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Abstract

Nowadays, it is well known that archaea organisms as well as bacteria show an important
range of defense mechanisms. Among others, a unique molecular system called CRISPR/
Cas (clustered regularly interspaced short palindromic repeats) helps provide protection
(adaptive guided immunity) athwart foreign nucleic acids, including plasmids and viral
infections. As a typical immune response, CRISPR system is based on the acquisition of
genetic records provided by infectious external agents, and in this sense, a high interfer-
ence upon a new infection is unchained. In relation to plant research, less than 10 years
ago, efforts to understand this peculiar mechanism and the possibility of being used in
biotechnological processes have been focused on obtaining atavistic changes in different
transformable vegetal specimens by inducing selective mutations into a reading frame
that may be translated in a given moment (i.e., ORF; open reading frame). In light of the
consideration that one common use of ORFs is to assist gene prediction processes, palin-
dromic repeats are mostly based on the directed mutations via nonhomologous end
joining. Although it is true that DNA-free editing techniques are now desirable for molec-
ular crop breeding, CRISPR/Cas as a mutational regulatory system in plant biology may
offer better complex genome rearrangements.

Keywords: CRISPR/Cas9, plant genome editing, molecular crop breeding, RNA guided
DNA, Cas9 nuclease
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1. Introduction

Sustainable agriculture is considered to be the key for improving plant crops through genetic

engineering, since random mutagenesis processes are part of conventional biotechnology

techniques used for most researchers in this field [1]. CRISPR/Cas9 systems (clustered regu-

larly interspaced short palindromic repeats-CRISPR associated) are related to a well-known

CRISPR array defined by series of 20–50 bp genomic locus (i.e., unique spacers separated by

direct repeats).

On the other hand, these unique spacers usually have similar length with preceded AT-rich

fragments [2]. CRISPR loci were identified for the first time about two decades ago when they

found a series of short genomic sequences (i.e., spacers) in Escherichia coli originated by viral

genomes and probably due to the presence of conjugative plasmids, and in this sense, the

foreign genetic material allowed the bacteria to record a kind of memory (e.g., immune

system) to counteract future infections. When foreign DNA sequences match these unique

spacers, they are commonly known as “photospacers” [1, 3]. Thereby, the corresponding

immunization is against a foreign phage (e.g.), and when a new infection of this nature takes

place in the future, the array expansion of the CRISPR is unchained and in consequence, new

spacers originate from the genetic material of the phage.

According to some authors [4–6], this interesting immune system (to call it that) may be

divided into three metabolic stages: adaptation, crRNA (CRISPR-RNAs) biogenesis, and inter-

ference. When a foreign DNA introduction happens, there is a selective process through the

machinery that selects protospacers, which will be inserted into the CRISPR locus (insertion

takes place into the leader end of the system). In the first stage of crRNA biogenesis, a

transcription of CRISPR locus is observed followed by a direct processing of sequence ele-

ments (pre-crRNAs–crRNAs), all of them with the corresponding single spacer. After this

stage, Cas proteins interact the crRNAs by assembling an effector complex (Figure 1A) [4].

This is very important since these components are intermediary elements of the interference

stage where recognition of foreign DNA happens upon future infections and consequently, its

degradation. It is very important to mention that a spacer acquisition creates genetic records of

previous infections; as mentioned above, CRISPR immunity happens when there is an immi-

nent detection of strange nucleic acids and consequently, the integration of foreign genetic

material into the host’s cells (the DNA integration occurs in the chromosome).

CRISPR systems are highly complex and diverse, and nowadays, efforts have been made to

classify them into six interesting types: Type I (eight different Cas representative operons);

Type II (tracrRNA; trans-activating crRNA and four Cas); Type III (eight Cas and Csm/Cmr);

Type IV (four DinG/Csf); Type V (four Cas/Cpf2); and Type VI (three Cas/C2c2). In this case,

operon type IV shows an extensive presence in the lack of CRISPR loci (Figure 1B) [4].

Due to the endless background that precede the functionality and applications of CRISPR

systems in the field of genetic engineering, it has been shown that this metabolic phenomenon

is extremely attractive for the molecularly directed crop improvement as well as plant genomic

research. In general, the efforts that outline research for CRISPR systems within the agronomic
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sciences field have been mainly focused on plant domestication with economic and social

interest. Thus, interspaced short palindromic repeats constantly open the doors to the genera-

tion and knowledge application in the area of functional genomics that jointly guide

researchers toward the implementation of theoretical and applied biostrategies [7].

2. CRISPR/Cas9 mechanism: brief overview of its nature

The action mode of CRISPR/Cas9 biological system is basically based on the participation of

two distinct elements: the Cas9 protein (CRISPR-associated protein 9; RNA-guided DNA

endonuclease enzyme associated with CRISPR) and sgRNA (single guide RNA) [8]. Nowa-

days, Cas9 proteins are found mainly in different bacteria species such as Brevibacillus

laterosporus [9], Staphylococcus aureus [10], and other representative species within the genus

Streptococcus [11]. Cas9 proteins have shown two representative domains: the first one is

known as HNH (nuclease-associated proteins), which is responsible for cleaving and

regrouping the complementary strand of crRNA. On the other hand, the second domain

known as RuvC-like (nuclease domain that cleaves complementary DNA strands) has the

purpose of carrying out the cleavage of the complementary strand of dsDNA (double stranded

Figure 1. Functional and organizational system of the CRISPR/Cas9. (A) The process of induced immunity is carried out

in three stages consisting of an adaptation, crRNA biogenesis, and interference. In the first stage, the adaptive machinery

performs a selection of photospacers, and they are leader-end inserted into CRISPR locus that is subsequently transcribed

during crRNA biogenesis. In a complementary way, the pre-crRNA processing into crRNAs with simple spacers is

developed. Finally, the effector complex is originated through the assembly of crRNA with Cas proteins, which interacts

(interference stage) in a subsequent way to the infection, and consequent degradation of the foreign genetic material. (B)

Structurally, the CRISPR system is divided into six representative types (operons). Dashed outlines represent genes in

some subtypes. Pink sequences represent genes related to the interference process. Yellow sequences refer to crRNA

biogenesis, and the green color refers to adaptation genes. Subtypes IV are characterized by the absence of CRISPR loci.

Adapted from Wright et al. [4].

Understanding CRISPR/Cas9: A Magnificent Tool for Plant Genome Editing
http://dx.doi.org/10.5772/intechopen.81080

43



DNA). The nature of the sgRNA is extremely curious, since this is a kind of synthetic RNA

with a length not greater than 100 bp and whose structure owns a 20 bp sequence coupled to

the 50-end that works as a guide allowing the identification of target sequences through

specific adjacent motifs (i.e., PAM sequences; protospacer adjacent motifs) [8].

It is important to mention that 30-end of the sgRNA resembles a loop structure that allows it to

develop a very precise linkage with the target sequence. This is the way to structure a new

complex that will be associated with Cas9 and in this sense, to perform the dsDNA cleavage

that will cause double-stranded breaks (DSBs) [12]. Generally, a DSB is the result of the

continuous DNA damage at chromosome level, although this is considered a completely

normal phenomenon within the cell. However, the resulting by-products generated by the

cellular metabolism itself such as reactive oxygen species (ROS) may interfere in the replication

process due to the damage caused in the DNA. Also, environmental selective pressures as

different chemical agents or UV light itself are considered other important factors involved in

this process [13, 14].

When the above phenomenon has been carried out within the cell, the presence of DSBs

activates the repair mechanism of damaged DNA through nonhomologous end joining

(NHEJ) or homology-directed repair (HDR). In most cases, the repair of DBSs is carried out

by NHEJ although the main reason why this happens is because it is the best way to make

genetic insertions or deletions and consequently to give rise to a gene knockout (gene knockout

is a genetic phenomenon through which an organism’s gene becomes inoperative). In general,

HDR is originated by the presence of an oligo template, and it activates the elimination of specific

genes as well as foreign DNA (the mechanism involves the substitution of DNA sequences in a

specific locus, or well, fragment sequences not found within this locus) [8, 12–15]. In addition to

CRISPR, there are other methods currently used for genome editing which include the participa-

tion of peculiar endonucleases such as transcription activator-link effectors (TALEN) and zinc

fingers. Through these mechanisms, a fusion between DNA-binding domains of transcription

factors and the nuclease domain FokI (restriction enzyme) takes place. Beyond the application of

CRISPR systems in genome editing and their regulation processes, these types of endonucleases

may be used to be fused with fluorescent proteins in order to allow more specific loci location

within the living cells [16, 17].

3. Cas9 enzyme: multifunctional DNA endonuclease

The Cas9 enzyme has a very peculiar structure since it consists of two distinct nodes

complemented each other: an alpha-helical recognition site (REC) and an endonuclease struc-

ture (NUC) containing HNH proteins. On the other hand, Cas9 structure has RuvC-like and C-

terminal domains with variable structures [18]. Both nodes are linked through anchoring-like

structures mostly conformed by arginine-rich bridges and other less complex structures gener-

ally observed between residues 712–720. In this sense, there are three very important domains

with alpha-helical structure that integrate the REC node (Hel-I, II, and III) and as an interesting

fact; Hel domains show no structural similarity with some other known proteins to date [19].
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Several studies have shown that Cas9/RuvC domains have very similar structures to retroviral

integrases (virally encoded; specialized recombinases capable of catalyzing the recombination

of viral DNA particles into the genome’s host cell). In contrast to the above, the HNH nuclease

domains show a fold-type ββα structure linked to a metallic cofactor that in the same way, it is

linked to another HNH domain from a different endonuclease that allows the recognition

through metallic ions in order to locate cleavage sites on the target DNA sequence [18].

Metallic ion-dependent restriction enzymes show highly conserved structures formed by

aspartate residues and in less quantity by histidine [20].

In basal conditions, the nature of Cas9 enables the enzyme to be inactive and when a

recombination between sgRNA and the corresponding REC lobe is observed, it is precisely

that this natural state changes. Thus, the previous complex performs a specific search for

PAMs (trinucleotide NGG) in order to identify target sequences into the double DNA

strand. When a linkage has happened within the respective PAMPS, a cleavage of the

hybrid DNA-RNA complex takes place thanks to HNH domain and, jointly, RuvC assists

the structuring of dsSDBs (double-stranded SDBs) by cleaving the corresponding comple-

mentary sequence [21]. It is important to mention that both eukaryotic and prokaryotic cells

show NHEJ and HDR mechanisms capable of repairing DSBs through the intervention of

DNA ligase IV, whose nature helps regroup damaged nucleotide ends (Indels; introduction

or deletion of mutations) as well as the use of complementary homologous DNA templates,

respectively [21, 22].

Within the group of Cas9 proteins, there are repression effectors that are fused with a

transcription activation system called dCas9 (CRISPR tool based on a modified version of

the Cas9 protein). The dCas9 systems are usually combined with effector protein domains

that regroup functional peptides that will target specific regions of genome loci. Thus, the

resulting complex performs activation and shutdown mechanisms of gene repression,

thereby; it is considered an efficient regulator of genetic information flow. This is why

CRISPR/dCas9 system may be a modular platform in several cellular processes to control

transcription [21, 23]. Another important fact about the dCas9 complexes is that they are

able to combine with different epigenetic nature molecules, such as methylation and histone

peptides [24].

On the other hand, specificity is a considerable element in genome editing tools. In the case

of Cas9/gRNA (guide RNA) complexes, they have an extremely precise capacity to develop

cleavages in DNA sequences, even when small mismatches may be observed into the guide

template [25]. When this type of phenomenon happens, nonspecific cleavages are mostly

tolerated at the 50-ends or at a greater distance from the corresponding MAMP sequences. It

has been noticed that short gRNAs (a.c. 20 bp) confer better specificity to Cas9 proteins at

the target cleavage sites within the genetic editing processes [26]. Likewise, when the

inactivation of Cas9 conserved domains is observed, a specific break occurs in one of the

DNA strands (nickase), which leads to a splitting and loss of its double-stranded native

structure [27]. In general, this type of nicks usually causes no mutations since they can be

repaired in a very simple way by eliminating damaged bases through a specific repair

metabolic pathway.
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4. CRISPR/Cas9: a close relationship with TALENs and ZFNs

As previously mentioned, CRISPR/Cas9 system is conformed by a single monomeric protein

as well as a complex RNA rearrangement. The Cas9 protein is responsible for carrying out the

cleavage process, and a 20-nt fragment corresponding to gRNA is responsible for identifying

target sequences [28]. Notwithstanding, the nature of TALENs and ZFNs (zinc finger nucle-

ases) allows them to function as dimers; consequently, protein components are just required to

develop the corresponding catalysis processes. A specific domain of the FokI endonuclease

performs the cleavage of target sequences. On the other hand, domains corresponding to DNA

binding that may be found in different polypeptides are those that confer the sequence speci-

ficity [29].

Because ZFNs show a necessary interaction with zinc fingers, it is considered that this process

is experimentally complicated, and therefore, its application is usually limited within a bio-

technological context, especially considering the need for nucleotide sequence specificity.

However, TALENs and ZFNs are easy to design, and they are commercially available in most

cases at an affordable cost [30]. TALENs can promote homologous recombination at cellular

level through repetitive sequences compared to gRNA that is based on a Watson-Crick base-

paring principle using target DNA sequences [28, 30]. On the other hand, TALENs and ZFNs

are capable of generating DSBs through the restriction of FokI catalytic domains of different

overlap sizes that may vary depending on their binding capacity. In comparison, Cas9 has two

cleavage domains as previously discussed (i.e., RuvC and HNH). While it is true that ZFNs

could target any sequence of interest, this process is subject to the availability of assembly

platforms. Today, available molecular libraries can hold up to 100 bp sequences that serve as

platforms for functional ZFNs. Thereby, TALEN’s targets require thymidine residues to show

an efficient functionality, which could limit their application [31].

TALEN protein arrays are exclusive for the group of plant pathogenic bacteria. The repeated

sequences comprise 10–20 residue agglomerates that recognize specific DNA molecules. Each

repeat has a maximum of 35 amino acids in length, and it is complemented by two adjacent

amino acids (RVD, repeat-variable-di-residue) which have the function of conferring specific-

ity to the four nucleotides that structure the DNA strands. In this way, a direct link between

repeated sequences and target DNA is observed. Both TALENs and ZFNs are capable of

generating DSBs in a specific region of the genome, and as previously discussed, this phenom-

enon is commonly used to generate gene knock out. RVD codes are used to generate TALEN

repeating arrays, and therefore, an affinity of up to 96% can be observed respect to target

sequences of interest [31, 32]. It is worth mentioning that TALENs show advantages over

ZFNs, for example, TALENs can be extended over any sequence length that is necessary, and

for the case of ZFNs, they can only be extended in a range of 9–18 bp, although it is considered

that TALENs show less specificity [33].

A disadvantage of TALENs over ZFNs is their considerable size, since the extension of a cDNA

sequence encoded by TALENs can be up to 3 kb, while the size per every ZFN is only 1 kb. The

considerable size of TALENs could hinder the recombination process at cellular level, and

therefore, these arrangements tend to be less attractive for biotechnological processes, mainly in
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therapeutic applications. On the other hand, since TALENs show repetitive nature, it is usually

more complicated to pack and move the molecules into the host cell using viral vectors [31].

In the case of ZFNs, it is important to highlight that in recent years, their use has increased

considerably in both industrial and basic research, mainly for the generation of therapeutic

adjuvants in both animal and human models. ZFNs comprise arrays of protein fusions with

specific binding domains adapted to transcription factors that contain zinc finger comple-

ments. In a complementary way, its structure is also conformed by a FokI restriction domain.

The zinc finger domains are able to recognize 3–4 bp sequences in the target DNA molecule.

Tandem domains (tandem repeats; occurring in the DNA through the repetition of patterns of

one or more nucleotides and the position of these is completely adjacent) tend to interlace with

nucleotide sequences between 3, 9, and 18 bp length, and this process is repetitive throughout

Species Cas9 codon Trans method Target sequence Promoter Mutation

rate

Detection

method

Ref

Arabidopsis

thaliana

Arabidopsis

(intron)

PEG protoplast PDS3, FLS2 CaMV35SPDK,

AtU6

1.1–5.6% PCR

sequencing

[36]

A. thaliana Arabidopsis

(intron)

PEG protoplast RACK1b,

RACK1c

CaMV35SPDK,

AtU6

2.5–2.7% PCR

sequencing

[36]

Nicotiana

benthamiana

Arabidopsis

(intron)

PEG protoplast PDS3 CaMV35SPDK,

AtU6

37.7–

38.5%

PCR

sequencing

[36]

N.

benthamiana

Chlamydomonas

reinhardtii

Leaf

agroinfiltration

Co-transfect GFP CaMV35S,

AtU6

n.a. Pre-

digested

PCR

[37,

38]

N.

benthamiana

Human Leaf

agroinfiltration

PDS CaMV35S,

CaMV35S

12.7–

13.8%

n.a. [39]

Oryza sativa Rice PEG protoplast PDS, BADH2,

MPK2,

Os02g2382

2xCaMV35S,

OsU3

14.5–38% PCR [40]

O. sativa Human PEG protoplast MPK5 CaMV35S,

OsU3 or OsU6

3–8% qPCR and

T7E1 assay

[14]

O. sativa Rice PEG protoplast SWEET14 CaMV35S,

OsU6

n.a. Pre-

digested

PCR

[37,

38]

Triticum

aestivum

Rice PEG protoplast MLO 2xCaMV35S,

TaU6

28.5% PCR + RE [40]

T. aestivum Human Agro-transfect

embryo immature

cell

PDS, INOX CaMV35S 18–22% PCR

sequencing

[39]

Zea mays Rice PEG protoplast IPK 2xCaMV35S,

ZmU3

16.4–

19.1%

n.a. [41]

Citrus

sinensis

Human Leaf agro-

infiltration

PDS CaMv35S,

CaMV35S

3.2–3.9% PCR + RE [42]

Table 1. Examples of plant transient transfection based on CRISPR/Cas9-mediated NHEJ.
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the entire genome in question. ZFNs act at two sites of the DNA sequence at the cellular level,

on the forward and reverse strand, respectively. Since cleavages of specific regions within the

genome can be observed, ZFNs are capable to recognize two adjacent sequences, and once the

corresponding cleavage occurs, the FokI restriction enzyme domains produce a dimerization

prior to the cleavage of the corresponding DNA loci. Thus, DSBs with 50-extensions originate

[31, 34, 35]. As listed in Table 1, some examples of experiments related to transient transfection

based on CRISPR/Cas9-mediated NHEJ may be cited.

5. CRISPR/Cas9 applications in crop genetic improvement: brief overview

The relevance of agriculture for human survival is hard to underestimate. Crops provide food,

fiber, and raw materials for a growing human population that faces an increasing amount of

challenges, including loss and degradation of arable land as well as climate change. In this

context, the rational use of all the available biotechnological tools is of paramount importance

to attain a worthy life quality both in developed countries and the third world. Crop genome

editing is among the most promising techniques to cope with the aforementioned agricultural

challenges. However, it is worth noting that the development of those methodologies is useful

not only for genetic improvement of agricultural crops but also to functional characterization

of specific plant genes for basic research purposes [43].

Three short reports, published in 2013, demonstrated the feasibility of CRISPR/Cas9 system for

genetic engineering of crops, based on the pioneer works of Li et al. (using A. thaliana),

Nekrasov et al. (with N. benthamiana), and Shan et al. (O. sativa and T. aestivum), respectively

[36, 40, 44]. After that, a plethora of research on crop genome editing has been published. The

works listed below include some of the most representative studies on the matter, according to

our best knowledge. However, the amazing dynamism of the field makes the presumption of

exhaustiveness unattainable.

Given its undeniable worldwide relevance as a staple food, it is not surprising that rice has been

one of the most studied crops in terms of CRISPR/Cas9 mediated genetic edition [14, 38, 45–48].

Among the main modifications proposed to this crop, it can be found herbicide resistance [49,

50], improved nitrogen use efficiency [51], and resistance against the rice blast disease [52].

Wheat (both durum and bread wheat) has also been subjected to extensive research in order to

optimize the effectiveness of the genome editing process [53–55] as well as the acquisition of

novel attributes including heritable broad-spectrum resistance to powdery mildew and other

plant diseases [56].

Other crops widely used for the validation of technical improvements in CRISPR/Cas9 system

are soybean [12, 57, 58] and maize [59, 60]. The latter cereal has also been modified in order to

exhibit advantageous traits. For instance, this technology has generated novel variants of the

ARGOS8 gene on maize. The ARGOS8 edited variants significantly increased grain yield

under drought stress conditions, compared to wild-type maize, and had no yield loss under

normal conditions [61].
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The CRISPR/Cas9 system was also used to investigate the influence of specific genes on the

phenotype development in tomato plants [51, 62, 63], as well as to achieve features of agro-

nomic importance, such as delayed ripening of tomato fruit [64] or parthenocarpy [65]. Other

members of the Solanaceae family reported to have undergone genetic editing via CRISPR/

Cas9, include tobacco (Nicotiana tabacum) [38, 66], potato (Solanum tuberosum) [67], and petunia

(Petunia hybrida) [68].

The CRISPR/Cas9 technology has also been used to confer molecular immunity against tomato

yellow leaf curl virus (TYLCV), using N. benthamiana as host [69], as well as inducing complete

resistance to Turnip mosaic virus (TuMV) [70], and improve the stress response in the model

plant A. thaliana [71].

In the case of the emerging oil seed plant, Camelina sativa, the CRISPR/Cas9-targeted genetic

edition has improved its fatty acid composition, obtaining a seed oil of superior quality on

multiple levels, which besides being healthier, was more stable to oxidation and better suited

for biofuel production [72, 73].

In addition to that, this technology has been used to obtain a nontransgenic cucumber strain

(Cucumis sativus L.), resistant to cucumber vein yellowing disease, papaya ringspot mosaic

virus-W, and zucchini yellow mosaic virus [74], as well as to successfully induce targeted

mutagenesis in the Chardonnay grape cultivar that enhanced its endurance to powdery mil-

dew, and to increase the golden delicious apple cultivar resistance to fire blight disease [75].

Besides the aforementioned, other crops in which the CRISPR/Cas9 technology has been

optimized include barley (Hordeum vulgare) and Brassica oleracea [76], watermelon (Citrullus

lanatus) [77], as well as the nonherbaceous sweet orange (C. sinensis cultivar Valencia) [42] and

poplar (Populus tomentosa) [78].

Finally, we would like to stress that there is no scientific evidence whatsoever to assume that

genetic modifications produced by modern biotechnological tools, such as CRISPR/Cas9,

represent a higher health or environmental risk than conventional breeding techniques. How-

ever, public distrust caused by genetically modified crops has led to many countries to imple-

ment highly strict and costly regulations that make very difficult to successfully commercialize

such products. Interestingly, since CRISPR/Cas9 genetic editing does not necessarily implies

the incorporation of foreign DNA, according to some interpretations, the existing legislation

might not be applicable to this technology. Therefore, the scientifically informed public discus-

sion of such legal framework is imperative [43, 75, 79].

6. Conclusions and final considerations

In recent years, the progress in the development of new tools for molecular genetic research

has been evident since their application by simple, versatile, and efficient experimental tech-

niques. From all the genome edition systems based on the nucleases application, CRISPR/Cas9

is the most friendly and simple method. It is now clear that the utility of this technology for the

modification of specific loci is limited only by the interest of the researcher. In coming years,
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debates are expected about the best use of organic and conventional agriculture, sustainable

farming, and all that coming from biotechnology. Thus, CRISPR/Cas9 technology has changed

the way we see the future of agriculture. On the other hand, the implementation and easy

accessibility to the CRISPR/Cas9 technology has allowed the generation of diverse molecular

methodologies that constitute significant advances in the genome edition and its subsequent

exploitation for agrarian and health purposes. Therefore, this technique is considered a revo-

lutionary tool.

The major challenges for CRISPR/Cas9 technology will focus on two underlying aspects. First,

the corresponding ethical or bioethical discussion, in order to demarcate what should or

should not be done with this tool considering the risks that we could face by using promising

technology, an even more when this is accessible and cheap. On the other hand, the legal

consequences in terms of intellectual property that today literally generate wars between law

firms and universities for the patents generated by thousands of investigations must be con-

sidered. Although many scientists consider CRISPR/Cas9 system as a “Holy Grail of genetic

engineering,” we must not lose sight of the objectivity and rationality when interpreting the

consequences of its use. Additionally, demanding compliance with all the necessary safety

steps before this technology becomes a trivial routine, especially if this tool is used for genome

editing, and the genetic improvement of living beings must be imperative.

The features of the CRISPR/Cas9 system have allowed opening the possibility of using it to

perform gene and cell therapy, in addition to its application in plant genetic improvement. In

general, this technology has been used as a tool to perform point mutations, homologous

recombination by HDR, and silencing and activation or repression of gene transcription.

Thanks to these properties, its application has been possible for genetic monitoring, analysis

of metabolic pathways, functional genomic research, generation of animal models, discovery

of possible targets for disease treatments, and, even, correction of phenotypes. Another appli-

cation of great importance that should continue to be developed is the generation of more

precise and representative plant lines for the study of phytopathogenic diseases. Knockdown,

knockout, and knocking models show the advantage of being able to be quickly and efficiently

generated with this system. Also, CRISPR/Cas9 is considered a great biotechnological tool in

the field of human therapies since its capacity to perform genetic level corrections/deletions,

which is traduced in the possibility of regulating transcription or translation pathways.

In relation to the introduction of CRISPR/Cas9 in agricultural and environmental sciences,

several studies recognize the possibilities of this technique to improve crop varieties [25, 80].

Uncertainty about safety and efficacy of genome editing requires evaluating its potential and

utility by applying the precautionary principle. Research on this technology also unchains

important legal and social debates among genetic engineering and genomic editing, in order

to establish whether new mechanisms are needed to regulate research, confined use, voluntary

release and if it is necessary to evaluate the possible impact on the environment just like in

consumers’ health, among other aspects. The application of the precautionary principle in any

case must be done considering the available scientific evidence and raising the necessary social

and economic considerations, in order to avoid a dogmatic interpretation that could under-

mine or stop scientific progress.
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Nevertheless, despite the great potential of the CRISPR/Cas9 technique, it is also common

to find evident limitations, since other alternatives have been proposed to improve genome

editing with biotechnological processes [81]. Molecularly, the components of the CRISPR/

Cas9 system are too large to be introduced into a viral genome (e.g.), and thus, they are

most commonly used in gene therapy to transport foreign genetic material into human and

plant cells. One solution for this problem is to use a smaller type of a Cas9 enzyme,

obtained from S. aureus [82]. This enzyme is small enough to fit in the virus. The mini-

Cas9 complex has been used in mice to correct the gene responsible for Duchenne muscular

dystrophy [83].

The Cas9 enzyme not always cleavages where it is intended within the genome (a certain DNA

sequence must be nearby for that to happen). This is easily accomplished in many genomes,

but it may be a limitation in some experiments. Researchers are constantly looking for

microbes to obtain enzymes with different genome characteristics to expand the number of

sequences that can be modified. One of these enzymes is called Cpf1, and it can be an

interesting alternative, since it is smaller than Cas9 and has different characteristics in its

sequence that make it highly specific [84, 85]. Another enzyme called C2c2 is able to target

RNA instead of DNA, which is why it has a great potential to study RNA and to fight plant

viruses with this type of genomes [86].

Several laboratories apply CRISPR/Cas9 technology in order to eliminate specific regions in a

gene sequence, thus repressing its function. Those who want to exchange a sequence for

another face a more difficult task. When Cas9 cleavages the DNA, the cell makes mistakes by

regrouping the loose ends, thus obtaining desired deletions. Researchers who want to rewrite a

DNA sequence rely on different repair pathways that can insert new sequences (a process that

occurs at a much lower frequency). Cas9 directs the sequence dictated by its guiding RNA, but

does not cut it; instead, the bound enzyme changes the letters of DNA, ultimately producing a

Twhere once there was a C [87].

In contrast to the above, recent new gene editing systems have been released using a protein

called NgAgo to cleavage DNA at a predetermined site without the need for an RNA guide or

a genome-specific neighbor sequence. Instead, the protein (of bacterial origin) is programmed

using a short DNA sequence corresponding to the target sequence. However, laboratories have

failed to reproduce the results so far, so the effectiveness of this technique cannot be affirmed

[88]. There are also other genetic editing systems, some of which have existed for years. For

example, scientists rely heavily on a system called lambda Red, which can be programmed to

alter DNA sequences without the need for a RNA guide.

In light of the above considerations, we can finally conclude that the biotechnological tools that

belong to cas9 toolbox that in synergism with new bioinformatic algorithms increase their

potential in a specific and powerful way and help position this technology as a magnificent

last generation method for genomic edition, which is considered a revolutionary scientific

discovery for both basic and applied research including the field of plant biotechnology, even

when there are inconclusive details of its application in the laboratory and very probably a

gross ignorance of its nature, for now.
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