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Chapter

Three Solutions to the Nonlinear
Schrodinger Equation for a
Constant Potential

Gabino Torres Vega

Abstract

We introduce three sets of solutions to the nonlinear Schrédinger equation for
the free particle case. A well-known solution is written in terms of Jacobi elliptic
functions, which are the nonlinear versions of the trigonometric functions sin, cos,
tan, cot, sec, and csc. The nonlinear versions of the other related functions like the
real and complex exponential functions and the linear combinations of them is the
subject of this chapter. We also illustrate the use of these functions in Quantum
Mechanics as well as in nonlinear optics.

Keywords: new nonlinear exponential-like functions, superpositions of nonlinear
functions, nonlinear optics, nonlinear quantum mechanics

1. Introduction

Since the nonlinear Schrédinger equation appears in many fields of physics,
including nonlinear optics, thus, there is interest in finding its solutions, in particu-
lar, its eigenfunctions. A set of eigenfunctions, for the free particle, is given in terms
of Jacobi’s elliptic functions [1-4], which are real periodic functions, and they have
been used in order to find the eigenstates of the particle in a box [5, 6] and in a
double square well [7].

Jacobi’s elliptic functions are needed in subjects like the description of pulse
narrowing nonlinear transmission lines [8].

Interestingly, there is a way to linearly superpose Jacobi’s elliptic functions
by means of adding constant terms to their arguments [3]. So, we ask
ourselves if there are other ways to achieve nonlinear superposition of
nonlinear functions.

Besides, the linear equation has complex solutions with a current density flux
different from zero, and we expect that the nonlinear equation should also have this
type of solutions at least for small nonlinear interaction.

In this chapter, we introduce three other sets of functions which are also solu-
tions to the Gross-Pitaevskii equation; they all are nonlinear superpositions of
functions. The modification of the elliptic functions allows us to consider the
nonlinear equivalent of the linear superposition of exponential, real and complex,
and trigonometric functions found in nonrelativistic linear quantum mechanics.
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The functions we are about to introduce can be used, for instance, in the case of
a free Bose-Einstein condensate reflected by a potential barrier. One might be able
to further analyze nonlinear tunneling [7] and nonlinear optics phenomena with the
help of these functions.

2. Nonlinear complex exponential functions

The definitions of the functions and their properties are similar to those used in
Jacobi’s elliptic functions [1, 2, 4]. Let us start with the definition of our complex
exponential nonlinear functions:

enc(u,a) =a e~ +b e™, snc(u,a) =a € —b e, (1)
1
_ _ 2 - -
dnc(u,a) = \/1— alcnc(u)|, nce(u, a) nclu.a)’ (2)
nsc(u, @) = nde(u,a) = 3 ©
el a) = snc(u,a)’ o a) = dnc(u, @)’
_ snc(u, a) _cnc(u, @)
tac(u,a) = cnc(u.a)’ coc(u,a) = sncw.a)’ (4)

where a, a, bER, and they are such that @ < 1/max [(a + b)z] . With these choices,

the function dnc is always positive, and we do not have to worry about branch
points in the relation between the variables x and «. The variables # and x are
related as

U= r ad . (5)
0 \/1 — alenc(t, a)?

A plot of these functions is found in Figure 1 for a particular set of values of
the parameters. These functions behave like the usual superposition of complex
exponential functions (a = 0), changing behavior as the value of a increases until

2T T T T

3r/2 LU(U) .

/2

0 1 1 1 1 1 1 0.0
0 9K, 4K, 0 9K, AK,

u u

Figure 1.
Nonlinear complex exponential functions with a = 0.1, b = 0.9, and a = 0.9. The curves correspond to 1,

|enc(u, a)|; 2, |snc(u,a)|’; and 3, dnc(u, a).
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it reaches the soliton value, @ = 1/max [(a + b)z} . The functions become concen-

trated around the origin for the soliton value of a.
The quarter period of these functions is defined as

/2
Ke = J dat .
0 \/1 — alenc(t, a)?

If we call
nog = a*+ b’ np=1-— 2a(&l2 + bz),

1y :1—§a(0l2+b2), n3 :1—a(a2+b2),

n4:1—%(a2+b2), n5:1+g(ﬂ2+b2),
ne =1+ a(a’+b°), n7:]:k%a@2+bﬂ,

the squares of the nonlinear functions are written as

enc?(u, a) — snc?(u, a) = 4ab,
enclu, @) + snc(u, @) = 2o,
dnc?(u,a) = 1 — alenc(u, a)|?
= 11 + alsnc(u, a)|
tac’(u,a) = 1 — 4ab ncc?(u, ),
coc’(u,a) = 1+ 4abnsc*(u, a).

Some derivatives of these functions are

cnc' (u,a) =1 snc(u,a) dnc(u,a),
snc'(u,a) =i cnc(u,a) dnc(u,a)

B

dnc'(u,a) = aS{cnc* (u,a) snc(u,a)},

nec'(u,a) = —itac(u,a) ncc(u,a) dnc(u,a),
nsc’ (u,a) = —icoc(u,a) nsc(u,a) dnc(u,a),
ndc’ (u, @) = —a ndc®(u,a) I{cnc*(u,q) snc(u,a)},

tac’'(u,a) = i[1+ tac’(u, a) | dnc(u, a)

coc'(u, ) = —id4abnsc*(u, a)dnc(u, a),

where $ indicates to take the imaginary part of the quantity.
We also have that the derivative of the inverse functions is given by

d 4
@cnc (y) ==

i

\/(yz — 4ab) (1 _ a|y|2> ’

(6)

@)
(8)
9)

(10)

(11)
(12)
(13)
(14)
(15)
(16)

(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

(25)
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a?isncl(y) =+ ! R (26)
) \/ (4ab + %) (m + ayP)
in(:c’l(y) =+ : > (27)
dy 2 2
y1/ (1= 4aby?) (1 - a/f*)
C;inscl )=+ : . (28)
2 7+ 4aby?) (s + a/yF)
Now, the second derivatives are as follows
cnc”’(u,a) = [Za lenc(u, @)|> — ngenc(u, @) — 2aab cnc*(u, a), (29)
snc” (u, ) = ([3a(a2 +b%) — 1] — 2a|snc(u, a)]2> (30)
snc(u,a) — 2aab snc*(u,a),
dnc” (u, ) = 2[dnc*(u, @) — ano|dnc(u, a), (31)
ncc” (u, ) = ngnec(u, a) — 2acenc* (u, a) + 2aabnec*(u, a) enc* (u, a), (32)
nsc” (u, @) = (n3 + 8abninsc?(u, a))nsc(u, @) (33)
— a[l + 10abnsc?(u, a)]snc* (u, a),
ndc” (u, @) = 20*ndc (u, a) (Senc(u, a)snc(u, a))? (34)
+2a(a? + b*)ndc(u, a),
tac” (u,a) = [1+ tac’(u, )]
(35)
{a[ZtaC(u, a) + i Stac(u, a))|enc(u, a)|* — 2tac(u, a) },
coc” (u, @) = 2[1 — coc®(u, a)]coc(u, a)dnc? (u, a)
cnc’(u,@)  snc*(u, a) (36)

— 2aab { ] coc(u,a).

cnc(u,a)  snc(u,a)
The first three of the above equations can be thought of as modifications of the
Gross-Pitaevskii equation, which allows for solutions of the form cnc (%, a), snc (4, @),
and dnc (#, ). However, when a or b vanishes, we get the Gross-Pitaevskii form.
With these results at hand, we can see that the probability current densities
associated with cnc (#, ) and snc (u, @) are given by

J.(u) = Re{cnc*(u,a) -—i%cnc(u,a)} } (37)
= (a> - b?) dnc(-u,a),
ji(u) = Re{snc* (u, @) :—i%srw(u, a)] } (38)

= (a® - b*) dnc(u,a),

respectively. The nonlinear term causes that the quantum flux be no longer
constant (as is the case for linear interaction) but modulated by dnc (#, a) instead.
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The differential equations for cnc (#, @) and snc (#, @) would have the Gross-
Pitaevskii equation form if any of a, a4, or b becomes zero or when a = b (which is
the case of real functions, i.e., Jacobi’s functions). The case of a, 4, or b zero
corresponds to the cases when there is no nonlinear interaction or when there is
total reflection or only transmission in a quantum system.

2.1 The potential step

A straight forward application of the functions introduced in this section is the
finding of the eigenfunctions of the Gross-Pitaevskii equation for a step potential:

V) { 0, when u <0, (39)
Uu) =
Vo, when u>0,
and a chemical potential y larger than the potential height V. The Gross-
Pitaevskii equation is written as
d*w(u) 2ML? 2ML>? )
7 T W Vo) wlw) =~ NUolw(w)y(u) = 0, (40)

where y (%) is the unnormalized eigenfunction for the Bose-Einstein condensate
(BEC), M is the mass of a single atom, NN is the number of atoms in the condensate,
Uo = 4nh’a/M characterizes the atom-atom interaction,  is the scattering length, L
is a scaling length, A is the integral of the magnitude squared of the wave function,
u is a dimensionless length, yu is the chemical potential, and V| is an external
constant potential.

Foru < 0 (we call it the region I, Vy = 0), we use the cnc function witha = 1, i.e.,

wi(u,a) = cnc(ku, ar), (41)
with parameters
2ML?
ki = 2 . NE (42)
7] [1+a1(a2 +b )}
ML’NU,
ol =~ 43

From these equations, we obtain

NU
ar = —— ° -~ (44)
2uA* — NUq (a? + b*)
and
ki NUo, 5,
U= TEREEYY: (&l +b ) (45)

This last result for y is in agreement with the conjecture formulated by D’Agosta
et al. in Ref. [9], with the last term being the self-energy of the condensate, which is
independent of ;.

For u>0, we use the nonlinear plane wave (a =T, b = 0)

w(u) = cnc(kyu, ay), (46)
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with
L? 2ML*NU
2 _ 0 _
1+ ayT ZkIZI (n— Vo), e Azké = 2ayp, (47)
ie.,
n’kl,  NU, 2ML?(u — Vo)

— V + 1L + Tz) kz - : 48
0T oM T a2 = W21+ anT?) “48)

By combining the expressions for the as in both regions, we find that
a[k% = (lHkIZI, (49)
and since the chemical potential should be the same on both regions, we also get

n* (ki — ki) | NUyg
Vo = 2 2
2ML 2A

(a® + b — T?). (50)
The equal flux condition results in
ki(a® — b*) = kyT?. (51)

Now, equating the functions and their derivatives at # = 0, we find two relations
for the parameters:

a+b="T, (52)

(@ —b)kr\/1 — ag(a +b)* = Tky\/1— ay T, (53)

ie.,

kH_(a—Io)\/ 1— ar(a +b)>? 5

ki (a+b)\[1—ai(a+b)k2 /K

We show these values in Figure 2. We observe a behavior similar to the linear
system; when >V (k;; — k), which means very high energies, the step is just a
small perturbation on the evolution of the wave.

Figure 2.
A three-dimensional plot of the values of ky [k for the potential step. Dimensionless units.
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3. Nonlinear superposition of trigonometric functions

A second set of nonlinear functions is the nonlinear version of the superposition
of trigonometric functions, which is the subject of this section. We only mention
some results; more details are found in Ref. [10].

Let us consider the change of variable from 6 to # defined by the Jacobian

dna(u) = Z—Z = \/1 + g (a% — bz) cos (20) + aab sin (20), (55)

where a.a, bER, and |a| < 4|ab|/(a* + bz)z, a plot of 4|ab|/(a* + bz)z, is shown in
Figure 3. Thus, the relationship between 6 and u is

v do
U= J ) (56)
0 \/1 +9 (a2 — b*) cos (20) + aab sin (26)

We also define the nonlinear functions

sna(u):=asin () — b cos (0), (57)
cna(u):=a cos (6) + b sin (), (58)
osa(u)i= Sn;(u), oca(u)= cn;(u)’ oda(u):= dni(u), (59)
T, st D, gt e
dca(u)=f;‘z((z)) , sda(u):cslzz((z)), cda(u) QEZ‘EZ)) (61)

A plot of these functions can be found in Figure 4, for a set of values of a, 4, b.
The algebraic relationships between the above functions are

4|AB|
(A2 + B2)2

0.10
0.05

0.00
-10

Figure 3.
Three-dimensional plot of 4|ab|/(a* + bz)z.
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a® +b* = sna’(u) + cna®(u), (62)
dna’(u) =1— % (sna’(u) — cna*(u)) (63)
= n4 +a cna’(u) (64)

= ns — a sna’(u), (65)

sda’(u) = nooda’(u) — cda’(u), (66)
1— oda’(u) = % [cda®(u) — sda’(u)], (67)
1+ asda’(u) = nsoda’(u), (68)

1 — acda’(u) = n4oda’(u), (69)
sca’(u) = ngoca’(u) — 1, (70)
dcaz(u) =ngqoca’(u) + a, (71)
csa’(u) = ngosa’(u) — 1. (72)

The derivatives of these functions are

sna’(u) = cna(u) dna(u), (73)
cna’(u) = —sna(u) dna(u), (74)
dna’(u) = —asna(u)cna(u), (75)
osa’ () = —cna(u) dna(u)osa®(u), (76)
oca’(u) = sna(u) dna(u)oca’(u), (77)
oda'(#) = a cna(u) sna(u)oda®(u). (78)
6 1
4 L
2 L
0 (T S T Y Y N N R L1

Figure 4.
Plots of the nonlinear functions fora = 0.1, b = 0.9, and a = 1.2. Note that the functions cna and sna have
different shapes, and, thus, they are not just the other function shifted by some amount.
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Another property is the eliminant equation, also known as energy or Liapunov
function,

[sna’ ()] + nysna’(u) — a sna*(u) = nons, (79)
[cna’ (u)]* 4+ nacna®(u) + a cna*(u) = nona, (80)
[dna’(u)]? — 2dna’ (u) + dna*(u) = —n4ns, (81)
[osa’(u)]* 4 ny0sa’(u) — nonsosa*(u) = a, (82)
[oca’ (u)]* + nyoca®(u) — nongoca*(u) = (83)
[oda’ (u)]? — 20da®(u) + n4nsoda*(u) = (84)

Second derivatives of the functions lead to the differential equations similar to the
Gross-Pitaevskii nonlinear differential equation. For sna, cna, and dna, we have that

sna” (u) + nysna(u) — 2a sna’(u) = 0, (85)

cna’(u) +nycna(u) + 2a cna’(u) = 0, (86)

dna”(u) +2 dna(u)[dna’(x) — 1] =0, (87)

osa” (1) + nyosa(u) — 2ngnsosa®(u) = 0, (88)

oca” (u) +nyoca(u) — 2nongoca®(u) = 0, (89)

oda”(u) — 2 oda(u) + 2n4nsoda®(u) = 0. (90)

Quarter period of these functions is defined as
Ka(a,a,b) J ad . (91)
\/1 + a(a b2 ) cos (2t)/2 + aab sin (2t)

A plot of Ka (a,a,b) can be found in Figure 5 for a = 1.2.

b

1.8

1 0 | 0:5 00 -05 -10

Figure 5.
Some of the values of nonlinear quarter period Ka (a,a,b), for a = 1.2.
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The derivatives of the inverse functions are

%sna_lm Vo —yil(ns ~a?) o
d_;Vcna_l(y) - vV (no —J/jt)tnzt +a?)’ ©)
%dna_l(y) T V(s —;)1()’2 —n4) O
U e e ik
%Oca_l(y) - vV (n0y? —ji)l("wz +a) 00
%Oda_l(y) - V (nsy? —?)1(1 —n4y?) &

Then, as expected, we can see that these functions also invert the same integrals
that Jacobi’s functions invert.
We also introduce the integral

Ea(u) = J: dv dna’(v) (98)

= nsu — aJ: dv sna’(v) (99)

=n4u + ar dv cna’(v), (100)
0

which resembles Jacobi’s elliptic integral of the second kind. This function is
shown in Figure 6, for a set of values of the parameters.

This is the minimum set of properties for these functions. Fortunately, we can
still introduce another set of nonlinear functions.

Figure 6.
Plot of Ea (u) for A =0.1, B= 0.9, and a = 1.2.
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4. Nonlinear exponential-like functions
It is possible to define still another set of nonlinear functions inspired on Jacobi’s

elliptic functions [11]. Let us consider the following set of nonlinear functions of
exponential type:

pn(u) =¢*, mn(u)=e¢*, fnu)=a e +b e, (101)

gn(u) =a ¢ —b e, rmu)= \/1 +mla e —b e*x), (102)
1 1 1

nf(u) = )’ ng(u) = @)’ nr(u) = ()’ (103)

with # and x related as

o= | a , (104)
0 \/1+m(a ¢ —b et)

where a, b€R and m>0. The required values of a, b, m causes that the radical is
positive and then there is no need to consider branching points.

Note that rn (#) #, rn (—u), and, then, m#n(u) is not the mirror image of pn(u),
i.e., mn(u) # pn(—u) unless a = b. A plot of these functions is found in Figure 7 for
a set of values of the parameters a, b, and m. The values of 2 and b are related to the
mirror symmetry between the functions pn (#) and mn («), being b = a the more
symmetric case (which would be the case of Jacobi’s elliptic functions with complex
arguments). The value of m causes that these functions decay or increase more
rapidly with respect to the regular exponential functions. The domain of these
functions is finite unless 7 = 0; in fact, increasing the magnitude of x beyond, for
instance, In (10*/2a+/m), does not increase the magnitude of u significantly. One
can extend the domain of these functions by setting the value of the function to zero

e T 5 t Tttt T
10t » mn(u)
25} \mlw -
[ pn(u
0 (l ) ,,,,,,, L
5 S :
: nf(u)
0 1t -
nr(u)
-5 1 —
— 2} 0
u

Figure 7.
Nonlinear exponential-like functions form =1, a = 0.1, and b = 0.9.

11
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or infinity for larger |#|, making them nonperiodic functions on the real axes. We
also note that some of these functions are actually bounded.

We can verify easily the following properties which are similar to those for the
elliptic functions. The square of these functions are related as

4ab = fn*(u) — gn’(u), (105)

m?(u) —1=m gn’(u) =m [fnz(u) — 4ab| (106)
fn(u)gn(u) = a’pn®(u) — b>mn?(u), (107)
fn’(u) + gn’(u) = 2[b> mn?(u) +a* pn’(u)], (108)

whereas the derivatives of them are

pn’(u) = pn(u) rn(u), mn’(u) = —mn(u) rn(u), (109)
fn'(u) = gn(u) m(u), gn’(u) = fn(u) m(u), (110)
rn'(u) =m fn(u) gn(u), nf'(u) = —gn(u) nf’(u) rn(u), (111)

ng’(u) = —fn(u) ng’(u) r(u), nt'(u) = —m fn(u) gn(u) nr’(u). (112)

As we can see from these derivatives, the rate of increase or decrease of the
functions is modulated by the rn function; it would be the same as that for the usual
exponential functions for the case m = 0.

We also have that

dpnl(y) _ 1 , (113)
Y V2 +mla 2 —b)?
dmn(y) 1 (114)
dy 2 _ 212
y>+ma—b y*)

d fnl(y) 1

dy =+ V(02 — 4ab)(c; +m yz)’ (115)
d gn~l(y) 1

= 4 116
dy V02 + 4ab)(1+m y?) (116)

d rm(y) 1
S A 117
P Y e ey )

d nfly) 1
& At el e

d ng'(y) B 1
dy B V(1 +4ab y?)(y2 +m) ’ (119)

d nri(y) 1
—_— = — . 120
R e ey o

As expected, from these derivatives, we can see that these functions also invert
the same integral functions that Jacobi was interested on [1, 4].

12
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The second derivatives are

pn”(u) — pn(u) [c3 + 2ma® pn®(u)] = 0, (121)
mn” (u) — mn(u)[c3 + 2mb* mn*(u)] = 0, (122)
fn”(u) — fn(u) [e1 +2m fo’(u)] = 0, (123)
gn”(u) — gn(u)[cs +2m gn’*(u)] =0, (124)
" (u) + 2rn(u) [c3 — rn*(u)] = 0, (125)
nf"(u) — nf (u) [e1 — 8abeonf? (u)] = 0, (126)
ng”(u) — ng(u)[c4 + 8ab ng*(u)] =0, (127)
7" (u) — 2nr(u) [co nr?(u) — 3] = 0. (128)

where
c1=1—8mab, ¢y =1—4mab, c3=1-2mab, (129)
¢4 =1+ 4mab. (130)

Then, the functions that we have just introduced are solutions of nonlinear
second-order differential equations with the one-dimensional Gross-Pitaevskii
equation form, for a constant potential and real functions.

Additionally, the energy or Liapunov functions are given by

pn'(u)” — pn(u)*[c3 +ma® pn’(u)] = mb?, (131)
mn'(u)” — mn(«)’ [c; + mb*> mn*(u)] = ma?, (132)
fn'(u)® — fo(u)’[c1 +m fn’(u)] = —4abc,, (133)
gn'(u)” — gn(u)’[ca +m gn’(u)] = 4ab, (134)
' (u)® + 2rn(u)’ [c3 — 2 (u)] = (135)
nf'(u)* — nf(u)*[e; — 4abeonf? (u)] =m, (136)
ng'(u)” — ng(u)’[cs + 4ab ng(u)] =m, (137)
nr'(u)* — nr(u)*[~2c3 + ¢, nr(u)] =1, (138)

where we have made use of the relationships between the squares of the func-
tions. Note that, the functions nf and ng have the same energy, whereas that the
functions pn (#) and mn (#) would have the same energy if b = a.

Some particular cases are the following. When 4mab = 1 or 2mab = 1, we can
write down explicit expressions of # in terms of trigonometric, hypergeometric, and
exponential functions of x. When 4mab = 1, we get

X V4dabd - -
u :JOWZZ{taH 1(\/%7696) — tan 1(\/21:):|; (139)

and when 2mab = 1, we obtain

13
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u = V2ab J at
0V a%e¥ + bl
1

V2abab
2 ,4x
S G R S R R ER ]

474 2

—Va?+b* [bz— (a2+b2)2F1(§,1;1;—a—2)} } (140)

4’74 p?

where ,F; is the hypergeometric function.
When a = b = 1, the nonlinear functions reduce to Jacobi’ elliptic functions
with complex argument:

u = J ! dt = —iF(ix|4m), (141)
0 \/1 + 4m sin h?(r)

where F is elliptic integral of the first kind.
This is the minimum set of properties of the exponential-type nonlinear
functions.

5. Remarks

Thus, we were able to obtain three sets of nonlinear functions which are
solutions to the Gross-Pitaevskii equation. With these functions, we have the
nonlinear versions of the trigonometric, real, and complex exponential functions
and their linear combinations, and a complete set of functions as in the linear
counterpart.

Due to the method of solution, which makes use of elliptic functions, these
functions will expand the set of solutions that can be given to polynomial nonlinear
equations, in general [8, 12-25].

For instance, a well-known optical phenomenon is the nonlinear dispersion in
parabolic law medium with Kerr law nonlinearity [24]. This system is described by
a nonlinear Schrdédinger equation:

i, +aWer + b|PPY + | P[P +d <|‘P|2> ¥ =0, (142)
XX

where a subindex indicates a derivative with respect to that index. The second
term of the above equation represents the group velocity dispersion, the third and
fourth terms are the parabolic law nonlinearity, and the last term is the nonlinear
dispersion. Some solutions of Eq. (142) were found in Ref. [24]. A solution is the
traveling wave, with Jacobi’s sn function profile, given by

¥(x,t) = A sn[B(x — vt),m]e", (143)
—bA? v
B = 5 (144)
(am(l +m) —2d(m? +m + 2)A2>
w = B*(2dA* — a(1+m)). (145)
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where v = —2ak is the velocity, k is the soliton frequency, w is the soliton wave
number, 6 is the phase constant, and 0 < <1 is the modulus of Jacobi’ elliptic
function.

A second solution was given as

¥(x,t) = Acn[B(x — vt),l]e", (146)
b\ 12

B = (4_d) 5 (147)

w = B?(2dA* — a) — ak’. (148)

Since the functions that we have introduced in these chapters comply with
differential and algebraic equations similar to the ones for Jacobi’s elliptic functions,
we can give additional solutions in terms of these new functions, giving rise to new
sets of soliton waves.
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