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Chapter

Heat Transfer Enhancement
Technique of PCMs and Its Lattice
Boltzmann Modeling
Zhiguo Qu

Abstract

Phase change materials (PCMs) have several advantages for thermal energy
storage due to their high energy storage density and nearly constant working tem-
perature. Unfortunately, the low thermal conductivity of PCM impedes its effi-
ciency of charging and discharging processes. To solve this issue, different
techniques are developed to enhance the heat transfer capability of PCMs. In this
chapter, the common approaches, which include the use of extended internal fins,
porous matrices or metal foams, high thermal conductivity nanoparticles, and heat
pipes for enhancing the heat transfer rate of PCMs, are presented in details. In
addition, mathematical modeling plays a significant role in clarifying the PCM
melting and solidification mechanisms and directs the experiments. As a powerful
mesoscopic numerical approach, the enthalpy-based lattice Boltzmann method
(LBM), which is robust to investigate the solid-liquid phase change phenomenon
without iteration of source terms, is also introduced in this chapter, and its applica-
tions in latent heat thermal energy storage (LHTES) unit using different heat
transfer enhancement techniques are discussed.

Keywords: phase change materials, heat transfer enhancement, nanofluid,
mathematical models, lattice Boltzmann method

1. Introduction to heat transfer enhancement techniques of PCMs

The development of renewable energy such as solar energy and wind energy has
attracted lots of attention during the past decades due to the gap between the
increased global energy demand and the decreased amount of fossil fuel in the
world. However, one of the major drawbacks for renewable energy is its territorial,
time-dependent, and intermittent characteristics. Under this circumstance, the
energy storage techniques play an indispensable role for achieving a continuous and
reliable supply of renewable energy [1, 2]. Thermal energy storage (TES), which
stores the heat in the materials and generates the electricity with heat engine cycles
later, is a promising energy storage technique. In general, TES could be classified
into three different categories, namely latent, sensible, and thermochemical. With
the advantages of high energy storage density and nearly constant charging/
discharging temperature, latent heat thermal energy storage (LHTES) using phase
change materials (PCMs) is widely used in several renewable energy applications.
However, a major issue of LHTES system is the low thermal conductivity of most
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PCMs, which seriously impedes the energy storage efficiency. To handle this chal-
lenge, several heat transfer enhancement techniques are developed and discussed
by researches during the past years. The existing effective approaches to ameliorate
the thermal performance of PCMs include using extended internal fins, filling
porous matrix or metal foams, adding high thermal conductivity nanoparticles, and
using heat pipes [3].

With the characteristics of simple fabrication, low cost construction, and large
heat transfer surfaces, fins are used in a majority of PCM-based LHTES systems.
There are several different configurations of fins such as longitudinal, annular,
circular, plates, pins, tree shape, and other novel geometries as shown in Figure 1
[4]. By applying extended internal fins, the average thermal conductivity and heat
transfer depth of LHTES system are improved, so that the melting and solidification
rate of PCMs are accelerated. However, there exists a tradeoff between the
increased PCM charging/discharging rate in LHTES unit and its corresponding
reduced energy storage capacity with the existence of internal fins. An optimum
design of fin configuration and arrangement becomes significant for achieving high
energy storage efficiency of LHTES unit with PCMs. Under this circumstance, lots
of researches are numerically and experimentally carried out to investigate the
conjugate heat transfer between fins and PCMs, and the enhancement of PCM
thermal performance with different type of fins is deeply understood and optimized
during the recent years [5–21].

Due to the high surface area to volume ratio generated by the tortuosity of metal
foams as shown in Figure 2, the PCM charging/discharging rates could be highly
improved by inserting metal foams into the LHTES unit [22]. As air inevitably exists

Figure 1.
Different configuration of fins used in LHTES system with PCMs [4].

2

Thermal Energy Battery with Nano-enhanced PCM



in the porous structure of metal foams, the infiltration of PCMs into metal foams is
hindered, which correspondingly reduces the impregnation ratio of PCMs. As a
consequence, the energy storage capacity of LHTES system using combination of
PCMs and metal foams is affected. To handle this difficulty, a vacuum impregna-
tion method is generally used to prepare the PCM/metal foam composite materials.
Figure 3 shows the apparatus and procedures of impregnation treatment for PCMs
with vacuum assistance, and the detailed steps could be found in Ref. [23]. As the
PCM melting and solidification are actually accelerated due to the interconnected
heat transfer channel inside the metal foams, the porosity and pore size of metal
foams are the most significant factors, which affect the energy storage efficiency of
LHTES. The copper foam with different porosities and pore sizes is displayed in
Figure 4 as an example [24]. The conduction heat transfer in the LHTES system
could be consolidated with the decrement of porosity and pore sizes because of the
increased density of high speed heat transfer channels inside the metal foams.
However, natural convective heat transfer of liquid PCMs through the metal foams
is hampered due to the reduced void space caused by the decreased metal foam
porosity and pore size. In addition, when the porosity of metal foams decreases, the
amount of pure PCMs in the LHTES unit is reduced, which decreases the energy
storage capacity. Due to the above reasons, metal foams with appropriate porosity,
pore size, and filling ratio, which balance the conduction and natural convection,
are essential for achieving the optimum heat transfer rate of PCMs and the most
efficient energy storage of LHTES unit. Hence, the mechanisms of PCM melting
and solidification processes inserted with various metal foams are studied by several
researches at both macroscopic and pore scales [25–44]. Besides, the heat transfer
rate of PCMs could also be ameliorated by applying other additives such as graphite
[45, 46], carbon nanotubes [47], and graphene [48].

As the nanotechnology has achieved rapid development during the past decades,
adding high thermal conductivity nanoparticles becomes a new technique to
improve the low heat transfer rate of PCMs [49]. Khodadadi and Hosseinizadeh
first investigated the enhancement of PCM heat transfer capability using
nanoparticles [50], and their results demonstrated that nanoparticle-enhanced
PCMs (NEPCMs) have a great potential in TES applications. The SEM micrographs
of nanoparticle-enhanced PCM (NaNO3-KNO3) with different nanoparticles and
mass fractions are shown in Figure 5 [51]. With the existence of nanoparticles, the
thermophysical properties of PCMs such as thermal conductivity and latent heat
capacity are varied. The mechanism of the effects of surface, chemical, and physical

Figure 2.
A piece of FeCrAlY foam sample manufactured with the sintering route [22].
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properties of nanoparticles on the thermal properties of PCMs is reviewed in Ref.
[52]. In the recent years, many researches related to NEPCMs are carried out, which
mainly focus on enhancing the charging/discharging speed of PCMs with
nanoparticles [53–73]. However, although the effective thermal conductivity of
PCMs is ameliorated by adding nanoparticles, the energy storage capacity of LHTES
unit is decreased. Furthermore, the use of nanoparticles increases the viscosity of
PCMs, which impedes the development of natural convective heat transfer. Under
this circumstance, the total heat transfer rate of PCMs may decrease especially for
the cases under high temperature with dominant convective heat transfer. Com-
pared with melting/solidification rate of PCMs, the energy storage rate of LHTES
system is the essential goal of storing heat using PCMs. Hence, more investigations,
which concentrate on the energy storage rate of NEPCM, should be completed in

Figure 3.
Schematic of the apparatus and procedure for the preparation of composite PCMs using a vacuum
impregnation method [23].

Figure 4.
Copper foam samples with different pore sizes and porosities [24].
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the future research, and the technique of adding nanoparticles for enhancing the
thermal performance of LHTES needs to be further compared with other heat
transfer improvement technologies in order to realize the optimum energy storage
efficiency.

As the most commonly used heat exchanger devices, heat pipes are widely used
to amplify the charging/discharging processes of PCMs and to transfer heat from a
source to the storage or from the storage to a sink with heat transfer fluid (HTF)
[74]. Although increasing the heat transfer area on the PCM side using extended
fins or metal foams is the most efficient and simple method to ameliorate the energy
storage rate of LHTES system as previously discussed, when there exists high
temperature HTF passing through the LHTES tank such as the waste heat recovery,
heat pipes are indispensable for achieving the high efficiency energy storage. The
transient charging/discharging processes of PCMs in a LHTES unit with heat pipes
are shown in Figure 6 [75]. The configuration and arrangement of heat pipes play a
significant role in the energy storage rate of PCMs. To optimize the thermal perfor-
mance of heat pipe–assisted LHTES systems, lots of experimental and numerical
works are carried out during the past few years [76–96].

The significant research progress of PCM heat transfer enhancement using a
single technique is discussed and summarized in the above paragraphs. Recently, to
further improve the heat transfer capability of PCM and compare the effectiveness
of different approaches (use of fins, metal foams, nanoparticles, or heat pipes), the
charging/discharging processes of PCMs with hybrid heat transfer enhancement
techniques are investigated. Although adding nanoparticles could ameliorate the
effective thermal conductivity of PCMs, the heat transfer area on the PCM side is
not improved. Based on this, the extended fins are considered to be used for

Figure 5.
SEM photos of nanoparticle-enhanced NaNO3-KNO3 with 0.5 wt.% (a–d), 1.0 wt% (e–h), and 1.5 wt% (i–l)
of nanoparticles. Silica (a, e, i), alumina (b, f, j), titania (c, g, k), and alumina-silica nanoparticles
(d, h, l) [51].
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enhancing the heat transfer depth of NEPCM in a LHTES unit [97–100]. Darzi et al.
studied the melting and solidification of PCM enhanced with radial fins and
nanoparticles in cylindrical annulus, and they found that adding fins on the hot or
cold tubes is the best approach to expedite the heat transfer rate [98]. Lohrasbi et al.
optimized the copper nanoparticle-PCM solidification process in a fin-assisted
LHTES system [99]. The results indicate that immersing fin in LHTES unit increases
the solidification rate more significantly than dispersing nanoparticles. Parsazadeh
and Duan investigated the effects of fins and nanoparticle in a shell and tube LHTES
unit [100]. They found that adding Al2O3 nanoparticles even decreases the overall
heat transfer rate because the thermal conductivity enhancement with nanopar-
ticles could not compensate for the natural convection reduction. Similarly, porous
matrices are also inserted into the LHTES unit to improve the thermal performance
of NEPCM [101, 102]. Hossain et al. studied the melting process of NEPCM inside
the porous medium [101], and it is observed that the movement of PCM melting
front is more significant under the influence of porous medium than that of
nanoparticles. Tasnim et al. investigated the convection effect on the melting
process of NEPCM filled in porous enclosure [102]. The results showed that both
the conduction and convection heat transfer are degraded by the presence of
nanoparticles. From these researches, it could be found that using extended fins or
porous matrices is more effective than adding nanoparticles for enhancing the
charging/discharging rate of LHTES system. Besides, other hybrid heat transfer
enhancement techniques for enhancing the energy storage rate of LHTES with
PCMs such as combination of fins and metal foams [103] or using combined three
techniques [104–107] are also recently studied and analyzed.

In this chapter, the mathematical models for PCM charging and discharging
processes with different heat transfer enhancement techniques are shown. In addi-
tion, the lattice Boltzmann method (LBM) for solid-liquid phase change

Figure 6.
The transient charging/discharging processes of PCM in a LHTES tank with HTF passing through heat pipes
[75]. (a) Charging process and (b) discharging process.
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phenomenon is reviewed with some classical analytical and numerical validation
cases, and the implementation of graphic processor unit (GPU) computing is also
presented. Furthermore, the applications of LBM modeling for LHTES system with
various heat transfer improvement approaches are discussed.

2. Mathematical models

2.1 Governing equations of fluid flow and solid-liquid phase change

To simulate the charging and discharging processes of PCMs, the following
assumptions are usually made to simplify the mathematical models: (1) the fluid
flow of liquid PCMs is Newtonian, laminar, and incompressible with negligible
viscous dissipation and (2) the thermophysical properties of PCMs, nanoparticles,
fins, and metal foams are constant, except the PCM density ρ, which is a linear
function of temperature T using the Boussinesq approximation. Based on the above
assumptions, the flow of liquid PCMs is governed by the continuity equation and
the momentum equation expressed in the Cartesian coordinate as:

∂u

∂x
þ ∂v

∂y
þ ∂w

∂z
¼ 0 (1)

ρ
∂u

∂t
þ u

∂u
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(4)

where ρ is the density; p is the pressure; μ is the dynamic viscosity; t is the time;
β is the thermal expansion coefficient of PCMs; g is the magnitude of gravitational
acceleration; T is the temperature; Tr is the reference temperature; x is the hori-
zontal coordinate; y is the vertical coordinate; z is the coordinate, which is orthog-
onal with x and y coordinates; and u, v, and w are the fluid velocities in the x, y, and
z directions, respectively.

The solid-liquid phase change process of PCMs is governed by the enthalpy
equation as:

∂ ρHð Þ
∂t

þ ρcp u
∂T

∂x
þ v

∂T

∂y
þ w

∂T

∂z

� �

¼ k
∂
2T

∂x2
þ ∂

2T

∂y2
þ ∂

2T

∂z2

� �

(5)

where cp and k are the specific heat and thermal conductivity of PCMs. The
enthalpy H of PCMs is defined as:

H ¼ cp T � Trð Þ þ f lL (6)

where f l is the PCM liquid fraction, and L is the latent heat of PCMs. By
calculating the enthalpy H of PCMs, the liquid fraction f l and temperature T could
be updated by the following equations:
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f l ¼

0, H≤Hs

H �Hs
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>

:

(8)

where Hs is the enthalpy of solid state PCMs, Hl is the enthalpy of liquid state
PCMs, and Tm is the melting/solidification temperature of PCMs.

2.2 Nanofluid models

For simulating the fluid flow and heat transfer of nanoparticle-enhanced PCMs
(NEPCMs), the nanoparticle is assumed to be spherical in shape, so that the
Brinkman model and the Maxwell model for nanofluid are valid. In addition, the
NEPCMs are considered as continuous media with the thermal dispersion being
neglected. Based on this, the effective viscosity of NEPCMs is computed using the
Brinkman model as [108]:

μnf ¼
μPCM

1�Φð Þ2:5
(9)

where Φ is the volume fraction of nanoparticles, μPCM is the dynamic viscosity of
pure PCM, and μnf is the dynamic viscosity of NEPCMs. The thermal conductivity

of NEPCMs is calculated according to the Maxwell model as [109]:

knf
kPCM

¼ kp þ 2kPCM � 2 kPCM � kp
� �

Φ

kp þ 2kPCM þ kPCM � kp
� �

Φ
(10)

where kPCM, kp, and knf are the thermal conductivities of pure PCMs,

nanoparticles, and NEPCMs, respectively. Furthermore, the density of nanofluid
ρnf is computed using interpolation as:

ρnf ¼ 1�Φð ÞρPCM þΦρp (11)

where ρPCM and ρp are the densities of pure PCM and nanoparticles. The heat

capacitance of NEPCMs ρcp
� �

nf
is defined as:

ρcp
� �

nf
¼ 1� Φð Þ ρcp

� �

PCM
þ Φ ρcp

� �

p
(12)

where ρcp
� �

PCM
is the heat capacitance of pure PCM, and ρcp

� �

p
is the heat

capacitance of nanoparticles. The thermal expansion volume of NEPCMs ρβð Þnf is
given as:

ρβð Þnf ¼ 1� Φð Þ ρβð ÞPCM þ Φ ρβð Þp (13)
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where ρβð ÞPCM and ρβð Þp are the thermal expansion volume of pure PCM and

nanoparticles, respectively. The latent heat of NEPCMs ρLð Þnf is computed as:

ρLð Þnf ¼ 1�Φð Þ ρLð ÞPCM (14)

where ρLð ÞPCM is the latent heat of pure PCM. Then, the corresponding enthalpy
of NEPCMs Hnf is given as:

Hnf ¼ cpnf T � Trð Þ þ f lLnf (15)

2.3 Conjugate heat transfer between PCMs and fins or metal foams

When the extended fins or metal foams are used as the heat transfer enhance-
ment techniques for LHTES unit, the conjugate heat transfer occurs between the
PCMs and the fins or metal foams. The heat transfer inside the fins or metal foams is
governed by the conduction equation as:

ρscps
∂T

∂t
¼ ks

∂
2T

∂x2
þ ∂

2T

∂y2
þ ∂

2T

∂z2

� �

(16)

ρs, cps, and ks are the density, specific heat, and thermal conductivity of fins or

metal foams, respectively. On the interface of PCMs and fins or metal foams, the
coupled Dirichlet-Neumann boundary conditions for conjugate heat transfer should
be satisfied:

�kPCM
∂TPCM

∂n
¼ �ks

∂Ts

∂n
(17)

TPCM ¼ Ts (18)

TPCM and Ts are the temperature of PCMs and fins or metal foams, kPCM is the
thermal conductivity of PCMs, and n is the normal unit of the interface. The above
boundary conditions could be satisfied in the lattice Boltzmann method automati-
cally by using the harmonic mean value of thermophysical properties of PCMs and
fins or metal foams as discussed in the following section. To investigate the melting
and solidification processes of PCMs filled with metal foams at pore scale, the
morphology of the real metal foam structures could be reconstructed using the

Figure 7.
Reconstructed PCM filled with metal foams using QSGS [111].
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quartet structure generation set (QSGS) as shown in Figure 7 [110, 111], where εave
and dp are the porosity and the pore size of metal foams. Besides, the metal foams
could also be reconstructed with scanning electron microscopy (SEM).

3. Lattice Boltzmann method for solid-liquid phase change

3.1 The development history of enthalpy-based LBM for solid-liquid phase
change

As a mesoscopic numerical approach developed during the past more than two
decades, the lattice Boltzmann method (LBM) has become a powerful tool for
simulating complex heat transfer and fluid flow problems such as single-phase
flows, multiphase flows, turbulence flows, flows in porous media, heat transfer,
phase change, and transport in microfluidics [112–115]. The mesoscopic nature of
LBM makes it appropriate for tackling the evolvement of solid-liquid interface
during the phase change process. The existing LBM for solid-liquid phase change
problems could be generally categorized as follows: (1) the phase-field based
method, (2) the enthalpy-based method, and (3) the immersed boundary method.
For the phase-field method, an auxiliary parameter, which varies smoothly across
the diffusive phase interface, is used to track the solid-liquid interface implicitly
[116, 117]. Unfortunately, the extremely finer grids are indispensable in the inter-
facial region, which increases the computational effort. In addition, Huang and
Wu developed the immersed boundary-thermal lattice Boltzmann method for
modeling the solid-liquid phase change phenomenon [118]. The melting interface
is explicitly tracked by the Lagrangian grids, and the temperature and fluid flow
are solved on the Eulerian nodes. However, an interpolation between the
Lagrangian nodes and the Eulerian nodes should be carried out using the Dirac
delta function, which reduces the computation accuracy. Compared with other
methods, the enthalpy-based method becomes attractive for solid-liquid phase
change due to its high efficiency and robustness. Jiang et al. first used LBM with
enthalpy formulation to investigate the phase change problems [119]. However,
the convective heat transfer is not considered in this work. Huber et al. developed
a LBM model using double distribution functions to simulate the solid-liquid
phase change process with convective heat transfer [120], and the numerical
results are analyzed and compared with scaling laws and previous numerical
work. Eshraghi and Felicelli developed an implicit LBM scheme to investigate the
conduction with phase change [121]. Different from the previous enthalpy-based
LBM, the iteration of nonlinear latent heat source term in the energy equation is
avoided by solving a linear system of equations. Feng et al. further extended this
implicit model with a consideration of natural convection to investigate the melt-
ing process of nanoparticle-enhanced PCMs [122]. To improve the computational
efficiency, Huang et al. modified the equilibrium distribution function of temper-
ature for enthalpy, so that the iteration of heat source term or solving a linear
system of equations is not indispensable [123]. Unfortunately, the stability range
of relaxation time for this model is narrow, which limits its applications for real
scientific and engineering problems. To handle this drawback, Huang and Wu
improved their work by using a multiple-relaxation-time (MRT) collision scheme
instead of the single-relaxation-time (SRT) one, so that the numerical stability is
highly ameliorated [124]. In addition, the thermal conductivity and the specific
heat capacity are decoupled from the relaxation time and equilibrium distribution
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function, which make this model appropriate for satisfying the Dirichlet-
Neumann boundary conditions for conjugate heat transfer. As the model devel-
oped by Huang et al. is limited in two-dimensional cases, Li et al. recently devel-
oped the SRT and MRT models for axisymmetric and three-dimensional solid-
liquid phase change problems [125, 126]. Besides, to speed up the computation, Su
and Davidson worked out a mesoscopic scale timestep adjustable non-dimensional
LBM [127], and the time steps can be adjusted independent of mesh size by
changing the transient mesoscopic Mach number. Furthermore, although the key
advantage of LBM is to carry out the pore-scale numerical modeling of heat
transfer in porous media, a few lattice Boltzmann models for solid-liquid phase
change in porous media at the representative elementary volume (REV) scale are
also developed [128–130]. The classical enthalpy-based MRT lattice Boltzmann
model developed by Huang and Wu is reviewed in this section because of its
simplicity and wide application by researchers for latent heat thermal energy
storage problems.

3.2 Multiple-relaxation-time (MRT) method

3.2.1 MRT LBM for fluid flow

The general two dimensional nine-velocity (D2Q9) MRT LBM model is
presented in this part for simulating the fluid flow. In the D2Q9 model, lattice
velocities ei are given by:

ei ¼
e0 ¼ 0;0ð Þ
ei ¼ c cos i� 1ð Þπ=2½ �; sin i� 1ð Þπ=2½ �ð Þ, i ¼ 1, 2, 3, 4

ei ¼
ffiffiffi

2
p

c cos 2i� 9ð Þπ=4½ �; sin 2i� 9ð Þπ=4½ �ð Þ, i ¼ 5, 6, 7, 8

8

>

<

>

:

(19)

where c is the lattice speed, and the collision step carried out in the momentum
space is given as:

mf x; tþ δtð Þ ¼ mf x; tð Þ � S mf x; tð Þ �m
eq
f x; tð Þ

h i

þ δt I � S

2

� �

Fm x; tð Þ (20)

where x is the location vector, t is the time, δt is the time step, I is the unit
matrix, and mf is the distribution function in momentum space defined as:

mf x; tð Þ ¼ mf0 x; tð Þ;mf1 x; tð Þ;…;mf8 x; tð Þ
� �T

(21)

The equilibrium distribution function in momentum space m
eq
f is [131–133]:

m
eq
f ¼ ρ;�2ρþ 3ρ

uj j2
c2

; ρ� 3ρ
uj j2
c2

; ρ
ux
c
;�ρ

ux
c
; ρ

uy
c
;�ρ

uy
c
; ρ

u2x � u2y
c2

; ρ
uxuy
c2

 !T

(22)

where ρ is the density, u is the fluid velocity vector, ux is the horizontal velocity,
and uy is the vertical velocity. The diagonal relaxation matrix S is defined as:

S¼diag s0; se; sε; sj; sq; sj; sq; sp; sp
� �

(23)
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where s0, se, sε, sj, sq, and sp are the parameters related to relaxation time, which
could be chosen as described in Ref. [134]. The discrete force term in the momen-
tum space Fm x; tð Þ is given by [135, 136]:

Fm x; tð Þ ¼ 0; 6
F∙u

c2
;�6

F∙u

c2
;
Fx

c
;� Fx

c
;
Fy

c
;� Fy

c
; 2

Fxux � Fyuy
c2

;
Fxuy þ Fyux

c2

� �T

(24)

where F is the body force of fluid flow, Fx is the body force in the horizontal
direction, and Fy is the body force in the vertical direction. After the collision
process, the post collision distribution function in the velocity space f i x; tþ δtð Þ is
calculated through inverse transformation:

f i x; tþ δtð Þ ¼ M�1mf x; tþ δtð Þ (25)

where the dimensionless orthogonal transformation matrixM is chosen as [137]:
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(26)

Then, the streaming step is carried out as:

f i xþeiδt; tþ δtð Þ ¼ f i x; tþ δtð Þ (27)

The nonslip velocity condition on the diffusive interface and in the solid phase is
tackled by recalculating the density distribution function f i through a linear inter-
polation as [138]:

f i ¼ f lf i þ 1� f l
� �

f
eq
i ρ;usð Þ (28)

f l is the liquid fraction of PCM, f
eq
i is the equilibrium distribution function,

which could be calculated by inverse transformation as f
eq
i ¼ M�1m

eq
f . For the solid

phase, there is us¼0. Hence, the macroscopic variables, density ρ and velocity u, are
defined as:

ρ ¼ ∑
8

i¼0
f i, ρu¼ ∑

8

i¼0
eif i þ

δt

2
F (29)

As mentioned in Ref. [138], the density ρ in the term f
eq
i ρ;usð Þ in Eq. (28) should

be first calculated by Eq. (29) in order to ensure the mass conservation. Then, for
the liquid phase of f l ¼ 1, the above lattice Boltzmann model recovers to the stan-
dard scheme for incompressible flow. On the other hand, for the solid phase of

f l ¼ 0, the above model could satisfy that f i ¼ f
eq
i ρ;usð Þ indicating that the nonslip

velocity u¼us is ensured.
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3.2.2 MRT LBM for solid-liquid phase change

The MRT lattice Boltzmann equation (LBE) for the total enthalpy H distribution
function mg x; tð Þ is expressed as [124]:

mg x; tþ δtð Þ ¼ mg x; tð Þ � S mg x; tð Þ �meq
g x; tð Þ

h i

(30)

where mg is the distribution in momentum space given as:

mg x; tð Þ ¼ mg0 x; tð Þ;mg1 x; tð Þ;…;mg8 x; tð Þ
� �T

(31)

The equilibrium moment m
eq
g is given by:

meq ¼ H;�4H þ 2cp, refT þ 3cpT
u2

c2
;4H � 3cp, refT � 3cpT

u2

c2
;

�

cpT
ux
c
;�cpT

ux
c
; cpT

uy
c
;�cpT

uy
c
; cpT

u2x � u2y
c2

; cpT
uxuy
c2

!T (32)

whereT is the temperature, and cp is the specific heat calculated by interpolation as:

cp ¼ 1� f l
� �

cp, s þ f lcp, l (33)

cp, s is the specific heat of PCM at solid state, and cp, l is the specific heat of PCM

at liquid state. To achieve good numerical stability, the reference specific heat cp, ref
is defined by the harmonic mean of cp, s and cp, l as:

cp, ref ¼
2cp, scp, l
cp, s þ cp, l

(34)

The parameters in the diagonal relaxation matrix S satisfy s0 ¼ 1, se ¼ sp, sj ¼ 1
τ
,

and 0<se,ε,q<2, where the relaxation time τ is given as:

k

ρcp, ref
¼ c2s τ � 0:5ð Þδt (35)

where k is the thermal conductivity, and cs ¼ c
ffiffi

3
p is the sound speed. To reduce

the numerical diffusion, a “magic” relationship is found by Huang and Wu [124] as:

1

se
� 1

2

� �

1

sj
� 1

2

� �

¼ 1

4
(36)

Similar to the computation of fluid flow, the post-collision distribution function
in the velocity space gi could be calculated by inverse transformation as:

gi x; tþ δtð Þ ¼ M�1mg x; tþ δtð Þ (37)

The streaming process is completed as:

gi xþ eiδt; tþ δtð Þ ¼ gi x; tþ δtð Þ (38)
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Then, the enthalpy H is calculated as:

H ¼ ∑
8

i¼0
gi (39)

Furthermore, it should be pointed out that the nonequilibrium extrapolation
method developed by Guo et al. could be applied for the boundary conditions of
fluid flow and enthalpy on the surfaces of LHTES unit [139, 140].

3.3 Classical examples for code validation

3.3.1 One-dimensional transient conjugate heat transfer

To validate the capability of MRT LBM for tackling the differences in
thermophysical properties, the one-dimensional transient conjugate heat transfer in
two regions without phase change is used to compare the numerical results with
analytical solutions. Initially,T is equal to 1 in the region A at x>0, and T is equal to
0 in the region B at x<0. The analytical solution for this problem is given as [141]:

TA x; tð Þ ¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρCp

� �B
kB= ρCp

� �A
kA

q 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρCp

� �B
kB= ρCp

� �A
kA

q

erf
x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kAt= ρCp

� �A
q

0

B

@

1

C

A

2

6

4

3

7

5

(40)

TB x; tð Þ ¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρCp

� �B
kB= ρCp

� �A
kA

q erfc � x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBt= ρCp

� �B
q

0

B

@

1

C

A
(41)

When the aluminum is used for region A while the liquid water is chosen as the
material in region B, the comparison between LBM results and analytical solutions
is presented in Figure 8. A good agreement is observed, and the maximum L2 error

with 200 � 200 lattice grids is only 6:7983� 10�5 [142].

3.3.2 One-dimensional melting by conduction

In order to verify the MRT LBM for solid-liquid phase change phenomenon, the
one-dimensional melting by conduction at a constant phase change temperature Tm

is simulated. Initially, the substance is uniformly solid at a temperature T0

(T0<Tm). The melting process begins at time t ¼ 0 when the temperature of the left
wall is at a high temperature of Th (Th > Tm). Then, the analytical solution for the
temperature in this problem is given as [143]:

T x; tð Þ ¼ Th �
Th � Tm

erf λð Þ erf
x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

klt= ρcp, l
� �

q

0

B

@

1

C

A
,0≤x≤Xi tð Þ, liquid (42)

T x; tð Þ ¼ T0 þ
Tm � T0

erfc λ=
ffiffiffiffiffiffiffi

Rac

p� � erfc
x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kst= ρcp, s
� �

q

0

B

@

1

C

A
, x>Xi tð Þ, solid (43)
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where kl and ks are the thermal conductivities of liquid PCM and solid PCM,

respectively. The parameter Rac ¼
kst= ρcp, sð Þ½ �
klt= ρcp, lð Þ½ � is the ratio of thermal diffusivity

between the solid and liquid phases of PCM, and the location of phase interface Xi is
calculated as:

Xi ¼ 2λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

klt= ρcp, l
� �

q

(44)

The parameter λ is the root of the transcendental equation:

Stel

exp λ2
� �

erf λð Þ
� Stes

ffiffiffiffiffiffiffi

Rac

p

exp λ2=Rac

� �

erfc λ=
ffiffiffiffiffiffiffi

Rac

p� � ¼ λ
ffiffiffi

π
p

(45)

where the Stefan numbers, Stel and Stes, are defined as:

Stel ¼
cp, l Th � Tmð Þ

L
, Stes ¼

cp, s Tm � T0ð Þ
L

(46)

The comparison of temperature T between the analytical solutions and the SRT
or MRT LBM with different relaxation times is presented in Figure 9. It could be
observed that the numerical diffusion exists for the small τl close to 0:5ð Þ and large
τl>2ð Þ relaxation times when the SRT model is applied. However, the numerical
diffusion is highly reduced once the MRT model with a “magic” parameter relation
shown in Eq. (36) is used.

3.3.3 Two-dimensional melting by convection

The natural convection with melting in a square cavity heated from the side
wall is usually used to validate the code for solid-liquid phase change. First, the

Figure 8.
One-dimensional transient conjugate heat transfer [142].
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solid-liquid phase change with convection in a cavity at the Rayleigh number
Ra ¼ 25000, the Prandtl number Pr ¼ 0:02, and the Stefan number Ste ¼ 0:01 is
compared with the results by Mencinger [144]. The average Nusselt number Nuave
at the hot wall in terms of the Fourier numbers Fo is plotted in Figure 10(a), and
the melting interface positions at Fo ¼ 10 and Fo ¼ 20 are shown in Figure 10(b).
In addition, the average melting fraction f l is also presented in Figure 10(c). It is

Figure 9.
(a) SRT LBM (b) MRT LBM. Comparison of temperature T between analytical solutions and SRT or MRT
LBM results with different relaxation times [124].

Figure 10.
Natural convection with melting in a cavity [142].
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obvious that the current LBM results are consistent with the work of Mencinger
[142]. Besides, for the cases of Pr>1, the MRT LBM for natural convection with
melting in cavity could be calibrated by the scaling laws and correlations derived by
Jany and Bejan [145]. The average Nusselt number Nuave at hot wall is given as:

Nuave ¼ 2FoSteð Þ�1=2 þ 0:33Ra1=4 � 2FoSteð Þ�1=2
h i

1þ 0:0175Ra3=4 FoSteð Þ3=2
h i�2

	 
�1=2

(47)

As shown in Figure 10(d), the average Nusselt number Nuave at Pr ¼ 6:1989 and
Ste ¼ 0:1 agrees well with the results of scaling law correlations at different Ray-
leigh number Ra.

3.4 GPU acceleration

The characteristic of highly parallel nature is a significant advantage of LBM
over other traditional macroscopic numerical methods. In the CUDA programming
platform, the CPU and GPU work as the host and the devices, respectively, as
shown in Figure 11 [146]. It means that the parallel tasks are executed on GPU,
while the CPU is responsible for the initial conditions and all the sequential

Figure 11.
Schematic diagram of CUDA platform [146].
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commands. First, the initial conditions are set up in the host memory, and then the
data are moved to the memory of GPU. The threads are grouped into blocks, which
are the component of grids as displayed in Figure 11. For instance, in the real
simulation, if the lattice grid number is (Mx, My, Mz) and the block size is (Nx, Ny,

Nz), the corresponding grid size is Mx=Nx;My=Ny;Mz=Nz

� �

. Furthermore, a kernel
is a function, which is executed on the concurrent threads on GPU. The collision
step, streaming step, tackling of boundary conditions, and computation of macro-
scopic variables are completed in different kernels. It is important to note that all
the kernels should be synchronized between CPU and GPU. Finally, the data on the
GPU should be copied to the host memory of CPU for printing at any specific time
when the results are needed. During the recent years, LBM is demonstrated to be
appropriate for GPU computing [147–151], and it has been applied to solve several
different physical problems [152–155].

4. Applications of LBM modeling in latent heat thermal energy storage

4.1 Enhancement of PCM performance with fins

As presented in the previous sections, the extended fins could be used to increase
the heat transfer depth in LHTES system and accelerate the energy storage efficiency.
In the recent years, LBM is applied by several researches to study the solid-liquid
phase change of PCMs with extended fins [142, 156, 157]. Jourabian et al. studied the
melting process of PCM in a cavity with a horizontal fin heated from the sidewall by
enthalpy-based D2Q5 LBM [156]. The results indicated that adding a fin enhances the
melting rate for all positions and different lengths compared with the LHTES cavity
without fin. They also found that although varying the position of the fin from the
bottom to the middle has a negligible effect on melting rate, the melting time is
increased once the fin is mounted on the top of LHTES cavity. Talati and Taghilou
used an implicit LBM to study the PCM solidification in a rectangular finned con-
tainer [157]. It was found that the optimum aspect ratio of container for solidification
equals to 0:5, and changing the fin material from aluminum to copper has no signif-
icant influence on the solidification rate. Ren and Chan applied enthalpy-based MRT
LBM to investigate the PCM melting performance in an enclosure with internal fins
and finned thick walls with GPU acceleration [142]. The transient PCM melting
process with different number of fins at the Fourier number Fo ¼ 0:15 is shown in
Figure 12 in terms of temperature contours, liquid fraction, and streamlines. It could
be found that the PCM melting rate is obviously enhanced by adding more internal
fins in the cavity. However, the energy storage capacity of LHTES system is reduced
when the number of internal fins increases, so that the appropriate fin configuration
and number should be designed for engineering applications. They found that using a
less number of longer fins is more effective than applying shorter fins for enhancing
the thermal performance of PCMs. Besides, compared with the LHTES cavity with
horizontal fins heated from side walls, the LHTES enclosure using vertical fins heated
from the bottom surface has a better charging rate. From the above researches, it
should be concluded that the enthalpy-based LBM is successful for simulating the
conjugate heat transfer with solid-liquid phase change for melting and solidification
of PCMs accelerated with fins.

4.2 Nanoparticle-enhanced PCM

The nanoparticles are commonly used to ameliorate the low thermal conductiv-
ity of most PCMs. With some appropriate assumptions as presented in Section 2,
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the thermal performance of PCMs with nanoparticles could be modeled using
enthalpy-based LBM. Jourabian et al. studied the convective melting process of Cu-
nanoparticle enhanced water-ice in a cylindrical-horizontal annulus [158, 159]. It
was demonstrated that the melting rate of NEPCM is accelerated due to the
improvement of thermal conductivity and the reduced latent heat. When the heated
cylinder located in the bottom section of the annulus, the increment effect on
NEPCM melting rate by adding more nanoparticles decreases because of the aug-
mentation of NEPCM viscosity, which weakens the convective heat transfer. Feng
et al. investigated the melting of water (ice)-copper nanoparticle NEPCM in a
bottom-heated rectangular cavity by treating the latent heat source term with an
implicit scheme [122]. They also found that the heat transfer rate of NEPCM
increases with respect to the increment of nanoparticle volume fractions. However,
the energy storage rate is the most significant parameter for a LHTES unit.
Although adding nanoparticles into PCMs could increase their thermal conductiv-
ity, it increases the viscosity of PCM, which weakens the convective heat transfer.
Due to this reason, the energy storage rate of LHTES system may even decrease
with the increasing nanoparticle volume fractions, especially for the case with large
temperature gradient. On the other hand, the increment of nanoparticle volume
fraction decreases the energy storage capacity of LHTES unit, so that the energy
storage rate could also be affected. Under this circumstance, more future research
attentions should be paid on the influences of nanoparticles on the energy storage
rate of NEPCM. In addition, the solid-liquid phase change model of NEPCM using
LBM could be extended to study the charging and discharging of NEPCM under
hybrid heat transfer enhancement techniques such as nanoparticle-fin or
nanoparticle-metal foam combinations.

Figure 12.
Transient PCM melting process with different number of fins [142].
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4.3 PCM filled with metal foams

Due to its intersected and connected heat transfer channels, metal foam is
inserted into the LHTES system for enhancing the melting and solidification
rates of PCMs. The numerical modeling of PCM solid-liquid phase change
phenomenon filled in metal foams using enthalpy-based LBM could be catego-
rized as the representative elementary volume (REV) scale modeling [128–130,
160] and pore-scale modeling [111, 161]. Tao et al. investigated the performance
of metal foams/paraffin composite PCM in a LHTES cavity using LBM at REV
scale [160]. They found that increasing the metal foam PPI (number of pores
per inch) could enhance the conduction heat transfer, while the convective heat
transfer is weakened. In addition, although decreasing the metal foam porosity
could accelerate the PCM melting rate, the energy storage density of LHTES
unit is dramatically reduced. Due to the above two tradeoffs, the optimum
metal foam structure with the porosity of 0.94 and PPI of 45 is highly
recommended. However, the REV scale modeling requires the use of some
empirical relations, and the influences of metal foam morphology on energy
storage rate are difficult to be analyzed. As a comparison, with the advantage of

Figure 13.
Transient PCM melting process filled in metal foams with different pore sizes [111]. (a) εave ¼ 0:95 and
dp ¼ 1 mm and (b) εave ¼ 0:95 and dp ¼ 0:75 mm.
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LBM for tackling complex boundary conditions, pore-scale modeling without
using any empirical equations achieves the detailed fluid flow and heat transfer
information inside the metal foams, so that the energy storage efficiency of
LHTES unit could be further optimized. Ren et al. investigated the effects of
metal foam characteristics on the PCM melting rate through pore-scale LBM
modeling [111]. The transient PCM melting process inside the metal foams of
different pore sizes at the Fourier number Fo ¼ 0:04 is plotted with respect to
temperature field, melting interface, and fluid velocity vectors in Figure 13. It
could be observed that the charging rate of PCM is accelerated when the pore
size decreases from dp ¼ 1 mm to dp ¼ 0:75 mm at a porosity of εave ¼ 0:95.
Furthermore, the temperature field in the melted region of LHTES with smaller
pore size dp ¼ 0:75 mm is found to be more uniform than that of LHTES with
pore size dp ¼ 1:0 mm, which means that the thermal conductivity and its
corresponding conduction heat transfer in LHTES unit are improved with a
decreasing pore size (increasing PPI). Besides, they also concluded that an
appropriate metal foam porosity should be chosen in the real engineering appli-
cations in order to balance the PCM melting speed and the energy storage
density of LHTES unit. By reconstructing the microstructure of metal foam with
X-ray computed tomography, Li et al. investigated the solid-liquid phase change
phenomenon of PCM inserted with metal foams under different gravitational
acceleration conditions [161]. The results indicated that the transition of the
dominant heat transfer mechanism from convection to conduction occurs when
the gravity gradually decreases. Due to the attenuated convection effect with
decreasing gravity, the PCM melting development is dramatically hindered.
Besides, they also concluded that the decreasing metal foam porosity could
enhance the effective thermal conductivity of LHTES unit because of the
extended heat transfer area. However, the above pore-scale modeling of PCM
charging and discharging processes enhanced by metal foams is limited in
two-dimensional cases. The three-dimensional pore-scale modeling, which is
indispensable for optimizing the complicated metal foam structures, should be
carried out in the future work.

4.4 PCM with heat pipes

The heat pipes are used to transfer heat between PCMs and heat transfer fluid
(HTF), so that the charging and discharging of LHTES system could be accelerated.
The configuration, arrangement, and number of heat pipes in the LHTES unit are
essential for the PCM melting and solidification speed. Luo et al. applied LBM to
study the convection melting in complex LHTES system with heat tubes [162]. The
effects of inner heat pipe arrangement on PCM melting process are illustrated in
Figure 14 with respect to temperature, flow, and phase fields at the Fourier number
Fo ¼ 3, the Prandtl number Pr ¼ 0:2, the Stefan number Ste ¼ 0:02, and the Ray-

leigh number Ra ¼ 5� 104. For the case using centrosymmetric inner heat pipes,
the conduction heat transfer is dominant because the inner heat pipe is surrounded
by solid PCM at the melting temperature, so that its melting rate is faster than the
LHTES system with inline or staggered heat tubes as displayed in Figure 15. In
addition, there is no obvious difference between the melting rates of LHTES sys-
tems using inline or staggered heat pipes. Although using heat pipe individually
could enhance the thermal performance of LHTES to some extent, other heat
transfer enhancement techniques are usually coupled with heat pipes such as fins or
nanoparticles to further improve the PCM charging and discharging rate.
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Figure 14.
Temperature, flow, and phase fields at Fo ¼ 3 with different arrangements of inner tubes: (a) centrosymmetric,
(b) inline, and (c) staggered for the Prandtl number Pr ¼ 0:2, the Stefan number Ste ¼ 0:02, and the Rayleigh
number Ra ¼ 5� 104 [162].

Figure 15.
The total liquid fraction f l versus the Fourier number Fo for different arrangements of inner tubes at the Prandtl

number Pr ¼ 0:2, the Stefan number Ste ¼ 0:02, and the Rayleigh number Ra ¼ 5� 104 [162].
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4.5 PCM with hybrid heat transfer enhancement techniques

In this section, the melting and solidification of PCMs enhanced using com-
bined heat transfer enhancement techniques modeled by LBM are discussed, and
the effectiveness of different approaches for improving the heat transfer capabil-
ity of LHTES unit is compared. Huo and Rao carried out an investigation of
NEPCM solid-liquid phase change process in a cavity with a heat pipe and separate
plates using LBM [163]. It was found that the NEPCM of the case with separate
located in the middle of cavity melts fastest because of the weakened heat accu-
mulation. The results also showed that when the location of separate is less than
0.3, the melting rate of NEPCM is even slowed down due to the heat accumulation
around the separate plate. Gao et al. developed an enthalpy-based MRT LBM
model with a free parameter in the equilibrium distribution function for solid-
liquid phase change in porous media and conjugate heat transfer with high-
computational efficiency and stability [164]. Then, they investigated the PCM
melting process in porous media with a conducting fin, and the results indicated
that the heat transfer rate could be further improved by adding a fin into the
porous medium. It was also observed that the vertical position of the fin has no
remarkable impact on the PCM melting speed when there exists porous media.
Jourabian et al. investigated the constrained ice melting around a cylinder using
three heat transfer enhancement techniques by LBM [165]. They pointed out that
adding nanoparticles may increase the dynamic viscosity of the base PCM, which

Figure 16.
Transient nanoparticle-enhanced PCM melting process filled in metal foams of pore size dp ¼ 1 mm and heat
pipe radius R ¼ 2 mm [166]. (a) Φ ¼ 0:09, εave ¼ 0:99 and (b) Φ ¼ 0:01, εave ¼ 0:91.
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has a negative effect on natural convective heat transfer. Besides, the tradeoff
between consolidating the conduction heat transfer and weakening the convective
heat transfer through decreasing the metal foam porosity needs further attention
and investigation. Ren et al. completed a pore-scale comparative study of
nanoparticle-enhanced PCM melting in a heat pipe–assisted LHTES unit with
metal foams [166]. The melting process of NEPCM in a LHTES cavity filled with
metal foams using a heat pipe at the Fourier number Fo ¼ 0:06, pore size
dp ¼ 1 mm, and heat pipe radius R ¼ 2 mm is shown in Figure 16. Although
different combinations of nanoparticle volume fraction Φ and metal foam porosity
εave are used for the LHTES unit, it should be noted that the volume fraction of
pure PCM is kept at 90%, so that the energy storage capacity is unchanged for a
fair comparison. It could be observed that the NEPCM with less nanoparticle
volume fraction and lower metal foam porosity melts faster than that with more
nanoparticles in the higher porosity metal foam. This finding indicated that using
metal foams is more effective than adding nanoparticles for enhancing the charg-
ing rate of NEPCMs. They also found that there exists an optimum heat pipe
radius for achieving the best energy storage rate in LHTES unit. As discussed in
the above sections, LBM is demonstrated to be appropriate for simulating the
charging and discharging processes of PCMs in LHTES system with different
kinds of heat transfer enhancement technologies. Under this circumstance, the
enthalpy-based LBM will definitely play a more significant role in the future
research of thermal energy storage using PCMs.

5. Summary

In this chapter, different heat transfer enhancement techniques of PCMs for
LHTES unit are discussed and compared. As the numerical modeling plays a signif-
icant role in clarifying the mechanism of complicated physical processes, the math-
ematical models for fluid flow of liquid PCMs and the PCM solid-liquid phase
change phenomenon are presented. In order to investigate the PCM charging and
discharging processes enhanced by nanoparticles, fins, or metal foams, the empiri-
cal relations for nanofluids and the mathematical formula for conjugate heat trans-
fer are shown. The development history of the lattice Boltzmann method for solid-
liquid phase change problems is carefully reviewed, and the enthalpy-based
multiple-relaxation-time LBM is discussed in detail due to its simplicity and
robustness. Besides, the implementation of GPU computing is briefly discussed to
accelerate the computational efficiency of LBM modeling. Then, the applications of
LBM modeling in LHTES system with different heat transfer enhancement
approaches are presented, which demonstrate that the mesoscopic and highly par-
allel LBM is powerful for understanding the melting and solidification processes of
PCMs.
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