluid
Mechanics. 2nd ed. Oxford: Pergamon
Press; 1987

[41] Stewart I. The Great Mathematical
Problems. Profile Boobs, Joat
Enterprise; 2013

[42] Kuznetsov EA, Mineev VP. Physics
Letters A. 1996;221:187

[43] Pelinovskii EN. Izvestiya Vuzov,
Radiophysics. 1976;19:373

[44] Chefranov SG. Soviet Physics -
JETP. 1989;69(1):94

[45]Kuznetsov EA. Physica D: Nonlinear
Phenomena. 2003;184:266

[46] Konopelchenko BG, Moro A.
Theoretical and Mathematical Physics.
2005;144(1):968

[47]Chefranov SG. The newmicroscopic
Vavilov-Cherenkov radiation theory.
arXiv. 2012. 1204.0002v1 (Physics >
General Physics)

[48] Gel’fand IM, Vilenkin NY.
Generalize Functions. Vol. 4. Moscow;
1961. p. 317

[49] Cramer H. Mathematical methods
of Statistics, Stockholm, 1946. p. 128
(In Russian-Moscow, Mir, 1975)

18

Nonlinear Optics ‐ Novel Results in Theory and Applications


