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Abstract

The worldwide study of stream ecosystems remains a topic of great interest, impacting 
methods and concepts critical to the preservation and management of global freshwater 
resources. Stream macroinvertebrates, especially aquatic insects, have served as one of the 
main pillars of inquiry into the structure and function of running water ecosystems. Stream 
macroinvertebrates have been used so extensively for over 100 years because they are 
universally present and abundant, can be readily observed with the unaided eye, (unlike 
algae and microbes) and are much less mobile than fish which can easily move to totally 
new locations. Although taxonomic identification has been the basis of analysis of stream 
macroinvertebrates, functional analysis now offers an additional tool that allows much 
more rapid analysis that can be accomplished in the field using simpler methodology.

Keywords: streams, macroinvertebrates, functional feeding groups, foods of stream 
invertebrates, surrogates for ecosystem attributes

1. Introduction

In 1970, Robert Pennak, the preeminent freshwater invertebrate biologist, held that the basic 

unit of all stream ecology studies should be species level taxonomy (personal communica-

tion). This view was shared by essentially all stream ecologists of the day. Given the condi-

tion of many stream ecosystems and the taxonomy of aquatic insects then and now [1] that 

was, and is, a severe impediment to the advancement of research on streams. An alternative 

approach, based on macroinvertebrate functional analysis, coupled with higher order tax-

onomy (family or, if possible, genus) was proposed to facilitate addressing stream ecosystem 

research questions [2, 3]. This functional analysis focuses on adaptations used by freshwater 

macroinvertebrates to acquire their food. In this approach, seven functional feeding groups 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Functional 

feeding groups 

(FFG)

Examples of taxa Adaptations for acquiring food resources

Scrapers (SC) Ephemeroptera: Heptageniidae,

Ephemerellidae Drunella

Trichoptera: Uenoidae, 

Glossosomatidae

Helicopsychidae, Psychomyiidae

Hemiptera: Corixidae

Coleoptera (larvae): Psephenidae, 

Elmidae

Gastropoda

Mandibles with knife-like leading edge in aquatic insects, 

and file-like radula in Mollusca that removes attached 
algae; in Ephemeroptera, alga removal may be assisted by 

front legs

Algal piercers 

(APR)

Trichoptera: Hydroptilidae Piercing mouth parts that suck contents from individual 

algal cells

Detrital shredders 

(DSH)

Plecoptera: Pteronarcyidae, 

Nemouridae,

Capniidae, Peltoperlidae, 

Leuctridae,

Taeniopterygidae

Trichoptera: Limnephilidae, 

Calamoceratidae,

Lepidostomatidae

Tipulidae: Tipula

Crustacea: Amphipoda, Isopoda, 

Decapoda

Chewing mouthparts, selection for softest portions of 

conditioned (colonized by microbes, especially aquatic 

hyphomycete fungi) vascular plant tissue

Gathering 

collectors (GC)

Ephemeroptera: Baetidae, 

Leptophlebiidae,

Ephemerellidae, Tricorythidae, 

Caenidae

Trichoptera: Leptoceridae, 

Odontoceridae

Coleoptera: Elmidae (larvae), 

Hydrophilidae (adults)

Diptera: Chironomidae 

Chironomini,

Orthocladiinae

Oligochaeta

Non-specialized mouth part morphology that facilitates 

sweeping fine FPOM into the mouth

Filtering 
collectors (FC)

Ephemeroptera: Isonychiidae

Trichoptera: Hydropsychidae, 

Philopotamidae,

Polycentropidae

Diptera: Simuliidae, Chironomidae, 

Tanytarsini

Mollusca: Sphaeriidae, Unionidae

Filtering fans or setae on front legs or silk nets or strands 
that trap FPOM from the passing water column
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(FFG) usually are coupled with their seven food categories. The relative abundance of the 
food categories matches with the relative abundance of the FFGs that utilize those food cat-
egories (Table 1) [1, 3–6].

Therefore, by identifying a limited number of food categories supporting stream macroin-

vertebrates it is possible to arrive at the morphological and behavioral adaptations generally 

shared by groups of taxa (FFG) that are adapted to acquire each of the food resource catego-

ries [7].

2. Functional groups (FFG) and food categories

Stream macroinvertebrate FFGs are listed below and summarized in Table 1.

1. Scrapers (SC) have morphological-behavioral adaptations that enable them to scrape non-

filamentous attached algae from substrates (coarse sediments, wood, or stems of rooted 
aquatic vascular plants) in streams or lake littoral zones.

2. Detrital shredders (DSH) are adapted to feed on terrestrial plant litter (coarse particulate 
organic matter (CPOM), primarily leaves or needles that have been entrained in the stream 
and conditioned (colonized by) microbes, especially aquatic hyphomycete fungi.

3. Gathering collectors (GC) have very generalized adaptations used to feed on fine particu-

late organic matter (FPOM) of particle size less than 1 mm FPOM) which they sweep up 

Functional 

feeding groups 

(FFG)

Examples of taxa Adaptations for acquiring food resources

Herbivore 

shredders (HSH)

Lepidoptera: Crambidae, Noctuidae

Coleoptera: Cocinellidae Galerocella

Chewing moth parts and crochets (Lepidoptera) that hold 

plant in place while feeding

Predators (P) Plecoptera: Perlidae, Perlodidae

Trichoptera: Rhyacophilidae

Odonata: Anisoptera, Zygoptera

Megaloptera: Corydalidae, Sialidae

Hemiptera: Belastomatidae, 

Naucoridae,

Coleoptera: Dytiscidae, 

Hydrophilidae (larvae), Dytiscidae 

(adults)

Diptera: Tipulidae, Tabanidae, 

Empididae,

Chironomidae, Tanypodinae

Crushing, piercing or grasping moth parts and/or front 

legs; active, with large eyes or ambush predators; with 

swimming hind legs, crawling legs or welts or prolegs

Categories based on morphological and behavioral adaptations for acquiring specific food categories [1, 3–5].

Table 1. Macroinvertebrate functional feeding groups (FFG).
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from depositional areas or crevices in flowing or turbulent where it has settled or been 
entrained.

4. Filtering collectors (FC) have adaptations that allow them to capture FPOM from the pass-

ing water in streams or resuspension by turbulence in lakes using morphological struc-

tures or silk capture nets.

5. Herbivore shredders (HSH) are adapted to feed on live rooted aquatic plants, primarily 

the leaves.

6. Herbivore piercers (HPCR) are adapted to pierce individual filamentous algal cells and 
suck out the cell contents (primarily Trichoptera, Hydroptilidae).

7. Predators (P) are adapted to catch and consume live prey by engulfing the prey or piercing 
and extracting the prey hemolymph.

Most genera of North American aquatic insects have been assigned to FFG categories in tables 
that appear after each taxonomic chapter in [1].

Parallel or convergent evolution has endowed differing taxonomic groups with similar mor-

phological (e. g. mandible structure) and behavioral (e. g. net spinning and case construction) 

adaptations for acquiring a given food resource.

An example is the similar mandible structure found in larvae of four different scrapers (SC); 
three caddisfly (Trichoptera) genera representing three different families and one beetle 

Figure 1. Mandible structure of algal scrapers (SC) in four different taxa: Three Trichoptera genera: (A) Glossosoma, (B) 

Helicopsyche, (C) Neophylax in different families and a Coleoptera genus (D) Psephenus. All have scraper leading edges 

and basal setae to aid in retention and passage into the mouth of the removed algae. Modified from [8].
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(Coleoptera) genus, Psephenus, in the Family Elmidae are shown in Figure 1 [8]. All the man-

dibles have a knife-like leading edge which, when drawn across a rock or wood surface 

towards the mouth and remove attached algae. This material is contained and directed into 
the mouth by basil setae Figure 1. A further example is found in the mandibles of wood 

gouging detrital shredders (HSH) shown in Figure 2 [9]. Three different genera in three dif-
ferent families and orders are represented. The mandibles of these wood shredder aquatic 

insects are all three-toothed, scooped-shaped with basal setae. The mandibles are used to 

gouge grooves in the surface of wood entrained in a stream, ingest it and digest the microbes 

present that are the source of their nutrition. This poor quality food resource results in longer 

Figure 2. Mandible structure of three wood gouger shredders (DSH) genera representing three different insect orders. (A) 
Trichoptera Heteroplectron, (B) Coleoptera Lara, (C) Diptera Lipsothrix. All have three teeth and are scoop-shaped with 

basal setae that aid in retention and passage into the mouth of the removed wood fragments and contained microbes [9].
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Figure 3. Gut analyses of each of the five instars, and the overall average of larvae of the Trichoptera species Glossosoma 

nigrior form two different streams. (A) Linesville creek, a second order stream in Pennsylvania, USA, with diatom 

dominated periphyton (average of all five instars = 98.4% algae) and (B) Augusta creek, a second order stream in 
Michigan, USA, with a detritus dominated periphyton (average of all five instars = 74.1% detritus) [9].

life cycles, especially the larvae of the beetle Lara that requires 5 years to mature. Often, Lara 

is found on long term stable large wood habitat in northwest, old growth conifer bordered 

streams [10, 11].

Many FFGs are restricted to a single mode of feeding. These obligate taxa maintain the same 
FFG mode of feeding, independent of the quality of the food being harvested [12]. A mea-

sure of the match between the FFG and the harvested food resource can be described by 
the efficiency of the conversion of food ingested to growth [4]. An example is the caddisfly 
Glossosoma nigrior (Trichoptera Glossosomatidae) [12]. Analysis of gut contents of two popula-

tions of G. nigrior occurring in two different streams, where they both fed as FFG scrapers, 
revealed that the ingested food differed significantly through all five instars of the growth 
period (Figure 3) [9]. The G. nigrior population in the stream that provided good non-fila-

mentous algal periphyton had gut contents totally dominated by algae. The pre-pupae in this 

population achieved significantly higher final dry biomass than the other population which 
had gut contents dominated by detritus. This second stream was in a canopy closed forest in 

which the rock surfaces were covered with fine detritus with little or no algal periphyton. The 
gut analysis method involving the use of Millipore™ filters is described in [13].

Facultative FFG taxa are not as fixed with regard to adaptations for acquiring food. The added 
flexibility in feeding allows for survival in a wider range of habitats that offer more food types 
but the conversion of ingested food to growth is less efficient than in obligate taxa. In their 
early instars, the majority of taxa are facultative generalists feeding on detritus, even preda-

tors like the megalopteran Nigronia [14].

A picture key to stream macroinvertebrate FFGs appears as an Appendix in [5].

Stream macroinvertebrate FFG food categories are listed below and described in Table 2 [4, 5].

Limnology - Some New Aspects of Inland Water Ecology68



1. Attached non-filamentous algae, primarily diatoms but also green or red algae.

2. Terrestrial plant litter (CP)M) entrained in the stream and colonized and conditioned by 
microbes.

3. Depositional FPOM on fine sediments in pools, stream margins or under or in crevices in 
coarse sediments in the current.

4. Suspended FPOM transported in the water column or suspended by turbulence.

5. Living rooted vascular aquatic plants.

6. Filamentous green algae.

7. Live prey.

3. Similar FFG adaptations in different taxa

Noel Hynes, arguably the premier stream ecologist of the last 60 years, observed that he 

could “turn over a rock in any clean stream the world over and recognize familiar aquatic 

Functional 

feeding groups 

(FFG)

Foods and descriptions Typical habitats

Scrapers (SC) Periphyton: single cells or colonies of non-

filamentous algae, especially diatoms, attached 
to the substrate with loosely associated FPOM, 
microbes, and/or micro-arthropods

Stream riffles and runs, lake wave-swept 
shore lines, or rooted vascular aquatic plant 

beds

Algal piercers 

(APR)

Filamentous algae: green, blue green, or red algae Riffles, pools, stream margins or back waters 
where ever filamentous algae occurs.

Detrital 

shredders (DSH)

CPOM: riparian vascular plant litter conditioned in 
the water (colonized by aquatic hyphomycete fungi 

and bacteria). Micro-arthropods may be present

Plant litter accumulations against 
obstructions in the current (leaf packs) or 

settled in pools and on the bottom in lake 
plant beds

Gathering 

collectors (GC)

FPOM: organic particles surface colonized by 
bacteria or mineral particles with organic coating

Pools and other depositional areas in 

streams and lakes

Filtering 
collectors (FC)

FPOM: same as above Particles suspended in the current or by 

wave action

Herbivore 

shredders (HSH)

Plant beds: live rooted aquatic vascular plants Any stream or lake habitats where plant 

beds grow

Predators (P) Prey: live aquatic invertebrates in the size range 

that can be captured by a predator

Essentially all stream and lake habitats 

where prey are found

After [4, 5]. FPOM is fine particulate organic matter of particle size <1 mm. CPOM is coarse particulate organic matter 
of particle size >1 mm.

Table 2. Macroinvertebrate functional feeding groups (FFG) food categories they are adapted to acquire and typical 
habitats where the food resources will be found.
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insects, but they were all in different families” (personal communication). An example is 
the very similar dorsal-ventrally flattened body form of a North American scraper mayfly 
(Ephemeroptera, Heptageniidae) and a Brazilian mayfly (Ephemeroptera, Leptophlebiidae) 
(Figure 4) [9, 15]. Both these scrapers primarily use the mandibles to remove attached peri-
phytic algae from rock surfaces. The mandibles of different taxa functioning as scrapers are 
similar: a cutting ventral edge with basal setae that keep the algae confined as it is moved into 
the mouth (Figure 1). Another example of similar feeding structures was described above for 

wood-gouging shredders belonging to different taxa (Figure 2). All these examples represent 

parallel or convergent evolution resulting in differing taxa being adapted to acquire the same 
food resource type.

The FFG of a given taxon can vary with age (instar in aquatic insects). There is evidence 
that essentially all aquatic insects are gathering collectors in the first (and second in some) 
instars. For example, Petersen [14] documented through gut analysis that the first instar of the 
predaceous megalopteran Nigronia serricornis (Corydalidae) fed on FPOM as a gathering col-
lector. Taxa can also switch FFG as they progress through the growth period. The limnephilid 
caddisfly (Trichoptera) Pycnopsyche lepida switches from feeding on conditioned CPOM leaf 

litter as a detrital shredder in the first four instars to a scraper in the fifth (final) instar. This 
transition is readily discernable because in the first four instars the larvae construct an organic 
case made of leaf sections and fine sticks that are readily available in the litter accumulations 
where the larvae occur. In the fifth instar the larvae move into fast water where the feed by 
scraping periphytic algae from cobbles in flowing water. At that time, the larvae convert to 
heavier mineral cases [15, 16].

4. Benefits of FFG analysis

There are two significant benefits in the FFG approach. First, it allows stream macroinverte-

brates collected live in benthic or drift samples to be placed in ecologically relevant catego-

ries using only the level of taxonomy needed to separate them [6]. Simple examples would 

be: all Odonata dragonfly and damselfly nymphs are predators (P) and stone case-bearing 
Trichoptera (caddisfly) larvae are scrapers (SC) while those in organic cases (leaf and stick/
stem material) are detrital shredders (DSH). These examples, in which ordinal taxonomy is 

Figure 4. Two scraper (SC) mayfly nymphs from two different families from two continents. Ephemeroptera: 
(A) Heptageniidae from North America and (B) Ephemeroptera Leptophlebiidae from Brazil. Both nymphs are 

dorsoventrally flattened with the eyes and antennae located dorsally and the scraper mouth parts ventrally positioned 
on the head including the scraper mouth parts [9, 15].
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all that is required, are used in the key given in Merritt et al. [5]. Clearly, the more taxonomic 

resolution the better, but the FFG allows typical volunteer or class groups to gather useful data 
on aquatic ecosystems of local concern. And, importantly, the data can be taken on site using 

live specimens that allow behavioral and color paten traits, that are lost or fade in preserva-

tion, to be used in the evaluation. Furthermore, the collected organisms can be preserved and 
returned to a laboratory, if accessible, when detailed taxonomic determinations are required, 

for example to calculate diversity indices (e. g. see ecological tables in [1]).

The FFG detrital shredders (DSH) are reliably linked to the inputs plant litter from the riparian 
zone [17] that can be studied easily with the use leaf or needle packs which accurately mimic 

how plant litter is naturally processed by fungi and detrital shredders (DHS) in streams [18]. 

These are prepared using leaves or needles of trees that are present in the riparian zone of a 

stream under study (Figure 5) [8, 18]. Dry leaves or needles are weighed into 10 g amounts 

(to nearest 0.01 g) and soaked in warm water until soft (5–10 minutes). When the leaves are 

soft enough to handle so that they do no break, they are gathered into a packs and stapled 

together with the plastic Tees using a Buttoneer™ gun. The needles are threaded into a chain 
on monofilament fishing line (Figures 5 and 6). Each leaf or needle pack is fastened to an 

elastic band of sufficient size so that it can be attached to a common brick (Figure 6). The 

packs, one or two to a brick (Figure 6), are placed in the stream facing into the current to 

simulate the obstructions against which plant litter accumulates in streams in the current. 
It is important that some flow occurs across the surface of the leaves or needles to maintain 
dissolved oxygen levels required by the obligate aerobe aquatic Hyphomycete fungi that colo-

nize the plant material and constitute the major source of the nutrition for detrital shredders 

(DHS) [19]. The leaf pack shown in Figure 6 are hickory leaves that were incubated in a third 

order woodland Michigan stream in October for 2 weeks at 10°C. The effect of the shredder 
feeding is evident. The softer, most heavily fungal colonized portions of the leaf have been 

used [20, 21]. The detrital shredders (DSH) select portions of the leaves or needles that are 

most heavily colonized by aquatic hyphomycete fungi. Specific polyunsaturated lipids of the 
fungi attract the shredders [19].

Figure 5. Leaf packs stapled together with plastic Ts using a Buttoneer™ gun and fastened to an elastic band and 
attached to a common brick prior to placement in a stream (A). The conifer needles are strung on fishing monofilament 
line prior to fastening to an elastic band and attachment to a common brick for placement in a stream (B). Such leaf and 
needle packs can be used as a bioassay for microbial-shredder (DSH) processing of CPOM in a stream ecosystem.
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The second benefit of using the FFG approach is that ratios of the number of specimens col-
lected in each FFG category can be used to describe a stream reach and compare it to other 
reaches and other streams (Table 3) [5, 8]. Because these ratios are dimensionless numbers, 

they are relatively independent of sample size. For example, it has been demonstrated that the 
relative number of scrapers collected from one rock in a given stream riffle is not statistically 
different from the collection from five rocks in the same riffle [9]. Some FFG ratios that can 
serve as surrogates for stream ecosystem attributes are summarized in Table 4. Threshold 

ratio values (percentages) have been proposed based on field evaluations that can serve as 

Stream ecosystem attributes Name of FFG 

surrogate ratio

Definition of FFG surrogate ratio

Autotrophic vs. heterotrophic 

energetics

P/R: autotrophy to 

heterotrophy index

Gross primary production compared total community 

respiration (primary production/respiration or P/R)

CPOM vs. FPOM Shredder index CPOM riparian plant litter compared to riparian 
FPOM + FPOM generated within the stream (e. g. 
macroinvertebrate feces, mechanical fragmentation 

microbes, DOM flocculation)

Suspended vs. storage FPOM Filtering collector 
index

Suspended FPOM transported in the current compared to 
FPOM in storage (entrained) in or on the sediments

Stable vs. unstable sediments Habitat stability index Coarse sediments + large wood + bed rock + rooted 
vascular plants compared to small easily moved 

sediments + FPOM

Top down vs. bottom up 
macroinvertebrate communities

Predator top down 

index

Predator regulation of macroinvertebrate communities 

as compared to regulation by in stream primary 

production + detritus support of macroinvertebrate 
communities

Based on [5, 8]. FPOM is fine particulate organic matter of particle size <1 mm, CPOM is coarse particulate organic matter 
of particle size >1 mm, DOM is dissolved organic matter.

Table 3. Use of functional feeding groups (FFG) as surrogates for stream ecosystem attributes.

Figure 6. Deciduous leaf pack after 2 weeks at 10°C in a woodland stream in Michigan. The effect of detrital shredder 
(DSH) feeding s evident. The softer leaf tissues with the greater biomass of aquatic Hyphomycete fungi have been 

consumed before the more lignified leaf veins. The plastic Buttoneer™ Tees that held the leaves together are visible.
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surrogates to ecosystem attributes such as the classification of a stream reach as autotrophic 
(i.e. dependent on in-stream primary production as the primary energy source) vs. heterotro-

phic (dependent on riparian out of steam primary production as the primary energy source) 

(Table 4) [22–25]. This particular ratio (SC + HSH/DSH + SC + FC) is a surrogate for directly 
measured P/R, which is the ratio of gross primary production to total community respiration 

(i. e. including autotrophs). P/R, which is measured by monitoring oxygen levels over time 

across a stream reach or in enclosed in situ chambers [26]. The FFG surrogate P/R ratio is 
strongly influenced by season and like other FFG ratios might require a different threshold 
for spring-summer vs. fall-winter (Table 4).

In the case of detrital shredders (DSH), their presence and abundance depends on the type 

of plant litter inputs and season. If the riparian zone is dominated by deciduous hard woods, 
the inputs are in the fall–winter period. Hardwoods, except oaks, are conditioned rapidly by 

aquatic hyphomycetes and fed on by shredders. Conifers (evergreens) shed foliage primar-

ily in the spring–summer and conditioning by fungi is much slower and shredder feeding is 

Ratio name FFG surrogate ratios Proposed thresholds and 

explanations

Interpretations

Autotrophy-

heterotrophy index

SC + HSH + APC to 
DSH + GC + FC

FFG ratio of >0.75 corresponds to 
a directly measured P/R = 1.00. 
Represents in stream plant (algae 

and vascular) production > than 

riparian plant litter inputs (or total 
respiration of microbes + plants 
and animals)

Stream energetics driven by 

periphytic algal + any vascular 
plant production as compared 

to riparian plant litter inputs

Shredder index DSH + HSH to GC + FC FFG ratio of >0.50 in fall-winter 
or >0.25 in spring-summer. 

Represents CPOM shredder food 

availability > FPOM collector food 
availability

CPOM food support for 

shredders > than FPOM for 
Collectors. Fall-winter litter 
inputs usually >spring-summer 

and condition more rapidly

Filtering collector 
index

FC to GC FFG ratio of >0.50 indicates 
suspended FPOM load > storage 
(entrained) FPOM

FPOM food for collectors at 
higher density and/or better 
quality than storage FPOM

Habitat stability 

index

FC + SC + HSH to 
DSH + GC

FFG ratio of >0.50 indicates that 
stable locations for scraping 

and attachment are in greater 
abundance than shifting unstable 

substrates

Filtering collectors require 
stable locations for attachment 
and construction of capture 

nets and scrapers require 

surfaces that remain in a stable 

position facing up

Top down predator 

index

P to total FFGs Predator to prey ratio 0.10–0.20 to 

total macroinvertebrate population

This level of predator 

population density (or 

biomass) allows for sufficient 
prey to support them. If 

predators >20% probably 
indicates populations of rapid 

turnover (polyvoltine prey 

populations present

Proposed thresholds after [22–25]. SC = scrapers, HSH = herbivore shredders, DSH = detrital shredders, GC = gathering 
collectors, FC = filtering collectors, APC = algal piercers, P = predators.

Table 4. FFG surrogate ratios for stream ecosystem attributes, proposed surrogate ratio thresholds and resulting 
interpretations.
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delayed. Prairie Creek in Redwood National Park, California provides an example from an 

old growth conifer forest stream with slow fungal conditioning and delayed detrital shredder 

(DSH) activity (Table 5 [27]). The riparian derived CPOM is largely wood and conifer needles 

which require along conditioning times before shredders begin feeding. This suggests that 

samples taken in December were too early to detect the major shredder activity. The shred-

der caddisfly larvae (Trichoptera: Lepidostoma and Gumaga) and stonefly Nymphs (Plecoptera: 
Peltoperlidae, Capniidae, Leuctridae) that were collected were quite small. The mean dry mass 

per individual, of the 34 individuals collected was 6.6 mg (caddisflies 111 mg, stoneflies 75 mg) 
indicating very early instars. The ratio was low because the biomass of the GC (0.061 mg) plus 

FC (3.35 mg) was much greater. The recommended threshold for conifer old growth forest 
streams should be based samples for February or March. The general 0.50 threshold was based 
on data from deciduous forest streams taken in the fall when the conditioning of the riparian 

litter was sufficient to accommodate expected shredder populations [18].

There is an extensive literature using FFG analyses, for example the numerous references 
cited in the ecological tables that accompany each aquatic insect order in [1]. FFG analyses 
and the ratio method, including proposed thresholds have been used to evaluate Florida 
Rivers. FFGs were used to characterize the un-dammed reach of the Kissimmee River as a 
model for general restoration of the 100 miles of the channelized River [22]. The ratio method 

was employed to characterize the remnant oxbows of the Caloosahatchee River according to 

their ecological attributes and to provide recommendations for preservation and restoration 
of the River’s oxbows [25]. Floodplain (marsh) habitats of the St. John’s River were also evalu-

ated relative to hydrological influences using FFG surrogate ratios to predict the effects of 
water withdrawal from the river [25]. The method also was used to characterize the ecological 

conditions in a wide range of Brazilian streams and rivers [24].

Stream FFG ratios Calculated ratios Proposed thresholds Stream ecosystem 

interpretations
Numbers Dry 

biomass 

(mg)

P/R index: (SC + HSH/DSH = GC = FC) 0.96 0.55 Ratio > 0.75 (autotrophic) SC numbers indicate 

a significant algal 
periphyton based 

autotrophic stream 

ecosystem (significant 
biomass of stonefly and 
caddisfly shredders 
indicate heterotrophic 

system supported by 

riparian plant litter inputs)

CPOM shredder index: (DSH/

GC = FC)
0.15 0.04 Ratio > 0.50 (predicted 

fall–winter shredder 

component)

The predicted range for 

fall–winter shredder 

populations not met.

(supply of sufficiently 
conditioned [colonized by 

microbes] riparian plant 

litter inputs, not adequate)

Limnology - Some New Aspects of Inland Water Ecology74



5. Conclusions

Proposed in this chapter is the use of the FFG method of analysis to gain rapid and efficient 
insight into macroinvertebrate community composition and fits unction in freshwater eco-

systems. The method should be compatible with a broad level of expertise, from beginner to 

Stream FFG ratios Calculated ratios Proposed thresholds Stream ecosystem 

interpretations
Numbers Dry 

biomass 

(mg)

FPOM suspended load index: (FC/
DSH + GC + FC)

0.14 0.28 Ratio > 0.50 (sufficient 
FPOM to support filtering 
collectors, assuming 

sufficient quality)

The amount, or quality 

(e.g.. organic content) 

of FPOM in suspension 
and transport below 

typical levels to support 

FC populations (this old 
growth conifer forest 

stream dominated by 

slowly processed wood 

and litter likely generated 
only primarily low 

amounts of poor quality 

FPOM; rapid turnover 
deciduous litter from 
big leaf and vine maple 

probably absent)

Channel stability index: 

(SC + FC + HSH/DSH + GC)
1.09 0.96 Ratio > 0.50 (sufficient 

stability to support SC and 

FC populations}

Stable substrates, coarse 

sediments and large 

wood, well above levels 

predicted to support 

surfaces required 

scraping and filtering 
macroinvertebrates (large 

wood in old growth 

forest streams observed to 

provide a long term stable 

habitat)

Top down predator index: (P % of 
total)

0.15 0.21 Ratio > 0.10 < 0.20 
(predicted predator 

top down control of 

macroinvertebrate 

populations)

Both numerical and 

biomass estimates of 

predators fall within 

the expected % r of 
the macroinvertebrate 

community (all the 

expected predators 

present; stoneflies, 
especially the large 

Perlidae, Tipulidae [except 

Tipula], and Tanypodinae 

midges)

Modified from [27].

Table 5. FFG ratio analysis of macroinvertebrate benthic summer samples taken in Prairie Creek winter (December).
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advanced, and can be conducted stream-side allowing live animals to be released or preserved 

and returned to the lab. If the FFG ratio method is to be used, at least some qualitative obser-

vational data should be recorded: riparian information about the dominant vegetation cover 

(e. g. percent deciduous vs. evergreen) and the % canopy closure; dominant stream habitat 
(riffles vs. pools, coarse vs. fine sediments, % accumulation plant litter such as leaf packs); dis-

charge level relative to bank full (the permanent vegetation line)and general land use observa-

tions (e. g. agricultural or live stock grazing, timber harvest or other human disturbances). 

When conducting FFG analysis it is most useful to collect, and keep separate, samples from 
three types of habitat: Riffles (coarse sediments), pools (fine sediments), and plant litter accu-

mulations. Samples can be taken with timed (e. g. 15 s) D-frame or aquarium net samples. The 

data can be combined later into a “composite” sample, but the relative importance of each 
habitat can be assigned based on the qualitative evaluation of the % stream bottom cover of 
each habitat type. Most importantly, The FFG analysis technique does not foreclose on any 
traditional use of taxonomic analysis of the samples in the laboratory.
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