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Chapter

Response Behavior of
Nonspherical Particles in
Homogeneous Isotropic Turbulent
Flows
Santiago Laín

Abstract

In this study, the responsiveness of nonspherical particles, specifically ellipsoids
and cylinders, in homogeneous and isotropic turbulence is investigated through
kinematic simulations of the fluid velocity field. Particle tracking in such flow field
includes not only the translational and rotational components but also the orienta-
tion through the Euler angles and parameters. Correlations for the flow coefficients,
forces and torques, of the nonspherical particles in the range of intermediate
Reynolds number are obtained from the literature. The Lagrangian time autocorre-
lation function, the translational and rotational particle response, and preferential
orientation of the nonspherical particles in the turbulent flow are studied as func-
tion of their shape and inertia. As a result, particle autocorrelation functions, trans-
lational and rotational, decrease with aspect ratio, and particle linear root mean
square velocity increases with aspect ratio, while rotational root mean square
velocity first increases, reaches a maximum around aspect ratio 2, and then
decreases again. Finally, cylinders do not present any preferential orientation in
homogeneous isotropic turbulence, but ellipsoids do, resulting in preferred orienta-
tions that maximize the cross section exposed to the flow.

Keywords: kinematic simulations, Lagrangian tracking, nonspherical particles,
response behavior, preferential orientation

1. Introduction

Nowadays, the use of numerical simulation techniques to assist the development
and optimization of industrial processes dealing with turbulent multiphase flow has
been included as one more step in their layout. Examples of them include pneu-
matic conveying, fluidized bed reactors, cyclones, classifiers, or flow mixers.
Industrial sectors where such processes are important are the chemical, food, or
paper industries as well as electric energy production. Due to the complexity of the
involved flow, a great majority of simulations are carried out under Reynolds-
averaged Navier-Stokes (RANS) in connection with an appropriate turbulence
model to describe the turbulent dynamics of the carrier phase.

Two main frames are employed for the description of complex multiphase
flows: the two-fluid model or Euler-Euler and the discrete particle models or
Euler-Lagrange. In both of them, particles are approximated as point masses being
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transported in the carrier phase flow field; the solution of the flow around individ-
ual elements is usually too expensive and cannot be afforded. In the two-fluid
model, both phases are conceived as two interpenetrating continua [1] whose
properties are described by sets of partial differential equations. In the Euler-
Lagrange approach, the discrete elements are considered as individual objects
whose dynamics is governed by a Lagrangian motion equation. Therefore, to obtain
the discrete phase variables in the computational domain, a large enough number of
discrete element trajectories must be computed. On each particle, appropriate
forces act reflecting the various microprocesses taking place at the element scale
such as fluid-particle turbulent interaction, particle-(rough) wall interactions, and
interparticle collisions [2]. Such technique is especially appropriate for the descrip-
tion of disperse multiphase flow, where usually particles have a size distribution, in
confined domains where particle-wall collisions play a predominant role as pneu-
matic conveying, separation, and classification processes. Both techniques, two-
fluid model and Euler-Lagrange, have been applied mainly considering spherical
particles. This means that the forces due to the flow (drag and lift) as well as the
microprocesses modeling, wall-particle and inter-particle interactions, are assumed
to be for spherical-shaped elements [3]. In practical situations, however,
nonspherical particles are encountered, either of irregular shape, either with well-
defined shapes (fibers or granulates). For example, the paper industry uses large
amounts of turbulent liquid to handle and transport the fibers that compose the
paper pulp. Besides, such particles in the flow experience particle Reynolds num-
bers larger than one, Re > 1. For such particles, the most relevant transport mecha-
nisms such as aerodynamic transport, wall-particle interactions, and interparticle
collisions are substantially different than those for spherical particles.

With the objective of performing the numerical simulation of turbulent flows
laden with nonspherical particles, additional information about the forces and
torques due to flow (drag and lift forces and pitching and rotational torques due to
the shear flow and particle rotation) is needed. It is known that for regular
nonspherical particles, that is, ellipsoids or fibers, such forces depend on particle
orientation with respect to the flow. For instance, fiber orientation plays a major
role in chemical processes as injection, compression molding, or extrusion in which
the mechanical properties of the suspensions are determined by the orientation
distribution.

For the Stokes regime, particle Reynolds number much lower than 1, the behav-
ior of the nonspherical particles can be determined by analytical methods. Forces
and torques acting on an ellipsoidal particle were analytically computed by Jeffery
[4]. In a series of papers, Brenner determined the forces due to the flow acting on
arbitrary-shaped nonspherical particles in the Stokes regime under different flow
configuration by means of theoretical methods [5]. In the creeping flow regime, also
with particle Reynolds number much lower than 1, Bläser [6] computed the forces
acting of the surface on an ellipsoid in free motion for different flow situations,
which allow him to suggest a simple criterion for particle breakup.

The drag coefficient for particle Reynolds number higher than 1 must be
obtained by experiments, physical or numerical, as the analytical methods are not
applicable any more.

The experimental studies to determine the drag coefficients for nonspherical
particles employ wind tunnels or sedimentation vessels. For a moderately wide
particle Reynolds number range, there exist results for thin discs [7], isometric
irregular particles [8], cylinders and plates [9], discs [10], and discs and cylinders
[11]. Drag coefficients were developed in all cases only for certain particle orienta-
tions. Compiling such results, different correlations have been developed in terms
of particle shape [12–14]. As representative parameter of the particle shape, two
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options appear to be dominant: the spherical particle equivalent diameter dp, and
the sphericity, defined as the ratio between the surface of the spherical particle
equivalent diameter and the actual surface of the nonspherical particle. None of
such correlations takes into account the dependence of the drag coefficient with the
particle orientation in the flow. There exist some correlations that consider such
dependence [15–17] and, therefore, they are appropriated to be implemented in a
Lagrangian computation scheme. Nevertheless, corresponding results for lift and
pitching torque coefficients are still not equally available. One of the first results for
the different coefficients in terms of the orientation of elliptic particles was
obtained by Hölzer and Sommerfeld [18] using the lattice Boltzmann method
(LBM). Vakil and Green [19] used DNS to study the drag and lift coefficients of
cylindrical particles depending on their orientation and aspect ratio, for Reynolds
number up to 40, providing a correlation for them. In such work, the underlying
flow field was assumed to be uniform and the flow around the particle was
completely resolved. More recently, Zastawny et al. [20] applied DNS in the frame
of the implicit mirroring immersed boundary (MIB) method to obtain the flow
coefficients for four different ellipsoids. The authors provide specific correlations
for the drag, lift, pitching torque, and rotational torque coefficients depending on
the particle Reynolds number and orientation but without including the effect of
the aspect ratio. The covered Reynolds number range was up to 300. Ouchene et al.
[21] determined with DNS the drag, lift, and pitching torque coefficients for prolate
ellipsoids with aspect ratio up to 32 and adjusted their results to proper correlations
that include the effects of particle orientation and aspect ratio up to a Reynolds
number of 300.

The first numerical computations of very small nonspherical particles in
pseudoturbulent flow were performed by Fan and Ahmadi [22] and Olson [23].
The hydrodynamic forces and torques were computed by the theoretical coeffi-
cients of the Stokes regime. Olson [23] estimated the time step for the translation
and rotation motions in function of the fiber length, obtaining the corresponding
dispersion coefficients. Fan and Ahmadi [22] showed that the dispersion of both,
translation and rotation, was reduced with the fiber length. However, Olson [23]
found a different result in the case of ellipsoidal particles. Lin et al. [24] investigated
numerically the distribution of the orientation of the fibers in a developing mixing
layer, comparing the obtained results with experiments. The fiber length was
smaller than the Kolmogorov scale, so they employed the forces due to the flow of
the Stokes regime. Zhang et al. [25], Mortensen et al. [26], and Marchioli et al. [27]
studied the transport and deposition of ellipsoidal particles in a turbulent channel
flow using direct numerical simulation (DNS). Again the hydrodynamic forces and
torques were computed with Stokes regime expressions. Beyond the Stokes regime,
van Wachem et al. [28] and Ouchene et al. [29] studied a turbulent channel flow
laden with ellipsoidal particles using LES and DNS, respectively, employing the
flow coefficients developed by themselves in previous works.

Rosendahl group developed a model for the numerical computation of cylindri-
cal and superellipsoidal particles in laminar and turbulent flows in the intermediate
Reynolds numbers regime [30–32]. Particle angular velocity and orientation were
computed by means of the Euler parameters. Using a linear relationship between
the drag coefficient and the ellipsoid parameters, it was possible to establish a
correlation valid up to Reynolds numbers of 1000. To estimate the influence of the
orientation, a correlation between the maximum (90°) and minimum (0°) drag was
employed. Drag force was calculated using the projected area perpendicularly to the
flow. The lift force was expressed in function of the drag coefficient and particle
orientation. Other lift forces, such as those due to the fluid velocity gradients or
particle rotation, were not considered. The study case was a combustion chamber
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with straw particles, which were quite well approximated by cylinders. It was found
that straw particles were better dispersed than spheres [30], a fact that properly
illustrates the importance of the correct modeling of nonspherical particles motion.
In a later work [32], other forces such as added mass and pressure force were also
included. Drag coefficient was computed using the Ganser [15] correlation, making
it possible to numerically compute the biomass combustion chamber.

This contribution aims to study the motion of nonspherical particles immersed
in homogeneous isotropic turbulent (HIT) velocity fields built from kinematic
simulation at moderate Reynolds numbers. Computations were performed in a
tailored in-house code. Properties analyzed include the Lagrangian time autocorre-
lation function, the translational and rotational particle response, and preferential
orientation of the nonspherical particles in the turbulent flow, all of them in terms
of particle aspect ratio and inertia.

2. Governing equations

2.1 Coordinate systems

To build the trajectory of a regular nonspherical particle, it is necessary to solve
for its translational as well as rotational motion. However, whereas translation is
solved in an inertial frame, rotation is solved referred to the so-called particle frame.
Thus, the relevant coordinate frames and the transformations between them have
to be introduced.

Figure 1 illustrates, in the case of a cylindrical particle, the employed coordinate
systems: x ¼ x y z½ � is the inertial frame; x0 ¼ x0 y0 z0½ � is the particle frame, whose
origin is in the particle center of mass and its axes are the particle principal axes;

and x
0 0
¼ x

0 0
y
0 0
z
0 0� �

is the comoving frame, which has its origin at the same point
than particle frame but its axes are parallel to the inertial frame axes. In the particle

Figure 1.
Illustration of a cylindrical particle and the employed coordinate systems.
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frame, the z0 axis coincides with the particle symmetry axis and its position with
respect to the comoving frame determines particle orientation.

Goldstein [33] gives the transformation between the comoving and particle
coordinate systems, which is frequently employed in regular nonspherical particle
tracking [31].

x0 ¼ A � x00 (1)

A is the orthogonal matrix that performs the transformation. Its components
are the direction cosines of the particle axes in the comoving frame, written in
function of Euler angles θ;ϕ;ψð Þ. Such Euler angles are defined according to the
x-convention of [33]:

A ¼

cosψ cosϕ� cos θ sinϕ sinψ cosψ sinϕ� cos θ cosϕ sinψ sinψ sin θ

� sinψ cosϕ� cos θ sinϕ cosψ � sinψ sinϕþ cos θ cosϕ cosψ cosψ sin θ

sin θ sinϕ � sin θ cosϕ cos θ

2
64

3
75

(2)

The time evolution of such Euler angles depends on the particle angular velocity
regarding the particle frame axes. However, there is a difficulty in the sense that
such time evolution equations present an unavoidable singularity. Therefore,
instead of the Euler angles, the Euler parameters ε1; ε2; ε3; ηð Þ are used instead:

ε1 ¼ cos
ϕ� ψ

2
sin

θ

2
; ε2 ¼ sin

ϕ� ψ

2
sin

θ

2
; ε3 ¼ sin

ϕþ ψ

2
cos

θ

2
; η ¼ cos

ϕþ ψ

2
cos

θ

2
(3)

And the transformation matrix A is written as [33]:

A ¼

1� 2 ε22 þ ε23
� �

2 ε1ε2 þ ε3ηð Þ 2 ε1ε3 � ε2ηð Þ

2 ε1ε2 � ε3ηð Þ 1� 2 ε21 þ ε23
� �

2 ε3ε2 þ ε1ηð Þ

2 ε1ε3 þ ε2ηð Þ 2 ε3ε2 � ε1ηð Þ 1� 2 ε21 þ ε22
� �

2
64

3
75 (4)

In the present study, the initial particle orientations are assigned by means of the
Euler angles. From them, the corresponding Euler parameters are computed by
Eq. (3), and with them, the initial transformation matrix is evaluated using Eq. (4).
The Euler parameters evolve in time following Eq. (5), where the particle angular
velocities are expressed in the particle frame of reference x0 ¼ x0 y0 z0½ �.

dε1
dt

dε2
dt

dε3
dt

dη

dt

2
66666666666664

3
77777777777775

¼
1

2

ηωx0 � ε3ωy0 þ ε2ωz0

ε3ωx0 þ ηωy0 � ε1ωz0

�ε2ωx0 þ ε1ωy0 þ ηωz0

�ε1ωx0 � ε2ωy0 � ε3ωz0

2
66664

3
77775

(5)

2.2 Particle motion equations

The nonspherical particle motion equations in a general fluid flow [34] are
written as:
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Translational motion:

mp
dup

dt
¼ F (6)

Rotational motion:

Ix0
dωx0

dt
� ωy0ωz0 Iy0 � Iz0

� �
¼ Tx0

Iy0
dωy0

dt
� ωx0ωz0 Iz0 � Ix0ð Þ ¼ Ty0

Iz0
dωz0

dt
� ωy0ωx0 Ix0 � Iy0

� �
¼ Tz0

(7)

Here, mp is the mass of the particle, up ¼ upx upy upz
� �

is the translational veloc-

ity of the particle center of mass, referred to the inertial frame, and F ¼ Fx Fy Fz

� �
is

the external forces acting on the particle. The moments of inertia with respect to the

particle frame axes are Ix0 Iy0 Iz0
� �

, and Tx0 Ty0 Tz0
� �

are the torques experienced by
the particle. It should be remarked that the equations for the translation motion are
computed in the inertial frame but those of the rotation motion are expressed in the
particle frame. In case of the torque experienced by the particle, it has two contri-
butions: the pitching torque, due to the noncoincidence of the particle center of
mass and center of pressure (same fact that happens in an airfoil), and the rota-
tional torque, due to the viscous resistance experienced by a rotating body inside a
fluid, generated by the differences between fluid and particle rotational velocities.

In addition to a sphere, the four ellipsoids of Zawstawny et al. [20] have been
chosen. They have different sphericities and aspect ratio (see Table 1). In Table 1, a
denotes the major semiaxis and b the minor semiaxis.

Using DNS for ellipsoidal particles immersed in a uniform flow, Zastawny et al.
[20] determined correlations for the flow coefficients (drag CD, lift CL, pitching
torque CT, and rotational torque CR). Such coefficients are written as [20]:

CD ¼
FD

1
2 ρeu

2 π
4 d

2
p

; CL ¼
FL

1
2 ρeu

2 π
4 d

2
p

; CT ¼
FT

1
2 ρeu

2 π
8 d

3
p

; CR ¼
FR

1
2 ρ

dp
2

� �5
Ωj j2

(8)

Here, dp is the volume equivalent particle diameter or the diameter of a sphere
with the same volume as the considered particle. The relative fluid velocity with
respect to the particle is eu ¼ u� up and Ω ¼ 1

2 ∇� u� ωp is the fluid relative
rotation with ωp being the particle angular velocity.

The developed correlations depend not only on particle Reynolds number

Re ¼ ρdpeu=μ and particle rotation number ReR ¼ ρd2p Ωj j=μ, but also on orientation φ.

They are written as [20]:

Shape Aspect ratio Sphericity

Ellipsoid 1 (prolate) a
b ¼

5
2

0.88

Ellipsoid 2 (prolate) a
b ¼

5
4

0.99

Disc (oblate) a
b ¼

5
1

0.62

Fiber (prolate) a
b ¼

5
1

0.73

Table 1.
Ellipsoids evaluated by Zastawny et al. [20]. a and b are the major and minor semiaxis, respectively.
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CD ¼ CD,0 þ CD,90 � CD,0ð Þ sin a0φ; CD,0 ¼
a1
Rea2

þ
a3
Rea4

; CD,90 ¼
a5
Rea6

þ
a7
Rea8

(9)

a values are listed in [20] as also coefficients b, c, r:

CL ¼
b1

Reb2
þ

b3

Reb4

� 	
sinφð Þb5þb6Re

b7
cosφð Þb8þb9Re

b10
(10)

CT ¼
c1
Rec2

þ
c3
Rec4

� �
sinφð Þc5þc6Re

c7
cosφð Þc8þc9Re

c10
(11)

CR ¼ r1Re
r2
R þ

r3
Rer4R

(12)

Moreover, for the cylinders, Vakil and Green [19] developed correlations for
drag and lift coefficients depending on orientation, Reynolds number based on its
diameter ReD, and aspect ratio AR. In this case, such coefficients are expressed in
terms of cylinder length L and diameter D:

CD, cyl ¼
FD

1
2 ρeu

2LD
;CL, cyl ¼

FL
1
2 ρeu2LD

(13)

The correlations are expressed as:

CL, cyl φ;AR;ReDð Þ ¼ A2 AR;ReDð Þ sin 2φþ A4 AR;ReDð Þ sin 4φ (14)

CD, cyl

CD⊥
φ;AR;ReDð Þ ¼ A1 AR;ReDð Þ cos 2φþ A0 AR;ReDð Þ; CD⊥ AR;ReDð Þ ¼ κ1 þ

κ2

AR

� �
Re

κ3þ
κ4
ARð Þ

D

(15)

Coefficients κ and those γ in functions Ai, i ¼ 0, 1, 2,4:

Ai AR;ReDð Þ ¼ βi1 ARð ÞlnReD þ βi2 ARð Þ; βij ARð Þ ¼ γij1 þ γij2 exp γij3AR
� �

j ¼ 1, 2

(16)

can be found in Vakil and Green [19].
However, expressions for the pitching and rotational torque coefficients are not

provided in [19]. Therefore, for the cylinders, the approach of [31] has been
assumed. In [31], the distance between the center of mass and the center or pressure
in a cylinder, lCP, in terms of AR and φ, was proposed to be:

lCP ¼ 0:25
L

2
1� e3 1�ARð Þ

� �
cos 3φ


 

 (17)

Then, the pitching torque TP is just the cross-product between the particle
orientation unitary vector and the resultant force acting on it times lCP. Neverthe-
less, this torque is computed in the inertial frame of reference, so it should be
transformed to the particle frame before being included in Eq. (7) to calculate the
particle angular velocity. The approach to compute the viscous rotational torque TR

is to integrate along the particle length the torque due to the drag force with respect
the particle center of mass and it is described in [31]. This torque is given directly in
the particle frame.

Particle motion equations and correlations for cylinders and ellipsoids presented
in this section have been implemented in an in-house code. The numerical integra-
tion of the ordinary differential equations that govern the motion of nonspherical
particles has been performed by a fourth-order Runge-Kutta method, with small
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enough time steps to avoid numerical instabilities [35, 36]. The fluid velocity field in
which particles are immersed has been built by the kinematic simulation technique
described in the next section. It is known that Runge-Kutta methods do not satisfy
the time-reversal property, a fact that makes such methods inappropriate for inte-
grating energy-conserving systems, for instance. However, particle equations are
dissipative systems (as they include viscous drag forces) and, for them, Runge-
Kutta algorithms can be used [37] provided that the time step is small enough to
keep the errors bounded.

3. Kinematic simulation

There exist different options to calculate the Lagrangian properties in a turbu-
lent flow. The starting point is the trajectory equation in which the position x x0; tð Þ
of a particle released at point x0 at time t = 0 is calculated solving:

dx

dt
¼ u x; tð Þ (18)

Here, u x; tð Þ is the Eulerian velocity field. If it is known, it is possible to solve
Eq. (18); however, finding u x; tð Þ is not an easy task. One possibility is to work with
Lagrangian statistics but then it would be needed to close the relevant Lagrangian
correlations. Another option to solve Eq. (18) is to use DNS to obtain u x; tð Þ;
however, this is computationally very expensive. A much more economical alter-
native is the use of kinematic simulation (KS) to compute the Lagrangian charac-
teristics of turbulent flow fields. In this technique, stochastic fluid velocity fields are
constructed in such a way that their statistical properties are in agreement with
those extracted from experiments or reliable DNS. The main advantage of KS is
that it employs an explicit continuous formula for computing u x; tð Þ, so it is not
needed to perform interpolation of the fluid velocity field. Moreover, KS results
of two particle statistics in HIT have been validated versus DNS showing good
agreement [38].

The three-dimensional Eulerian velocity field to be employed in Eq. (18) is built
as a series of random Fourier modes. The velocity field is solenoidal at each realiza-
tion by construction. Moreover, the energy spectrum of the Fourier modes is pre-
scribed, for example, by a power law, so the effects of small flow scales on
Lagrangian statistics are directly included. Such KS velocity field is written as [39]:

u x; tð Þ ¼ ∑
N

n¼1
An cos kn∙xþ ωntð Þ þ Bn sin kn∙xþ ωntð Þ (19)

kn represents the n-th wave number; coefficients An, Bn are random,
uncorrelated vectors perpendicular to kn, whose amplitudes are chosen according to
the prescribed energy spectrum E(k) [39]. Here, the energy spectrum has been the
Kolmogorov decay law of �5/3.

ωn is the n-th frequency, which determines the unsteadiness of the
corresponding mode; it is written proportional to the eddy-turnover time of the
n-th mode:

ωn ¼ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3nE knð Þ

q
(20)

Here, λ is a parameter of order 1 that governs the unsteadiness of the velocity
field. In three-dimensional HIT flows, it has been demonstrated [38] that the
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statistical characteristics of two-particle diffusion are independent of λ. In particu-
lar, in this work, two values of the unsteadiness parameter of 0 and 0.5 have been
tested, without significant differences in the computed statistical properties.
Therefore, following the suggestions of [39], the value 0.5 has been adopted in the
present computations.

Because of the construction of the velocity field given by Eq. (19),
kn∙An ¼ kn∙Bn ¼ 0, it is solenoidal trajectory by trajectory. Moreover, as shown in
[40], such field includes in each realization turbulent-like patterns as eddying,
straining, and streaming regions.

To validate the spherical particles tracking in the KS velocity field, the values
of particle Reynolds stresses (RS) in HIT have been selected. In this configuration,
Hyland et al. [41] demonstrated that, as the fluid turbulence is homogeneous,
particle RS only depend on time and they can be written as u0piu

0
pj tð Þ

� 
= u0iu

0
j

� 
¼

q tð Þδij, that is, they are an isotropic tensor. Moreover, in the asymptotic limit,
q t ! ∞ð Þ ¼ βTL= 1þ βTLð Þ, where β is the inverse of particle relaxation time (see
Eq. (21) below) and TL is the Lagrangian time scale of fluid turbulence. Figure 2
presents the numerical results for particle RS computed with KS and the asymptotic
expression q t ! ∞ð Þ. As Figure 2 readily shows, the asymptotic particle RS are very
well reproduced by the numerical particle tracking in the KS velocity field in the
range of two decades for βTL.

4. Numerical simulation

Computations were performed in a tailored in-house code. The turbulent veloc-
ity field generated with KS resembles one of the fields worked in [39]. Such velocity
field is characterized by a fluctuating velocity u’ = 1 m/s, a fluid Reynolds number of
104 resulting in a Kolmogorov length scale ηK ≈ 6:286 mm, associated Kolmogorov
time scale τK ≈ 10 ms, and a fluid integral Lagrangian time scale of turbulence
TL ¼ 0:56 s. Those values are matched by the present KS.

The regular nonspherical particles studied have been the ellipsoids in [20] and
the cylinders in [19]. In all cases, particles have the same particle volume equivalent
diameter dp ¼ 200 μm, hence much smaller than ηK . Therefore, such particles can
be thought as immersed in a uniform flow field. The Stokes number has been
modified by adjusting the material density of particles being the Stokesian particle
relaxation time defined as:

Figure 2.
Comparison of spherical particle Reynolds stresses, obtained with KS versus theoretical values for i ¼ j.
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τp ¼ β�1 ¼
ρpd

2
P

18μ
(21)

If the Kolmogorov time scale τK is taken as the fluid time scale, particle Stokes
number is defined as St ¼ τp=τK . According to this nondimensional number, three
particle inertia classes are considered: light (St ≈0:5), intermediate (St ≈ 10), and
heavy (St≈ 100). However, as cases with Re > 1 are considered, an effective particle
relaxation time is introduced as τp, eff ¼ τp=ReCD, allowing the introduction of an

effective Stokes number Steff ¼ τp, eff=τK . Therefore, the values of such effective

Stokes number are Steff ≈ 0.3 (light), 5 (intermediate), and 40 (heavy).

Simulations proceed in the following way: for each KS realization of HIT fluid
velocity field, a particle is located in the center of the domain with zero initial
velocity; particle translational and rotational motion is computed from Eqs. (6) and
(7), its orientation is calculated from Eq. (1), and its trajectory is built; particle
tracking lasts for around 10 fluid integral time scales; and particle properties are
stored every second for evaluation. Such process is carried out a sufficient number
of times to reach significant statistical results. In this study, statistics has been
performed based on 105 KS realizations.

In the following section, the results of the particle Lagrangian time autocorrela-
tion function, the translational and rotational particle response, and preferential
orientation of the nonspherical particles in the turbulent flow are analyzed as
function of their shape and effective Stokes number.

5. Results and discussion

The Lagrangian autocorrelation function RL, t τð Þ for translational motion is
expressed as:

RL, t τð Þ ¼
up 0ð Þ ∙up τð Þ
� 

up ∙up 0ð Þ
�  (22)

τ represents the time delay. With the objective of making results independent of
particle injection conditions, statistics are started to be collected after 2 s. The
obtained results for the Lagrangian autocorrelation function (LAF) of the ellipsoids
of Zastawny et al. [20] are presented in the left part of Figure 3, including the
results for spherical particles, whereas those of the cylinders of Vakil and Green
[19] are in the right side of such figure. Horizontal axis is the nondimensional time
delay, τ=TL. As the lighter particles have an autocorrelation function nearly equal to
that of the fluid (tracer limit), the corresponding curves are not shown in Figure 3.
Therefore, only the curves for intermediate and high inertia particles are presented.
Moreover, in Figure 3 also the fluid Lagrangian (brown curve) and Eulerian (cyan
curve) RL, t τð Þ’s are included for comparison.

As it can be readily seen from Figure 3, higher inertia particles are characterized
by larger integral Lagrangian time scales (ILTSs) (defined as the integral up to
infinity of RL, t τð Þ), as a result of their smaller responsiveness to the turbulent
fluctuations. Same as in [23], all particle LAFs are mainly in between the fluid LAF
and Eulerian autocorrelation function (EAF). As a consequence of inertia, for the
smallest values of τ, the heavy RL, t τð Þ overcomes the fluid EAF, differently from
[23] who considered only noninertial particles.

Moreover, for intermediate inertia, the curves for all particle shapes nearly
collapse in a single curve. On the other hand, a shape effect is noticeable for the
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heaviest particles, where the various shapes present differences in their curves. It is
interesting to realize that ILTSs of higher aspect ratio (AR) are below those of
smaller AR, for both ellipsoids and cylinders. This effect is a Reynolds number
effect due to the dependence of drag coefficient on shape and AR: an interaction
between translation and rotation motions occurs that results in a spreading of the
particle effective Stokes number. As a consequence, particles with higher Reynolds
numbers also have larger effective inertia (reflected on an increased Stokes num-
ber) and, therefore, their LAF decreases slower, implying a higher ILTS. In the
ellipsoids case, it happens that those of typ. 2 present a RL, t τð Þ curve slightly over
that of the spherical particle, as they have lower effective Stokes number. Also, the
LAF curve for the disc-like particles in this case is very similar to that of the fiber.

In an analogous way to translational LAF, a rotational autocorrelation function
(RAF) RL, r τð Þ can be defined in terms of the time delay τ as:

RL, r τð Þ ¼
ωp 0ð Þ ∙ωp τð Þ
� 

ωp ∙ωp 0ð Þ
�  (23)

where the particle angular velocity is denoted by ωp.
The obtained results for the Lagrangian rotational autocorrelation function of the

ellipsoids of Zastawny et al. [20] are shown in the left part of Figure 4, whereas those
of the cylinders of Vakil and Green [19] are in the right side of such figure. Again,
horizontal axis is the nondimensional time delay, τ=TL. Similar to the case of transla-
tional motion, the angular velocities of heavy particles keep correlated for longer
times than those of lighter particles. Such correlation time for ellipsoidal particles is
much shorter than that of the translational motion. Also, for all inertia cases, the RAF
of disc-like particles drops quicker than for the prolate ellipsoids. As mentioned for
the translational correlations, the RAF curves for the prolate ellipsoids collapse for the
lighter particles, but they show noticeable differences for the intermediate and large
inertia particles demonstrating an effect of the aspect ratio on RL, r τð Þ. Ellipsoid 2, with
the smallerAR, has the higher RAF curve of all prolate ellipsoids, while Ellipsoid 1 and
the fiber have very similar rotational correlation functions.

In the case of cylinders (Figure 4, right), the RAF curves for all AR and inertias
are different. For the smallest inertia particles, RAF decreases with increasing AR,
similar to what was found for LAFs in the translational motion. Moreover, the
RL, r τð Þ curve presents negative values for the two largest aspect ratios of 10 and 20.
For the intermediate particles, the RAF curves keep the same decreasing trend with
increasing aspect ratio as the light particles; however, in this case, correlation times

Figure 3.
Computed RL, t τð Þ curves for ellipsoidal particles [20] (left) and cylindrical particles [19] (right). Fluid
Lagrangian and Eulerian curves are included for comparison.
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for angular velocities are very much increased and they are significantly higher than
for ellipsoids. The previous trend is reversed for the heavy particles as the RAF
curves augment with increasing AR; however, as Figure 4 (right) suggests, an
asymptotic value for L/D seems to exist because the curves for AR = 10 and 20 are
very close to each other. The change of behavior of the RAF with increasing inertia
could be due to the fact that for the small and intermediate inertia, the particle
relaxation time for rotation reduces with growing AR, whereas for heavy particles,
such relaxation time behaves in the opposite way. Nevertheless, this fact must be
further investigated, possibly using fully resolved simulations.

Next, the response of the nonspherical particles to the fluid fluctuating velocities
is analyzed for both translation and rotation motions. Figure 5(a) shows the
behavior of the particle’s relative linear root mean square (rms) velocity, that is,
u0p=u

0, where u0 is the fluid rms fluctuating translational velocity and u0p denotes the

same quantity but for the particles. The aspect ratio is in the horizontal axis,
whereas the different curves correspond to the various inertia cases. On the one
side, as it could be anticipated, u0p reduces with increasing particle inertia because

the more inertial particles are not able to follow all fluid velocity fluctuations. In
fact, as it was found for the LAF, the less inertial particles present, for both ellip-
soids and cylinders and for all values of AR, the same fluctuating velocities as the
fluid, indicating that they behave as fluid tracers.

As inertia increases, u0p=u
0 decreases monotonically, as expected. However, it

increases with growing aspect ratio for both cylinders and ellipsoids. There is one
exception that spherical particles have values of u0p=u

0 slightly above those of the

Figure 4.
Computed RL, r τð Þ curves for ellipsoidal particles [20] (left) and cylindrical particles [19] (right).

Figure 5.
Relative particle rms of particle linear velocity (a) and angular rms velocity (b). In all cases, the dependence on
aspect ratio and inertia is considered. Closed symbols refer to prolate ellipsoids and open symbols to cylinders.
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ellipsoid with AR = 1.25. The trend of increasing particle fluctuating velocities with
aspect ratio is consistent with the aforementioned fact that effective Stokes number
tends to reduce with growing AR; therefore, particles with lower AR respond less to
the fluid fluctuations than the more elongated ones. This result has been obtained
for particles much smaller than Kolmogorov length scale; therefore, such particles
can be considered to be immersed in a uniform flow field, just in the same condi-
tions as the flow coefficient correlations were developed. In the study of Hölzer and
Sommerfeld [42], nevertheless, a different result was found. Using a DNS based on
the lattice Boltzmann method (LBM), Hölzer and Sommerfeld [42] obtained that
relative particle fluctuating velocity reduced with increasing AR. The main differ-
ence with the present work is that Hölzer and Sommerfeld [42] employed particles
with size well above ηK . The authors explained the fact arguing that particles aver-
aged the fluid fluctuations on their surface, which augmented with increasing AR.
Let us remark that both results are not conflicting as the size range of the employed
particles in the two studies is very different. Further work combining DNS with
nonspherical point particles smaller than ηK is necessary to explain this point.

Figure 5(b) presents the behavior of the particle angular rms velocity, ω0
p. In

homogeneous and isotropic turbulence, the angular velocity of spherical particles is
zero because of viscous damping and the absence of pitching torque. The situation is
different in nonspherical particles because in them the geometrical and pressure
centers do not coincide, so a net pitching torque is produced that promotes nonzero
angular velocities. As illustrated in Figure 5(b), ω0

p increases with AR and reaches
up to a maximum of AR≈ 2 and decreases with higher values of aspect ratio. The
shape of the curve is the same for ellipsoids and cylinders. Such behavior was also
found in [42], and it was explained observing that, with increasing AR, the moment
of inertia along the major axis reduces and along the minor axis increases, which
would lead to higher and lower ω0

p, respectively. On the other hand, and similar to
what happened with u0p, for inertial particles, ω0

p decreases as inertia augments.
In the following, the correlation relative velocity direction-particle orientation is

analyzed depending on inertia and aspect ratio. A well-known fact is that regular
nonspherical particles falling through a still liquid at intermediate Reynolds num-
bers tend to be oriented in a determined direction. Cylinders and prolate ellipsoids
are prone to keep their symmetry axis (z’ in Figure 1) perpendicular to the flow,
thus maximizing drag. Differently, discs and oblate ellipsoids tend to move with the
symmetry axis aligned with the flow, also maximizing drag [43]. However, sphe-
roidal Stokes particles only show a preferential orientation if a persistent velocity
gradient exists [27]. Therefore, in HIT flow where there are no mean velocity
gradients, a Stokes particle will not have any preferred orientation.

Newsom and Bruce [44] analyzed the influence of turbulence on preferential
alignment of quite elongated fibers with Re ≈ 1. As explained by [44], preferential
orientation of such fibers falling through a still fluid can only be clarified if fluid inertial
effects are considered. In the Stokes regime, Khayat and Cox [43] demonstrate that the
force distribution on the fiber is symmetrically distributed along its axis, independent
of its orientation regarding the flow and, as a result, the fiber experiences a zero net
torque. Beyond the Stokes regime, Re > 1, when the fiber has an oblique orientation
with respect the flow, such distribution of the force is not any more symmetric and it
experiences a net pitching torque. Such torque will promote a rotation that drives the
fiber to adopt an orientationwhere its symmetry axis is orthogonal to the relative flow.
Interestingly, if the fiber is oriented orthogonal or parallel to the flow, the net experi-
enced torque is zero, due to the symmetry of the force distribution; however, in the
first case, this situation is stable, while in the second case, where the centers of gravity
and pressure do not coincide, this situation is unstable.
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Previous reasoning is valid too for another kind of nonspherical shapes as disc-
like, cylindrical, or ellipsoidal [45]. For high Reynolds numbers, that is, Re > 100
appears a secondary motion overimposed to the particles predominant movement
direction. Such secondary motion is promoted by a wake instability and vortex
detachment from the rear surface of the particles. Two main kinds of secondary
motion can be observed: large quasi-periodic swings along the main path, and a
more or less chaotic tumbling forming a definite angle with the main motion
direction. There is a coupling between this kind of oscillatory motion and the wake
instability [10]: a vortex detachment follows at the end of a particle swing. Never-
theless, in the present study, such secondary motions do not appear as the consid-
ered particle Reynolds number is not large enough, that is, Re < 40.

Let now θ be the angle formed by the relative velocity, u� up, and the particle
symmetry axis, z’. Therefore, cos θ can be used to determine the orientation of the
nonspherical particle with respect to the relative flow. In this work, particle prefer-
ential orientation is determined computing cos θj j along the trajectories of 105

particles. Computed values of cos θj j are sorted in equally distributed bins between
0 (particle axis orthogonal to relative velocity) and 1 (alignment between particle
axis and relative velocity), and the corresponding probability density functions
(Pdfs) are determined. Such Pdfs are shown in Figure 6 in terms of cos θj j.
Figure 6(a) shows the results for the prolate ellipsoids in terms of particle inertia,

Figure 6.
Orientations probability density functions (Pdfs) of prolate ellipsoids (a) and cylinders (b) regarding the
relative flow direction.
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and Figure 6(b) presents the curves for the cylinders also depending on their
inertia. Each inertia class is plotted in a separated frame. For the discs case, results
are presented in Figure 7.

As it is observed in Figure 6(a), it is found that prolate ellipsoids do manifest
preferential orientation with respect to the relative velocity. Of course, spherical
particles do not have a preferred orientation and the corresponding Pdf is a hori-
zontal line (black color). Prolate ellipsoids have a preference for orientating its
symmetry axis orthogonal to the relative flow, tending to maximize the drag,
similar to what occurs in particle sedimentation studies. The orientation preference
increases with inertia, which is quite similar for all aspect ratios considered in this
study.

On the other hand, as it is presented in Figure 6(b), cylinders seem not to have
any preferred orientation in the HIT KS velocity field, being all the curves pretty
flat. Only for the case of higher AR and lowest inertia, the curves show a trend to be
slightly higher for values of cos θj j closer to one than to zero. Such result is qualita-
tively similar to the DNS computations of [27] in the central region of the channel.

For the discs, Figure 7 shows that there is a clear trend of the particle symmetry
axis to be aligned with the relative flow, again maximizing drag, similar to the
results obtained for sedimenting particles in stagnant fluid. Such trend is more
marked when particle inertia increases.

6. Conclusions

In this study, regular nonspherical particle responsiveness to HIT flows has been
investigated in combination with KS of fluid velocity field. The main results
obtained are the following: the particle LAF reduces when particle AR is aug-
mented, because effective particle inertia decreases if aspect ratio increases; this is
true for both translational and rotational time autocorrelation functions. In the case
of cylinders, RL, r τð Þ is much higher than for ellipsoids, a fact that requires further
clarification through particle resolved simulations. Additionally, the fluctuating
particle velocity increases for growing AR in the considered case of particles much

Figure 7.
Orientation probability density functions (Pdfs) of disc-like particles regarding the relative flow direction.
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smaller than Kolmogorov length scale; such behavior is contrary, although not
conflicting, to the findings of [42] for fully resolved particles with sizes larger than
the Kolmogorov length scale. For both ellipsoids and cylinders, the particle angular
rms velocity first increases with aspect ratio, reaches a maximum of AR≈ 2, and
then decreases again, which is explained because with increasing aspect ratio, the
moment of inertia around the longitudinal axis decreases and around the radial axis
increases, which would lead to higher and lower rms angular velocities, respec-
tively. Finally, in agreement with Marchioli et al. [27], cylinders seem not to prefer
any specific orientation in the KS HIT velocity field; however, prolate ellipsoids
tend to be oriented with its symmetry axis orthogonal to the relative flow, maxi-
mizing the drag. Oblate ellipsoids and disc-like particles also show a preferential
orientation, tending to align their symmetry axis with the relative flow velocity.
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