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Abstract

Acute kidney injury (AKI), previously named acute renal failure, is characterized by
abrupt deterioration in renal function. The incidence of AKI has increased lately, both in
the hospital and community setting. It is estimated that more than 13 million people are
affected by AKI annually worldwide. Despite all the advances in the field, AKI still carries
a high mortality rate. In addition to mortality, AKI is an important risk factor for the
development of chronic kidney disease. In this chapter, various aspects of AKI will be
discussed including definition and staging, etiology, pathophysiology, clinical presenta-
tion, diagnosis, management, prognosis, and prevention.

Keywords: acute kidney injury, renal failure, nephrotoxicity, pathophysiology,
biomarkers, management, prognosis, prevention

1. Introduction

Acute kidney injury (AKI) is a major public health concern and is associated with high

morbidity, mortality, and healthcare costs. The incidence of AKI has increased lately, both in

the hospital and community setting. It is estimated that more than 13 million people are

affected by AKI annually with an incidence of 21.6% in adults and 33.7% in children during a

single hospital episode of care [1, 2]. Despite all the advances in the field, the mortality of AKI

remains very high estimated at 23.9% in adults and 13.8% in children [2]. In addition to the

high mortality (1.7 million per year), AKI is associated with high morbidity and high costs [1].

In the United States, at least $5 billion in hospital costs are related to AKI, while in England

AKI consumes 1% of the National Health Service budget [3]. In the developed world, AKI

manifests mainly in older patients and in the intensive care settings; while in the developing

countries, adults and women are particularly more commonly affected [4, 5]. Recovery from

AKI is not always, as previously thought, complete and many patients progress to develop
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chronic kidney disease (CKD), end-stage renal disease (ESRD), or worsening of preexisting CKD

later on in life [6–9]. Treatment of AKI is needed to reduce the high morbidity and mortality and

improve recovery of renal function. A part of dialysis, there are no other interventions that

reliably improve survival, limit injury, or enhance recovery. The multifactorial etiology and the

heterogeneous patient population coupled with the complicated clinical course of patients with

AKI has created challenges in the search for effective pharmacological therapy [10]. In some

scenarios, such as surgery or administration of intravenous contrast, the onset of AKI can be

predicted providing a window of opportunity for intervention and prevention. In the majority of

cases, however, intervention takes place after the onset of AKI with the aim to shorten the course

and enhance recovery of renal function. In this chapter, various aspects of AKI will be discussed

with a particular focus on definition and staging, etiology, pathophysiology, clinical presentation,

diagnosis, management, prognosis, and prevention.

2. Definition and staging of acute kidney injury

The term AKI has replaced old terms such as acute renal failure and acute renal insufficiency,

which previously had been used to describe the same clinical condition. AKI is not just failure;

it also incorporates the entire spectrum of the syndrome, from minor changes in renal function

to the most severe form, where renal replacement therapy (RRT) may be required.

Over the last few decades, more than 35 different definitions have been used to define AKI

[11]. The most commonly used definition is based on urine output and/or serum creatinine

criteria. The most commonly used classifications of AKI are the “risk, injury, failure, loss of

kidney function, and end-stage kidney disease” (RIFLE) [12] and the Acute Kidney Injury

Network (AKIN) classifications [13].

The RIFLE classification is based on serum creatinine and urine output determinants, and

considers three severity classes of AKI (risk, injury and failure), according to the variations in

serum creatinine and or urine output, and two outcome classes (loss of kidney function and

end-stage kidney disease). The patient should be classified using the criteria which leads to the

Class GFR Urine output

Risk ↑ SCr � 1.5 or ↓ GFR >25% <0.5 mL/kg/h � 6 h

Injury ↑ SCr � 2 or ↓ GFR >50% <0.5 mL/kg/h � 12 h

Failure ↑ SCr � 3 or ↓ GFR >75% or if baseline SCr ≥353.6 μmol/L (≥4 mg/dL) ↑

SCr >44.2 μmol/L (>0.5 mg/dL)

<0.3 mL/kg/h � 24 h or

anuria � 12 h

Loss of kidney

function

Complete loss of kidney function >4 weeks

End-stage kidney

disease

Complete loss of kidney function >3 months

GFR, glomerular filtration rate; SCr, serum creatinine.

Table 1. Risk, injury, failure, loss of kidney function and end-stage kidney disease (RIFLE) classification of acute kidney

injury [12].
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worst classification (maximum RIFLE), Table 1. On the other hand, AKI is classified/staged by

the AKIN into three stages as shown in Table 2.

The Kidney Disease Improving Global Outcomes (KDIGO) work group has combined the RIFLE

and AKIN classifications in order to establish one classification of AKI for practice, research and

public health. Therefore, AKI is now defined as an abrupt reduction in renal function (within

48 h) based on an increase in serum creatinine level of more than or equal to 0.3 mg/dL

(≥26.4 μmol/L), a percentage increase in serum creatinine of more than or equal to 50% (1.5-fold

from baseline), or a reduction in urine output (documented oliguria of less than 0.5 mL/kg/h for

more than 6 h) or a combination of these factors [14].

3. Etiology of acute kidney injury

The etiology of AKI can be divided into three categories, Table 3 [15]:

1. Prerenal (caused by decreased renal perfusion, often due to volume depletion)

2. Intrinsic renal (caused by a process within the kidneys)

3. Postrenal (caused by a process distal to the kidneys such as obstruction)

Stage Change in serum creatinine Urine output

1 Increase ≥0.3 mg/dL (26.52 μmol/L) or ≥150–200% from baseline <0.5 mL/kg/h for more than

6 h

2 Increase >200–300% from baseline <0.5 mL/kg/h for more than

12 h

3 Increase >300% from baseline or ≥4.0 mg/dL (353.60 μmol/L) with an acute rise of at

least 0.5 mg/dL (44.20 μmol/L)

<0.3 mL/kg/h for 24 h or

anuria for 12 h

Table 2. Acute Kidney Injury Network (AKIN) classifications of acute kidney injury [13].

Prerenal

Intrarenal vasoconstriction (hemodynamically mediated):

Medications: nonsteroidal anti-inflammatory drugs, angiotensin system blockers, calcineurin inhibitors

Cardiorenal syndrome: advanced heart failure

Hepatorenal syndrome: liver cirrhosis

Abdominal compartment syndrome

Hypercalcemia

Systemic vasodilation: sepsis

Volume depletion:

Renal loss: diuretics, osmotic diuresis (severe hyperglycemia), salt wasting

Extrarenal loss: blood loss, gastrointestinal loss (vomiting, diarrhea), skin (burns, sweating)

Acute Kidney Injury
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Of these three categories, only “intrinsic” AKI represents a true kidney disease, while pre- and

postrenal AKI are the consequence of extrarenal processes that lead to decreased glomerular

filtration rate (GFR). Both pre- and postrenal conditions, if persist and not managed in a timely

manner, may eventually evolve into intrinsic renal damage. Patients with CKD and those

admitted to the intensive care unit (ICU) are particularly prone to develop AKI. The AKI-EPI

study demonstrated that AKI occurred in more than half of the patients in ICU; mostly due to

sepsis and hypovolemia followed by nephrotoxic agents [16].

4. Pathophysiology of acute kidney injury

Despite the identification of several cellular mechanisms thought to underlie the development

of AKI, the pathophysiology of AKI is still poorly understood. Animal models of AKI

representing ischemia–reperfusion injury and drug nephrotoxicity have been instrumental in

understanding the pathophysiology of AKI in humans. Although the current in vivo models of

AKI in healthy rodents provide valuable information about the pathophysiological mecha-

nisms of renal injury, they do not reflect the complexity of disease in humans characterized by

Intrinsic renal

Glomerulonephritis (isolated or a part of systemic diseases)

Interstitial nephritis:

Medications: antibiotics (β lactams, sulfonamides, quinolones, rifampin), phenytoin, antiretrovirals, proton pump

inhibitors, nonsteroidal anti-inflammatory drugs

Infections: viruses (Epstein-Barr virus, cytomegalovirus, human immunodeficiency virus), bacteria (tuberculosis,

legionella species), fungi (candidiasis, histoplasmosis)

Systemic disease: sarcoidosis, connective tissue diseases

Tubular necrosis:

Ischemic: prolonged hypotension

Nephrotoxic: exogenous toxins (radiographic contrast agents, aminoglycosides, cisplatin, methotrexate,

amphotericin B)

Endogenous toxins: pigment induced (hemolysis and rhabdomyolysis), tumor lysis syndrome, multiple myeloma

Vascular

Renal artery and vein thrombosis, malignant hypertension, scleroderma renal crisis, atheroembolic disease,

microangiopathies

Post renal

Extrarenal obstruction: outlet obstruction (prostate hypertrophy, neurogenic bladder; malignancy of the urogenital tract),

retroperitoneal fibrosis

Intrarenal obstruction: stones, crystals (acyclovir, indinavir, ethylene glycol), blood clots, tumors

Adapted and modified from Rahman et al. [15].

Table 3. Etiology of acute kidney injury.
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population’s heterogeneity and preexisting comorbidities such as diabetes, hypertension, and

CKD. A few and not all mechanisms of AKI will be discussed.

4.1. Microvascular injury

The renal microvasculature plays a key role in the pathophysiology of AKI. The kidney is a

vascular organ receiving 25% of the cardiac output and has a high energy demand with rela-

tively low oxygen (O2) extraction. Under normal steady-state, the O2 supply to the kidney is well

regulated. Adequate O2 delivery is crucial for the production of mitochondrial adenosine tri-

phosphate (ATP), nitric oxide (NO), and reactive oxygen species (ROS) necessary for homeostatic

control of renal function [10, 17]. The vascular architecture of the outer medulla is particularly

susceptible to ischemic injury due to the marginal oxygenation of this part of the kidney.

With injury, the microcirculation is compromised leading to an imbalance in NO, ROS, and O2

supply and consumption. Subsequent pathogenic events follow including hypoxia and oxida-

tive stress. Injury to the microvascular endothelium and changes in the glycocalyx lead to

endothelial cell activation and expression of cell surface markers that promote recruitment

and adhesion of leukocytes and platelets, leading to further changes in perfusion and O2

delivery; and to additional endothelial cell injury and inflammation [18, 19]. As a result,

increased vascular permeability and development of interstitial edema lead to further compro-

mise of blood flow exacerbating the initial insult. In addition, production of vasoactive prosta-

glandins by damaged tubular cells coupled with oxidative stress further impairs O2 delivery

by worsening the local microvascular occlusion [18, 19]. The main long-term result of micro-

vascular injury is a reduction in peritubular capillary density, a response to decreased vascular

endothelial growth factor (VEGF) and increased transforming growth factor beta (TGF-β)

signaling, which contributes to ongoing hypoxia and development of renal fibrosis [20].

4.2. Changes in endoplasmic reticulum

The endoplasmic reticulum (ER) plays an important role in the maintenance of protein homeo-

stasis through its control of the concentration, conformation, folding, and trafficking of client

proteins. As a result of endothelial or epithelial cell stress, unfolded or misfolded proteins

accumulate in the ER, triggering the unfolded protein response (UPR) [21]. The UPR initially

serves as an adaptive response, but will also induce apoptosis in cells under severe or

prolonged ER stress. Accumulating evidence indicates that apoptosis in tubules resulting from

epithelial cell damage is caused, at least in part, by the proapoptotic UPR [22]. Therefore,

targeting the UPR may present a possible approach to prevent or treat AKI.

4.3. Mitochondrial dysfunction

The ER and mitochondria have multiple contact sites termed the mitochondrial-ER-associated

membrane (MAM). The MAM contains proteins from the two organelles and appears as ER

tubules closely apposed to the mitochondria on electron micrographs [23]. During cellular

stress situations, like an altered cellular redox state, the MAM alters its set of regulatory

proteins and thus alters MAM functions. In the pathogenesis of AKI, proximal tubules are

Acute Kidney Injury
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especially vulnerable to mitochondrial dysfunction as they depend on aerobic metabolism and

their mitochondria are in a more oxidized state than those in the distal tubular cells which can

use glycolysis [24]. Following either ATP depletion or cisplatin treatment of rat renal tubular

cells, mitochondrial fragmentation was observed prior to cytochrome c release and apoptosis

[25]. Targeting mitochondrial dysfunction along with a better understanding of the regulation

of mitochondrial dynamics and its pathogenic changes may emerge as a new modality to treat

AKI [26].

4.4. Autophagy

Autophagy is a catabolic process in which proteins, organelles, and cytoplasmic components

are delivered to lysosomes for degradation and recycling. Autophagy is induced in renal

tubular cells during AKI [27]. It is initiated by encapsulating cytoplasmic proteins and organ-

elles in autophagosomes, which fuse with lysosomes for degradation. Once activated, it may

decrease cellular stress by removing ER membranes containing UPR sensors and/or clearing

abnormal proteins from the ER. In animal models, blocking the autophagic flux-enhanced

AKI, while activation of autophagy was found to be protective against cisplatin-induced AKI

[27]. In addition, resolution of autophagy may promote proliferation and regeneration of

tubular cells in the recovery phase of AKI [28]. Autophagy may be targeted as an inflamma-

tory modulator for the treatment of various kidney diseases [29].

4.5. Inflammation

Inflammation plays a major role in the pathophysiology of AKI resulting from ischemia [30].

Changes in protein folding and mitochondrial function influence the innate immune response,

contributing to inflammation. In addition, several cytokines and inflammatory pathways are

activated in AKI [30]. Moreover, immune cells of both the innate and adaptive immune

systems, such as neutrophils, dendritic cells, macrophages, and lymphocytes, contribute to

the pathogenesis of renal injury after ischemia–reperfusion injury, and some cells also partici-

pate in the repair process [31]. Neutrophils and monocytes mediate the acute phase within the

first 24 h of injury [32], whereas T and B lymphocytes are important in the evolution phase of

renal injury [31]. Inhibition of leukocyte infiltration into the kidney ameliorates the loss in renal

function, decreases renal injury, cell death, and long-term fibrosis [33]. There is experimental

evidence that inducible nitric oxide synthase (iNOS) may contribute to tubular injury during

AKI [34]. It has been shown that hypoxia in isolated proximal tubules increases nitric oxide

release [35], and that iNOS protein expression is increased in ischemic kidneys [36]. In vivo use

of an antisense oligonucleotide to block the up-regulation of iNOS was protective against

ischemia induced renal injury in rat models [36]. Similarly, tubules from iNOS knockout mice

were protected against hypoxic injury [37].

Phospholipase A2 (PLA2) is a family of enzymes that hydrolyzes the acyl group from the sn-2

position of phospholipids, generating free fatty acids [38, 39]. PLA2 activity is increased during

hypoxic injury to the renal tubules. Inhibiting PLA2 by exogenous fatty acids such as

arachidonic acid has been shown to be protective against hypoxia-induced injury in isolated

proximal renal tubules [40, 41].

Aspects in Continuous Renal Replacement Therapy10



4.6. Sepsis and acute kidney injury

Sepsis is a severe inflammatory response to infection characterized by a whole-body inflam-

matory state with severe consequences, including multiple organ failure [42]. AKI is a frequent

and serious complication of sepsis among ICU patients and is associated with a high in-

hospital and long-term mortality [43, 44]. The multinational AKI-EPI study has demonstrated

that AKI affected more than 50% of ICU patients, and increasing AKI severity was associated

with increased mortality [16].

4.6.1. Pathogenesis of sepsis-induced acute kidney injury

Although septic shock is a leading cause of AKI, the underlying mechanisms are not

completely understood. The pathophysiology of AKI in sepsis is complex and multifactorial

involving multiple processes including intrarenal hemodynamic perturbations, endothelial

dysfunction, infiltration of inflammatory cells, up-regulation of inflammatory cytokines,

intraglomerular thrombosis, induction of apoptosis, and tubular obstruction with necrotic

cells and debris [42, 45, 46]. Activation of pro- and anti-inflammatory mechanisms is

believed to play a key role in the induction of sepsis [47].

Activation of the innate immune response takes place after initial host-microbial encoun-

ter, which coordinates a defensive response involving both humoral and cellular compo-

nents [48]. This leads to activation and secretion of various cytokines, most importantly

interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and IL-6 that progress to a state of

cytokine storm, hemodynamic instability, and eventually organ dysfunction and septic

shock [42].

Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, is

a potent and rapid activator of a variety of cell types such as leukocytes, monocytes, and

macrophages [49]. Activation of inflammatory cells by LPS constitutes the first step in a

cascade of events that lead to the manifestation of Gram-negative sepsis. LPS initiates

multiple intracellular signaling events, including the activation of nuclear factor-κB (NF-κB),

which ultimately leads to the synthesis and release of a number of pro-inflammatory medi-

ators, including IL-1, IL-6,IL-8, and TNF-a. The pathway that leads to activation of NF-κB

has been shown to be mediated by members of the toll-like receptors (TLRs), a family of

transmembrane proteins that play an important role in the defense against pathogenic

microbial infection [50]. In the setting of sepsis, there is a significant up-regulation of TLRs,

in particular TLR-2 and TLR-4 expression [51]. Both TLR-2 and TLR-4 are activated by LPS in

a response that depends on LPS-binding protein and is enhanced by CD14 [49, 52]. An

overview of the TLR signaling pathway is depicted in Figure 1 [53]. Figure 2 depicts the

key pathways involved in the clinical course of sepsis that also have implications in the

pathophysiology of sepsis-induced AKI [42].

Modulation of TLRs may become a novel therapeutic target in the treatment of organ dysfunc-

tion associated with sepsis including AKI. Similarly, cytokine adsorption to the membrane

during continuous renal replacement therapy may emerge as a treatment modality in patients

with sepsis and AKI [54].

Acute Kidney Injury
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Figure 1. Toll-like receptor (TLR) signaling pathway. When TLRs are stimulated by their respective ligands, they

dimerize and recruit downstream adaptor molecules, such as myeloid differentiation primary-response protein 88

(MyD88), MyD88-adaptor-like (MAL), toll/interleukin (IL)-1 receptor (TIR)-domain-containing adaptor-inducing

interferon-β (TRIF), TRIF-related adaptor molecule (TRAM), which activate other downstream molecules leading to

the activation of signaling cascades that converge at the nuclear factor-κB (NF-κB), interferon (IFN) response factors

(IRFs), and mitogen-activated protein (MAP) kinases. These molecules induce the transcription of several pro-

inflammatory molecules, such as interleukin (IL)-6, IL-8, IL-12, and tumor necrosis factor-α (TNF-α). AP1, activator

protein 1; ATF, activating transcription factor; dsRNA, double-stranded RNA; ERK, extracellular signal-regulated

kinase; IKK, inhibitor of kappa light polypeptide gene enhancer in B-cell kinase; IRAK, IL-1 receptor-associated

kinase; JNK, c-Jun N-terminal kinase; LPS, lipopolysaccharide; MD, myeloid differentiation factor; MKK, MAPK

kinase; NA, nucleic acid; TAB, transforming growth factor-β-activated kinase 1/MAP3K7-binding protein; TAK,

transforming growth factor-activated kinase; TRAF, tumor necrosis factor receptor-associated factor; RIP1, receptor-

interacting protein 1. Adapted from Anwar et al. [53].
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5. Clinical presentation of acute kidney injury

The clinical presentation of AKI depends on the cause and severity of renal insult. Mild

to moderate AKI is asymptomatic and patients are identified based on laboratory testing.

However, patients with severe AKI often present with a variety of symptoms including

fatigue, anorexia, nausea, vomiting, restlessness, confusion, fluid retention, and weight

gain. Severe and prolonged AKI may cause central nervous system manifestations such

as uremic encephalopathy with asterixis, confusion, and seizure; bleeding tendency due

to platelet dysfunction and severe anemia. Patients with AKI may have normal urine

output, oliguria (urine output less than 400 mL/24 h) or anuria (urine output less than

100 mL/24 h).

Figure 2. Key pathogenic pathways involved in sepsis that also have implications in the pathophysiology of sepsis-

induced acute kidney injury. Adapted from Zarjou and Agarwal [42].

Acute Kidney Injury
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6. Diagnosis of acute kidney injury

History and physical examination, with an emphasis on assessing the patient’s volume status,

are crucial for determining the cause of AKI. The history should inquire about the use of nephr-

otoxic medications or presence of systemic illnesses that might impair renal perfusion or directly

impair renal function. Physical examination should assess the intravascular volume status and

any skin rashes that indicate systemic diseases. The initial laboratory evaluation should include

urinalysis, urine microscopy, complete blood count, electrolytes, serum creatinine or cystatin C

level, and fractional excretion of sodium (FENa). Urinalysis and urine microscopy are essential in

the initial work up of AKI. Findings on urinalysis and urine microscopy guide the differential

diagnosis and direct further investigation. Imaging studies in particular ultrasonography can

help in the initial work up of AKI. Ultrasonography is particularly important in older men with

AKI who may have bladder outlet obstruction as a result of prostate hypertrophy [55, 56]. Renal

biopsy is reserved for patients with AKI where the cause is not clear. Renal biopsy is particularly

important when there is suspicion of an underlying disease that requires specific therapy such as

glomerulonephritis or interstitial nephritis. Renal biopsy should be performed urgently in cases

of rapidly progressive glomerulonephritis as indicated by rising serum creatinine or cystatin C

and presence of red blood cell casts or dysmorphic red blood cells on urine microscopy.

7. New biomarkers for the quick detection of acute kidney injury

Although the RIFLE and AKIN criteria, based on serum creatinine and urine output, were a

step forward in diagnosing AKI, a reliable tool to differentiate between true parenchymal

and prerenal azotemia in clinical practice is still lacking [57]. Lately, several papers on the

use of new urinary and serum biomarkers for the diagnosis and prognostication of AKI have

been published with the hope that these biomarkers will lead to a new era of earlier diagno-

sis, better prognostication and treatment. Some of the studied biomarkers are listed in

Table 4. Although these biomarkers may help to understand some of the biochemical and

biological processes during AKI, their utility in preventing and treating AKI at present is at

most very limited [58].

Acronym Legend Main source

AP Alkaline phosphatase Liver, bone, intestine, placenta, brush border proximal convoluted tubules

α1MG Alpha 1 microglobulin Liver. Reabsorption by renal proximal tubular cells

α1acidGP Alpha 1 acid glycoprotein Liver. Reabsorption by renal proximal tubular cells

Β2MG Beta 2 microglobulin All nucleated cells. Reabsorption by renal proximal tubular cells

Cystatin C Cystatin C All nucleated cells. Reabsorption by renal proximal tubular cells

FENA Fractional excretion of

sodium

GGTP Gamma glutamyl

transpeptidase

All cells except myocytes. Mainly liver and kidney (brush border proximal

convoluted tubules and loop of Henle)
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8. Management of acute kidney injury

Management of AKI mandates close collaboration among nephrologists and other physicians

involved in the care of the patient. The clinical evaluation of AKI includes a careful history and

thorough physical examination. Drug history should include over-the-counter medications,

herbal remedies, and recreational drugs [59]. Once established, management of AKI is mainly

Acronym Legend Main source

αGST Alpha-glutathione S-

transferase

Expressed in almost all tissues. Kidney: proximal tubular cells

(cytoplasmatic)

πGST Pi glutathione S-transferase Expressed in almost all tissues. Kidney: distal tubular cells (cytoplasmatic)

HGF Hepatocyte growth factor Mesenchymal cells

IL-6 Interleukin 6 T lymphocytes, macrophages, endothelial cells, monocytes

IL-8 Interleukin 8 Monocytes, macrophages, epithelial cells, endothelial cells

IL-10 Interleukin 10 Monocytes, lymphocytes, macrophages

IL-18 Interleukin 18 Monocytes, dendritic cells, macrophages and epithelial cells

KIM-1 Kidney injury molecule 1 Kidney: proximal tubular cells

LFABP Liver-type fatty acid-binding

protein

Hepatocytes, kidney: proximal tubular cells

NGAL Neutrophil gelatinase-

associated lipocalin

Leucocytes, loop of Henle and collecting ducts

NAG N-Acetyl beta

glucosaminidase

Several tissues (liver, brain, spleen, etc.). Kidney: proximal tubular cells

(lysosomal)

PAI-1 Plasminogen activator

inhibitor 1

Endothelium

PCX Podocalyxin Podocytes

RBP Retinol-binding protein Liver. Reabsorption by renal proximal tubular cells

sTNFR-I Soluble tumor necrosis factor

receptor I

Most cells and tissues (cytotoxic, apoptotic, and pro-inflammatory effects)

sTNFR-II Soluble tumor necrosis factor

receptor II

Most cells and tissues (proliferative and anti-apoptotic effects)

TNF-α Tumor necrosis factor alpha Macrophages, lymphoid cells, renal parenchymal cells

11 k-TXB2 11-keto-Thromboxane B2 Platelets

vWF Von Willebrand factor Endothelium, megakaryocytes, subendothelial connective tissue

TIMP-2 Tissue inhibitor of

metalloproteinase-2

Ubiquitous expression. Renal tubular cells

IGFBP7 Insulin-like growth factor-

binding protein 7

Ubiquitous expression. Renal tubular cells

Adapted and modified from Vanmassenhove [57].

Table 4. Urinary and serum biomarkers for the diagnosis of acute kidney injury.
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supportive. Most patients with AKI should be hospitalized unless the condition is mild and

attributed to an easily reversible cause. The evaluation and initial management of patients with

AKI should include: (1) an assessment of the contributing causes of the kidney injury, (2) an

assessment of the clinical course including comorbidities, (3) a careful assessment of volume

status, and (4) the institution of appropriate therapeutic measures designed to reverse or

prevent worsening of functional or structural kidney abnormalities [60]. The initial assessment

of patients with AKI should include the differentiation between prerenal, renal, and postrenal

causes [34, 61–63]. In the majority of cases, the exclusion of postrenal causes using ultrasonog-

raphy is an established approach and sufficient for the initial assessment. Differentiation

between prerenal and renal causes is more challenging as renal hypoperfusion may coexist

with any stage of AKI.

Assuring adequate renal perfusion by achieving and maintaining hemodynamic stability and

avoiding hypovolemia is crucial in the initial management of AKI. Measurement of central

venous pressures may be helpful in case of difficulty in assessing intravascular volume.

Prerenal azotemia is rapidly reversible when the underlying cause is corrected [34, 60–63]. It

is important to point out that certain elements of the definition of prerenal azotemia have

diagnostic limitations. In the setting of renal hypoperfusion, compensatory mechanisms aimed

at maintaining GFR may become operative. These compensatory mechanisms include efferent

arteriolar vasoconstriction, afferent arteriolar dilation, and neuro/hormonal changes that lead

to increased tubular reabsorption of solutes and water [64]. This implies that patients with

renal hypoperfusion may be classified as having AKI by urine output criteria without having a

significant change in serum creatinine concentration.

Volume resuscitation can correct prerenal conditions resulting from absolute or relative

hypovolemia. However, renal hypoperfusion resulting from low cardiac output (severe car-

diomyopathy) and reduced renal perfusion pressure (sepsis, or end-stage liver disease) cannot

always be corrected by fluid administration [60]. Isotonic solutions (e.g., 0.9 sodium chloride)

are preferred over hyperoncotic solutions due to the detrimental effect of these solutions (e.g.,

dextrans, hydroxyethyl starch, and albumin) [65, 66]. The use of hydroxyethyl starch as a

plasma-volume expander has been shown to be an independent risk factor for AKI in patients

with severe sepsis or septic shock [65]. In patients with persistent hypotension, vasopressors

may be needed to maintain a mean blood pressure of 65 mmHg [66].

9. Pharmacologic interventions for management of acute kidney injury

A number of pharmacologic interventions have been evaluated in the early management of AKI.

Some have been designed to improve renal perfusion and others to modulate intrarenal patho-

physiology. In patients with hyperdynamic septic shock, both norepinephrine and terlipressin

were effective in raising mean arterial blood pressure (MAP) leading to an improvement in renal

function [67].

Low-dose (renal-dose) dopamine was frequently used in the ICU setting for its presumed

renoprotective effects. Low-dose dopamine may increase the urine output on the first day of

Aspects in Continuous Renal Replacement Therapy16



use, but prospective and retrospective studies as well as several meta-analyses have not

shown positive effect in prevention of AKI or improvement in renal function in patients with

AKI [68–71]. To the contrary, low-dose dopamine has been shown to worsen renal perfusion

in patients with established AKI [72]. Therefore, the routine use of low-dose dopamine in

critically ill patients should be abandoned.

Randomized controlled trials of early AKI and contrast nephropathy studying fenoldopam, a

selective dopamine A1 agonist, proved this agent is ineffective at protecting renal function or

reducing the need for renal replacement [73, 74]. Fenoldopam has been shown, however, to

lower the risk of AKI in cardiac and major surgery patients according to some meta-analyses,

without an effect on renal replacement or hospital mortality [75, 76]. In most of these studies,

fenoldopam was associated with hypotension.

High-chloride fluids may be associated with increased risk of AKI and mortality in patients

with sepsis [77]. Early goal-directed therapy with close monitoring of central venous pressure,

mean arterial pressure, and oxygen saturation has been shown to be protective against AKI in

patients admitted to the intensive care unit with sepsis [78, 79].

Atrial natriuretic peptide (ANP) is produced by cardiac atrial myocytes in response to atrial

distension or increased atrial pressure. It induces afferent dilatation and efferent vasoconstriction,

thereby increasing glomerular filtration and urinary sodium excretion [80]. B-type (brain) natri-

uretic peptide (BNP) is primarily produced in the cardiac ventricles and has similar effects [81, 82].

Low doses of recombinant human ANP-enhanced renal excretory function, decreased the proba-

bility of dialysis, and improved dialysis-free survival in early, ischemic acute renal dysfunction

after complicated cardiac surgery [83]. Similar effects were observed in patients undergoing liver

transplantation [84, 85]. However, larger doses of ANP were not effective in improving dialysis-

free survival or reduction in dialysis in large randomized clinical trials [86, 87].

Theophylline, an adenosine antagonist has been shown in several preliminary reports to be

beneficial in the prevention of contrast nephropathy and cisplatin nephrotoxicity [88–90]. A

few adjunctive agents such as flavonoids (silymarin) and carotenoids (lycopene), have been

tried in pilot studies in cancer patients receiving cisplatin with limited success in some but not

all studies [91–93]. Adequately powered, controlled studies to support the efficacy of these

agents are lacking.

Levosimendan, a calcium sensitizer, has inodilator, cardioprotective, and anti-inflammatory

effects [94]. Two meta-analyses suggested that the use of levosimendan was associated with a

reduction of renal replacement therapy in critically ill patients and patients undergoing cardiac

surgery [95, 96]. The studies in both meta-analyses were small, heterogeneous, and AKI was

not always a predefined endpoint.

The role of loop diuretics and osmotic agents in the prevention and treatment of AKI in

humans has been disappointing despite their ability to decrease the tubular oxygen consump-

tion and relieve intratubular obstruction in animal models [97–99]. A metanalysis has shown

that frusemide was not associated with any significant clinical benefits in the prevention and

treatment of AKI in adults, in addition to the concern of increased risk of ototoxicity associated

with high doses [100].
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N-acetyl-cysteine, a thiol-containing antioxidant has been investigated in several trials, mainly in

the prevention of contrast-induced nephropathy. Despite some positive reports [101, 102], the

protective effect of N-acetyl-cysteine is still controversial [103–106]. Similarly, N-acetyl-cysteine

was not found to be protective against other causes of AKI particularly in hypotensive patients in

the ICU or patients undergoing cardiac surgery [107, 108]. Hydration with sodium bicarbonate,

as compared to normal saline, has been shown in some studies to be superior to normal saline in

the prevention of contrast-induced nephropathy [109–111]. Other studies have shown no supe-

riority of sodium bicarbonate over saline in the prevention of contrast nephropathy [112, 113].

Hydration with isotonic solutions either normal saline or sodium bicarbonate in addition to the

use of low osmolar contrast agents is the most effective strategy to prevent contrast-induced

nephropathy.

Statins may have a beneficial effect in high-risk patients exposed to contrast administration for

angiography. In a randomized multicenter clinical trial, the short-term use of rosuvastatin was

found to be protective against contrast nephropathy in diabetic patients with concomitant

CKD who underwent coronary/peripheral arterial angiography [114]. In another single center

trial high-dose rosuvastatin (40 mg on admission followed by 20 mg daily) given to statin-

naïve patients with acute coronary syndrome who were scheduled for an early invasive

procedure was protective against contrast-induced AKI and improved the short-term clinical

outcome [115]. 6.7% of patients in the early high-dose rosuvastatin group developed AKI

compared to 15.1% in the control group. The 30-day rate of adverse cardiovascular and renal

events was also reduced in the rosuvastatin group (3.6 versus 7.9%). In a subgroup analysis of

this study, rosuvastatin had a protective effect among female diabetic patients with CKD [116].

Similarly, a single high dose of atorvastatin (80 mg) administered within 24 h before exposure

to intravenous contrast was effective in reducing the rate of AKI in diabetic patients with renal

dysfunction [117, 118]. The protective effect of statins has been confirmed in multiple meta-

analyses [119–121]. However, the beneficial effect of statins in patients undergoing coronary

interventions was not observed in patients undergoing cardiac surgery. In this group of

patients, the use of statin either showed no benefit or was detrimental [122–124].

10. Renal replacement therapy for acute kidney injury

There is a wide variation in clinical practice relating to the indication for and timing of RRT for

patients with AKI. There is also no agreement on the selection of the specific modality of RRT

and prescription of intensity of therapy. Among the several modalities of RRT, continuous

renal replacement therapy has become very popular, especially in the ICU setting where

patients may be hemodynamically unstable to tolerate intermittent hemodialysis. There does

not appear to be a significant difference in either mortality or recovery of renal function

associated with the various modalities of RRT. This is discussed in details in other sections of

the book designated for RRT.
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11. Prevention of acute kidney injury

Acute kidney injury is particularly common in ICU patients affecting more than 50% and is

associated with increased mortality and morbidity [16]. The Working Group on Prevention, AKI

section, European Society of Intensive Care Medicine has recently issued recommendations for

the prevention of AKI, specifically addressing the role of fluids, diuretics, inotropes, vasopres-

sors/vasodilators, hormonal and nutritional interventions, sedatives, statins, remote ischemic

preconditioning, and care bundles as shown in Table 5 [125]. The recommendations are summa-

rized as follows: timely resuscitation with fluids, vasopressors, and inotropic agents remains the

cornerstone in the prevention of AKI. Volume expansion with isotonic crystalloids is reserved for

true and suspected hypovolemia. The use of starches and dextrans should be avoided. In

hypotensive patients, vasoconstrictors, preferably norepinephrine, should be administered with

or following volume expansion. Mean arterial pressure (MAP) of 65–70 mmHg is adequate in

most patients except in cases of preexisting chronic hypertension where a higher MAP (80–

85 mmHg) should be targeted. Review of all medications and cessation of nephrotoxic agents is

mandatory. Diuretics should not be used for prevention of AKI but may benefit in cases of

volume overload and congestion. Hyperglycemia should be avoided. The effect of statins

appears to depend on the setting, with promising results in contrast administration but no effect

or even harm in cardiac surgery patients [125].

Volume expansion

Controlled fluid resuscitation in volume depletion, while, however, avoiding volume overload (1 C)

Avoidance of starches, gelatine, and dextrans (2C)

Correction of hypovolemia/dehydration using isotonic crystalloids in patients receiving intravascular contrast media (1 B)

Regular monitoring of chloride levels and acid–base status in situations where chloride-rich solutions are used (BPS)

Use of balanced crystalloids for large volume resuscitation (2C)

Use of human albumin if necessary for the treatment of patients with septic shock (2C).

Use of diuretics

No loop diuretics for the prevention of AKI (Grade 1B)

Diuretics to control or avoid fluid overload in patients that are diuretic-responsive (Grade 2D)

Use of vasopressors

Titrating vasopressors to a MAP of 65–70 mmHg (Grade 1B) in patients with septic shock and to (80–85 mmHg) for

patients with chronic HTN (Grade 1C).

lowering SBP to 140–190 mmHg in patients with acute cerebral hemorrhage with severe admission hypertension (Grade

1C)

Norepinephrine as the first-choice vasopressor to protect kidney function (Grade 1B) and vasopressin in patients with

vasoplegic shock after cardiac surgery (Grade 2C).

Individualizing target pressure when premorbid blood pressure is available (BPS)
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12. Prognosis of acute kidney injury

With the advent of agreed definition and classification of AKI based on changes in serum

creatinine and urine output, there is now increasing awareness of the poor prognosis following

AKI. Multiple studies have shown that patients with AKI are at high risk for progression to

advanced stage CKD and death following hospital discharge. In a meta-analysis of 13 cohort

studies comparing the risk of CKD, ESRD, and death in patients with and without AKI, the

pooled incidence of CKD and ESRD were 25.8/100 person-years and 8.6/100 person-years,

respectively [8]. Patients with AKI had higher risks of developing CKD (pooled adjusted

hazard ratio 8.8), ESRD (pooled adjusted HR 3.1), and mortality (pooled adjusted HR 2.0) than

patients without AKI [8]. In another meta-analysis of 48 studies containing 47,107 patients

Use of vasodilators

No low-dose dopamine for protection against AKI (Grade 1A)

No levosimendan for renal protection in patients with sepsis and in cardiac surgery patients with poor preoperative left

ventricular function (Grade 1B).

No fenoldopam or natriuretic peptides for renal protection in critically ill or cardiovascular surgery patients at risk of AKI

(Grade 2B).

Sedatives

Shorter sedation using propofol or dexmedetomidine (BPS)

Hormonal manipulation

Target a blood glucose level of at least below 180 mg/dL (10 mmol/l) (Grade 2B).

Use of erythropoietin or steroids (Grade 2 B)

Metabolic interventions

Avoid using high-dose IV selenium for renal protection in critically ill patients (1B)

Avoid using N-acetylcysteine to prevent contrast-associated AKI in critically ill patients (Grade 2B)

Provide adequate nutritional support preferably through the enteral route (BPS)

Statins

Avoid the use of high-dose statins to prevent postoperative AKI in cardiac surgery (Grade 1A)

Use atorvastatin or rosuvastatin to prevent contrast-associated AKI in high-risk patients undergoing coronary contrast

angiography (Grade 2B)

Remote ischemic preconditioning

Do not use remote ischemic preconditioning for prevention of AKI in critically ill patients

AKI care bundles

Use of the KDIGO recommendations to reduce the incidence of AKI after cardiac surgery (Grade 2C).

Use of AKI care bundles outside the intensive care unit has some benefits, including the potential to improve the outcome

of AKI (BPS).

AKI, acute kidney injury; HTN, hypertension; MAP, mean arterial pressure; BPS, best practice statement.

Table 5. Expert opinion of theWorking Group on Prevention, AKI section, European Society of Intensive Care Medicine [125].
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between 1985 and 2007 the incidence rate of mortality was 8.9 deaths/100 person-years in

survivors of AKI compared to 4.3 deaths/100 patient-years in survivors without AKI (rate ratio

2.59) [126]. The incidence rate of CKD after an episode of AKI was 7.8 events/100 patient-years,

and the rate of ESRD was 4.9 events/100 patient-years [126]. In an observational cohort study

with a median follow-up of 9 years the intermediate-term (30–364 days) adjusted mortality

HRs for AKI versus no AKI were 2.48, 2.50, 1.90, and 1.63 for baseline eGFRs ≥60, 45–59, 30–44,

and <30 mL/min/1.73 m2, respectively [127]. This indicates that baseline renal function is an

important determinant factor for outcome following an episode of AKI. A retrospective cohort

study showed that patients who developed AKI during a hospitalization were at substantial

risk for the development of CKD in the following year, and the timing of recovery was a strong

predictor, even for the mildest forms of AKI [128].

The multinational AKI-EPI study on ICU patients in 97 centers showed that increasing AKI

severity was associated with increased mortality, and AKI patients had worse renal function at

the time of hospital discharge [16].

According to the United States Renal Data System, acute tubular necrosis (ATN) without

recovery as a cause of ESRD increased from 1.2% in 1994 to 1998 to 1.7% in 1999 to 2003 [129].

The incidence will likely continue to rise with the aging population and increase in

comorbidities in patients admitted to the ICU.

Risk factors associated with progressing to CKD among AKI survivors have been identified

and include advanced age, diabetes mellitus, decreased baseline glomerular filtration rate,

severity of AKI, and a low concentration of serum albumin [6, 130].

13. Conclusion

Acute kidney injury, previously named acute renal failure, is characterized by abrupt deterio-

ration in renal function. The incidence of AKI has lately increased, both in the hospital and

community setting. Management of AKI involves fluid resuscitation, avoidance of nephrotoxic

agents, adjustment of medications, and correction of fluid, acid-base and electrolyte imbalance.

Depending on the severity of renal insult, AKI may require renal replacement therapy in the

form of dialysis or continuous renal replacement. Despite all the advances in the field, AKI still

carries a high mortality and long term consequences. Recognition of risk factors, early diagno-

sis, and management of AKI are crucial to improve the long-term patient’s outcome.
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