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1. Introduction 

The objective of fourth generation (4G) wireless communication systems is to achieve 
broadband connectivity anytime, anywhere and between anything. It is anticipated that in 
the next two decades, this is likely to be achieved by employing multiple antennas at the 
base station (service provider) as well as at the end user devices. In this regard, the past 
decade has seen an explosion of interest in multi antenna systems, especially, multi-input 
multi-output (MIMO) communication systems. MIMO communication systems provide a 
promising approach to deliver higher data throughput without the need for increased 
power and bandwidth. Space-time coding adds time as another dimension to the diversity, 
in addition to the spatial diversity achieved by multiple antennas in MIMO system.  
Among different space-time coding schemes presented in the literature, orthogonal space-
time block codes (OSTBCs, Alamouti, 1998) are of particular interest since they achieve full 
diversity at a lower receiver complexity. Indeed, many practical systems and standards such 
as WiFi and WiMAX have already adopted OSTBC for MIMO communications. 
The primary interest of this Chapter is to delve into the receiver aspect of the MIMO system 
where continuous interest has been shown in developing blind-adaptive decoding 
algorithms. Blind decoding algorithms improve data throughput by enabling the system 
designer to replace training symbols with data. On the other hand, considering the fact that 
the wireless end user environment is becoming increasingly mobile, adaptive algorithms 
have the ability to improve the performance of a system regardless of whether it is a blind 
system or training based one. The difficulty faced by blind and adaptive algorithms is that 
they are generally computationally intense. Further, the possible use of higher frequency 
carriers and the appeal of broadband communication for a wide variety of applications as 
well as the emergence of newer technologies such as cooperative communications have been 

contributing to the growing interest in a general M N×  MIMO system over the 2 1×  

Alamouti’s scheme which was the subject of intense research in the past decade. Hence, any 
blind-adaptive algorithm should be computationally efficient before they can be 
implemented in practical systems. This Chapter presents blind decoding algorithms that are 

adaptive in nature as well as computationally efficient for any M N×  MIMO system. 

In (Liu et al., 2002), Kalman filtering has been studied in application to channel tracking for 

MIMO communication systems. The method proposed in (Liu et al., 2002) is based on two 

assumptions. First, the underlying space-time coding scheme is based on Alamouti code O
pe
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(Alamouti, 1998), and therefore its application is limited to the case of two transmit 

antennas. Second, the channel is assumed to be time-varying during the transmission of 

each block. The latter assumption implies that the linear ML receiver is optimal in a mean 

sense (Liu et al., 2002). Kalman filtering has been applied to the problem of MIMO channel 

tracking in several other research reports (Schafhuber et al., 2003). Also, in (Coon et al., 

2005), a frequency domain equalization method has been proposed for single carrier MIMO 

systems. Particle filtering has also been used in other studies (Haykin et al., 2004) for MIMO 

channel tracking. In (AlNauffouri et al., 2004), a Kalman filtering approach has been used in 

the maximization step of an expectation-maximization (EM) method to track the frequency 

selective MIMO channel when the underlying code is an OSTBC and when an orthogonal 

frequency division multiplexing (OFDM) is used. 

This chapter also focuses on the MIMO channel tracking and data decoding algorithms 

(Balakumar et al., 2007) that are a) suitable for any M×N MIMO system and b) 

computationally efficient to be able to implement in practical systems. By considering a class 

of MIMO systems where OSTBCs are used as the underlying space-time coding schemes 

and assuming a fixed channel during the transmission of each block of data a two-step 

channel tracking algorithm is developed. In the first step, Kalman filtering is used at the 

beginning of each block to obtain an initial channel estimate for that block based on the 

channel estimate obtained for previous block. In the second step, to improve the quality of 

the channel estimate obtained by Kalman filtering, a simple iterative channel estimation 

technique is proposed. This iterative method is in fact a decision-directed algorithm and it 

consists of sequential use of a linear receiver and a linear channel estimator. In addition, it is 

shown that, due to specific properties of orthogonal space-time block codes, both the 

Kalman filter and the decision-directed algorithm can be significantly simplified. 

2. Background 

Consider a MIMO system with N transmit and M receive antennas. We consider a block 
transmission scheme and assume that within the block period T the channel is fixed, i.e., the 
channel is assumed to be quasi-static. However, between different blocks the channel can 
change. As such, the n th received block can be written as  

 ( ) = ( ) ( ) ( )n n n n+Y X H V   (1) 

where ( )nY  is the T M×  matrix of the received signals, ( )nX  is the T N×  matrix of 

transmitted signals, ( )nV  is the T M×  matrix of noise, and ( )nH  is the N M×  channel 

matrix during the n th block period. The noise ( )nV  is assumed to be zero-mean complex 

Gaussian and both spatially and temporally white with variance 2 / 2vσ  per real dimension. 

In space-time block coding, the matrix ( )nX  is a mapping that transforms a block of 

complex symbols to a T N×  complex matrix. Hence, we hereafter replace ( )nX  with 

( ( ))nX s  where ( )s n  is the n th symbol vector of length K . Let us define ( )ns  as  

 1 2( ) = [ ( ) ( ) ( )]TKn s n s n s ns "   (2) 

where ( )T⋅  denotes the transpose operator. The T N×  matrix ( ( ))s nX  is called an OSTBC 

(Alamouti, 1998; Tarokh et al., 1999) if i) all elements of ( ( ))nX s  are linear functions of the 
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K  complex variables 1 2( ), ( ), , ( )Ks n s n s n…  and their complex conjugates, ii) and if, for any 

arbitrary ( )ns , ( ( ))nX s  satisfies  

 2( ( )) ( ( )) =|| ( ) ||H

Nn n nX s X s s I   (3) 

where NI  is the N N×  identity matrix, || ||⋅  is the Euclidean norm, and ( )H⋅  denotes 

Hermitian transpose. 

It follows from the definition of OSTBC that matrix ( ( ))nX s  can be written as  

 
=1

( ( )) = ( { ( )} { ( )})
K

k k k k

k

n Re s n Im s n+∑X s C D   (4) 

where {}Re ⋅  and {}Im ⋅  denote the real and imaginary parts, respectively, and kC  and kD  

matrices are defined as1  

 = ( )k kXC u   (5) 

 = ( )k kX jD u   (6) 

where ku  is the k th column of identity matrix KI  and = 1j − . Let us define the 

“underline” operator for a matrix P  as  

 
{ ( )}

{ ( )}

vec Re

vec Im

⎡ ⎤
⎢ ⎥
⎣ ⎦

P
P

P
�   (7) 

where {}vec ⋅  refers to the vectorization operator stacking all the columns of a matrix on top 

of each other. Using (4) and (7), one can re-write (1) as (Gharavi-Alkhansari & Gershman, 
2005)  

 ( ) ( ) = ( ( )) n nn n n +y Y A H s v�   (8) 

where ( )n ns s� , ( )n nv V�  and the 2 2MT K×  real matrix ( ( ))nA H  is given by  

 1 1( ( )) = [ ( ) ( ) ( ) ( )].K Kn n n n nA H C H C H D H D H… …   (9) 

It has been shown that for any channel matrix ( )nH , the matrix ( ( ))A nH  satisfies the so-

called decoupling property, i.e., its columns are orthogonal to each other and have identical 
norms (Larsson & Stoica, 2003). More specifically, it satisfies  

 2

2( ( )) ( ( )) =|| ( ) ||T

F Kn n nA H A H H I   (10) 

where || . ||F  denotes the Frobenius norm. Let us define the 2 1MN ×   time-varying channel 

vector ( )nh  as ( )n nh( ) H� . With a small abuse of notation, we hereafter replace ( ( ))A nH  

with ( ( ))A nh . Therefore, we rewrite (10) as  

                                                 
1In fact, any OSTBC is completely defined by the set of matrices =1{ , }Kk k kC D . 
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 2

2( ( )) ( ( )) =|| ( ) ||T

Kn n nA h A h h I   (11) 

Since ( ( ))nA h  is linear in ( )nh , there exists a unique 4 2KMT MN×  matrix Φ  such that 

{ ( ( ))} = ( )vec n nA h Φh  where Φ  is a 4 2KMT MN×  matrix whose k th column is given by  

 [ ] = { ( )} .k kvecΦ A e   (12) 

Here, [ ]k⋅  denotes the k th column of a matrix and ke  is the k th column of identity matrix 

2MNI . Note that matrix Φ  can be written as 1 2 2= [ ]T T T T

KΦ Φ Φ Φ"  where each sub-matrix kΦ , 

( = 1, 2k K… ) describes the linear relationship between the k th column of ( ( ))nA h  and ( )nh , 

[ ( )] = ( )k k nA h Φ h . 

Given the channel vector ( )nh , the optimal ML decoder for OSTBCs consists of a linear 

receiver followed by a symbol-by-symbol decoder (Ganesan & Stoica, 2001). Indeed, the 

linear receiver computes ˆ
ns , the estimate of ns  as  

 
2

1
ˆ = ( ( )) .

|| ( ) ||

T

n nn
n

s A h y
h

  (13) 

Then, the symbol-by-symbol decoder builds the estimate ( )ns , of vector ( )ns  as  

 ˆ ˆ( ) = [ ]K K nn js I I s   (14) 

The k th element of ( )ns  is compared with all points in the constellation corresponding to 

( )k ns  and the closest point in this constellation to the k th element of ( )ns  is accepted as the 

k th decoded symbol. 
Note however that implementation of the ML decoder requires the knowledge of the time-
varying channel. If the channel is fixed, one can use training to estimate the channel in a 
non-blind fashion. However, in practice, the channel is time-varying, and hence tracking of 
the MIMO channel is required. Recently, blind channel estimation has been studied in the 
literature (see for example (Shahbazpanahi et al., 2005)). The blind channel estimation of 
(Shahbazpanahi et al., 2005) is based on the assumption that the channel is fixed, and hence, 
it is not applicable to time-varying channels. 
Without assuming any model for the MIMO channel, the problem of joint channel tracking 

and symbol detection is ill-posed. Fortunately, in many practical scenarios, the wireless 

channels can be modeled with a few parameters. It has been shown in (Wang & Chang, 

1996) that the first-order AR model can be used as a sufficiently precise method to describe 

the time-varying behavior of wireless channels. Based on this model, we assume that the 

channel variation between adjacent blocks is modeled as a first order autoregressive (AR) 

model, i.e.,  

 ( ) = ( 1) ( )n n nα − +H H W   (15) 

 

where ( )nW  is an N M×  noise matrix that is assumed to be zero-mean complex Gaussian 

with independent entries and variance of 2 / 2wσ  per real dimension. This implies that ( )nW , 

and consequently ( )nH , are zero-mean wide-sense stationary processes. The parameter α  

is a complex scalar that can be estimated using the method of (Tsatsanis et al., 1999), and 
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hence, it is herein assumed to be known. The noise variance 2

wσ  and α  are related as 
2 2 2= (1 | | )w hσ σ α−  where 2

hσ  is the variance of each element of ( )nH  and | |⋅  denotes the 

amplitude of a complex number. 

3. Kalman filter based channel tracking 

In this Section, the problem of channel tracking via Kalman filtering is addressed. 

Subsequently, a two-step channel tracking algorithm is proposed. In the first step of this 

algorithm, Kalman filtering is used to obtain an initial channel estimate for each block based 

on the channel estimates obtained for the previous blocks. In the second step, the so-

obtained initial channel estimate is refined using an iterative decision-directed technique, 

which involves a linear ML channel estimator based on the decoded symbols. In fact, the 

linearity of such an ML channel estimator follows from the interesting properties of 

OSTBCs. It is also demonstrated that due to the specific structure of OSTBCs, Kalman 

filtering based channel tracking can be significantly simplified. 

To derive the two-step channel tracking algorithm, we rewrite (8) as  

 = ( ) ( )n n nn +y B s h v   (16) 

where the 2 2MT MN×  real matrix ( )nB s  is defined as  

 1 2 2( ) [ ( ) ( ) ( ) ]n n n MN nA A AB s e s e s e s� …   (17) 

and ke , as defined earlier, is the k th column of the identity matrix 2MNI . The following 

Lemma plays an important role in simplifying the forthcoming Kalman filtering algorithm. 

Lemma 1: The matrix ( )nsB  satisfies  

 2

2( ) ( ) =|| ( ) ||T

n n MNnB s B s s I   (18) 

Proof: We first show that the sub-matrices 2

=1{ } K

k kΦ  satisfy the following equations:  

 2 = ,
=

.

MNT

l m T

m l

if l m

if l m

⎧
⎨− ≠⎩

I
Φ Φ

Φ Φ
  (19) 

To prove (19), we use the decoupling property in (11). Indeed, for any channel vector h , the 
decoupling property in (11) implies that  

 2[ ( )] [ ( )] =|| ||T

l lA Ah h h   (20) 

or  

 =T T T

l lh Φ Φ h h h   (21) 

Since (21) holds true for any h  and because T

l lΦ Φ  is a symmetric matrix, we conclude that 

2=T

l l MNΦ Φ I . To prove the second part of (19), based on the fact that different columns of 

( )A h  are orthogonal to each other, we can write  
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[ ( )] [ ( )] = = 0

( ) = 0
[ ( )] [ ( )] = = 0

T T T

T T Tl m l m

l m m lT T T

m l m l

A A

A A

⎫⎪⇒ +⎬
⎪⎭

h h h Φ Φ h
h Φ Φ Φ Φ h

h h h Φ Φ h
  (22) 

Since (22) holds true for any vector h  and since T T

l m m l+Φ Φ Φ Φ  is a symmetric matrix, we 

conclude that = 0T T

l m m l+Φ Φ Φ Φ . This completes the proof of (19). 
We now use (19) to prove (18). To do so, we note that  

 

1 1 1 2

2 1 2 2

2 1 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) =

( ) ( ) ( ) ( )

T T T T

n n n MN n

T T T T

T n n n MN n

n n

T T T

n MN n n MN MN n

A A A A

A A A A

A A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

s e e s s e e s

s e e s s e e s
B s B s

s e e s s e e s

"
"

# % #
"

  (23) 

where we have used (17). Note also that  

 2

2|| ||
2

( ) ( ) =|| ||T T T

n l l n n

l K

A A

e I

s e e s s
����	���


  (24) 

which follows from the decoupling property. For l m≠ , the following set of equalities holds 

true:  

2 2

, ,

=1 =1

( ) ( ) = [ ( )] [ ( )]
K K

T T T

n l m n n r l r m s n s

r s

A A A A∑∑s e e s s e e s�  

             ( )
2 2

, ,

=1 =1,

=
K K

T T

n r l r s m n s

r s s r≠
∑ ∑ s e Φ Φ e s  

  

2
2

, ,

=1

( )

MN
K

T T

n r l r r m n r

r

+∑
I

s e Φ Φ e s

����

 

                                       
2 2 2

, , , ,

=1 =1, =1

= ( )
K K K

T T T

n r l r s m n s n r l m n r

r s s r r≠

+∑ ∑ ∑
0

s e Φ Φ e s s e e s

����

 

                    
2 2

, ,

=1 =1,

= ( ) 0
K K

T T

n s l s r m n r

r s s r≠

− +∑ ∑ s e Φ Φ e s  

             
2 2

, ,

=1 =1,

= ( )
K K

T T

n s l s r m n r

s r r s≠

−∑ ∑ s e Φ Φ e s  

         = ( ) ( )T T

n l m nA A−s e e s  

where ,n rs  is the r th element of ns . Therefore, we obtain that, for l m≠   

 ( ) ( ) = 0T T

n l m nA As e e s   (25) 

It follows from (24) and (25) that 2

2( ) ( ) =|| ( ) ||T

n n MNnB s B s s I  and the proof is complete.             
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It follows from (16) and (18) that given ns , the ML estimate of the channel vector ( )nh  can 

be obtained as  

 M 2

1
( ) = ( ) .

|| ( ) ||

T

L n nn
n

h B s y
s

  (26) 

Therefore, if the information symbols were available, the optimal ML channel estimation 

would involve a linear estimator as in (26). However, in practice, the information symbols 

are not available and they have to be estimated. To overcome this problem, one can use an 

iterative decision-directed channel estimation scheme. That is, given an initial channel 

estimate for the n th block, say (0) ( )nh , one can replace ( )nh  in (13) with (0) ( )nh  and obtain 

an estimate for ns , say (0)ˆ
ns . This estimate of ns  will, in turn, be used in (26) instead of ( )ns  

to obtain a new estimate for ( )nh , say (1) ( )nh . This new channel estimate will again be used 

in (13) instead of ( )nh  to obtain a new estimate of ( )ns . This procedure is repeated until the 

normalized difference between two consecutive channel estimates is negligible. The 

accuracy of this iterative decision-directed channel estimation scheme depends on the 

availability of a precise enough initial channel vector estimate (0) ( )nh . The proposal here is  

to use Kalman filtering to obtain the initial channel estimate, (0) ( )nh , based on the channel 

estimates obtained for the previous blocks as well as the n th block received data. In what 

follows, the details of the Kalman filtering technique when applied to our MIMO channel 

tracking problem are discussed. It is shown that using Lemma 1, the Kalman filter can be 

simplified significantly. To show this, (16) is used as the observation model of the Kalman 

filter (Bar-Shalom et al., 2002). Note that the data model in (16) is real-valued. To obtain a 

real-valued state transition equation, (15) can be rewritten as  

 ( ) = ( 1) ( )n n n− +h Fh w   (27) 

where  

 
R ( ) I ( )

I ( ) R ( )

MN MN

MN MN

e m

m e

α α
α α

−⎡ ⎤
⎢ ⎥
⎣ ⎦

I I
F

I I
�   (28) 

and ( ) = ( )n nw W  is the real-valued process noise with covariance matrix 2

2= ( / 2)w MNσQ I . 

We can use (27) as the real-valued state transition equation required for Kalman filtering. 

The Kalman filtering problem for channel tracking in OSTBC-based MIMO communication 

system can now be formally stated as follows: Given the measurement-to-state matrix 

( )nB s , use the observed data ny  to find the minimum mean squared error (MMSE) estimate 

of the components of the state vector ( )nh  for each 1n ≥ . 

Given the estimate of the state at time 1n − , i.e., ( 1| 1)n n− −h , and the associated error 

covariance matrix ( 1| 1)n n− −P , the Kalman filter (Bar-Shalom et al., 2002) is used to obtain 

the estimate of the state at time n , i.e., ( | )n nh  and the associated error covariance matrix 

( | )n nP . The Kalman filtering algorithm can be summarized as follows:  

 ( | 1) = ( 1| 1)n n n n− − −h Fh   (29) 

 ( | 1) = ( 1| 1) Tn n n n− − − +P FP F Q   (30) 
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 = ( ) ( | 1)n n n n −y B s h   (31) 

 ( ) = n nn −ν y y   (32) 

 ( ) = ( ) ( | 1) ( )T

n nn n nν + −P R B s P B s   (33) 

 1( ) = ( | 1) ( ) ( )T

nn n n nν
−−G P B s P   (34) 

 ( | ) = ( | 1) ( ) ( )n n n n n n− +h h G ν   (35) 

 ( | ) = ( | 1) ( ) ( ) ( )Tn n n n n n nν− −P P G P G   (36) 

where ( | 1)n n −h  is the predicted state, ( | 1)n n −P  is the covariance matrix of the predicted 

state, ny  is the predicted observation, ( )nν  is the innovation process, ( )nνP  is the 

innovation covariance matrix, ( )nG  is the Kalman gain (Bar-Shalom et al., 2002), and 

= { }Tn nER v v  is the covariance matrix of the measurement noise nv . As we assumed that the 

measurement noise is spatio-temporally white with a variance of 2

vσ /2 per real dimension, 
2

2= ( / 2)v MTσR I  holds true. 
The following Lemma uses the result of Lemma 1 to reduce the computational complexity of 

finding 1( )nν
−P  in (34). 

Lemma 2: If ( 1| 1)n n− −P  is a diagonal matrix, then, ( | 1)n n −P  in (30) and ( | )n nP  in (36) are 

also diagonal, i.e., if  

 1 2( 1 | 1) = n MNn n δ −− −P I   (37) 

then  

 2( | 1) = n MNn n β−P I   (38) 

 2( | ) = n MNn n δP I   (39) 

where  

 
2 2

2

1 2 2
= | | = .

2 2 || ( ) ||

w v n
n n n

n v

and
s n

σ σ ββ δ α δ
β σ− +

+
  (40)    

Proof: Substituting (37) into the predicted state in (30), we can rewrite it as  

 
2

2 2

1 1 2 1 2( | 1) = =| | = | | .
2

T w
n n MN n MN

n

n n

β

σδ α δ α δ− − −

⎛ ⎞
− + + +⎜ ⎟

⎝ ⎠
P FF Q I Q I

������	�����


  (41) 

Inserting (41) into (33) and using matrix inversion lemma, 1( )nν
−
P  in (33) can be written as  

1 1 1 1 1 1 1( ) = ( )( ( ) ( ) ( | 1)) ( )T T

n n n nn n nν
− − − − − − −− + −P R R B s B s R B s P B s R  

      

1

2 22 4 2

2 4 2 1
= ( ) ( ) ( ) ( )T T

MT n n n MN n

v v v nσ σ σ β

−
⎛ ⎞

− +⎜ ⎟
⎝ ⎠

I B s B s B s I B s  
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 22 2 2 4

2 4
= ( ) ( )

2 || ( ) ||

Tn
MT n n

v n v vn

β
σ β σ σ

⎛ ⎞
− ⎜ ⎟

+⎝ ⎠
I B s B s

s
  (42) 

where the fact that 2

2( ) ( ) =|| ( ) ||T

n n MNnB s B s s I  has been used. 

Using (34) and (42), we rewrite (36) as  

( | ) = ( | 1) ( | 1) ( )T

nn n n n n n− − −P P P B s  

22 2 2 4

2 4
( ) ( ) ( ) ( | 1)

2 || ( ) ||

Tn
MT n n n

v n v v

n n
n

β
σ β σ σ
⎛ ⎞⎛ ⎞

− −⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
I B s B s B s P

s
 

 
2

22 2
= .

2 || ( ) ||

v n
MN

n vn

σ β
β σ

⎛ ⎞
⎜ ⎟

+⎝ ⎠
I

s
  (43) 

The proof is complete. 

Based on Lemma 2, if (0 | 0)P  is initialized as a diagonal matrix, ( | 1)n n −P  and ( | )n nP  

always take the form of (38) and (39), respectively. Hence, 1

ν
−
P  in (34) is simplified as in (42). 

It is also noteworthy that using (41) and (42) the Kalman filter gain ( )nG  in (34) can be 

written as  

 
2

2 2 2 4

=

2 4 || ( ) ||
( ) = ( ).

2 || ( ) ||

Tn
n n

v n v v

n

n
n

n

μ

ββ
σ β σ σ

Δ

⎛ ⎞
−⎜ ⎟

+⎝ ⎠

s
G B s

s
������������	�����������


  (44) 

Using (31), (32) and (44), we can simplify (35) as  

( | ) = ( | 1) ( )( ( ) ( ) ( | 1))T

n n nn n n n n n nμ− + − −h h B s y B s h  

      2= (1 || ( ) || ) ( | 1) ( ) ( ).T

n n nn n n nμ μ− − +s h B s y   (45) 

Therefore, the Kalman filtering algorithm presented in (29)--(36) can be simplified as it 
follows:  

 ( | 1) = ( 1| 1)n n n n− − −h Fh   (46) 

 
2 2

2

1 2 2 2 4

2 4 || ( ) ||
= | | , =

2 2 || ( ) ||

w n
n n n n

v n v v

n

n

σ ββ δ α μ β
σ β σ σ−

⎛ ⎞
+ −⎜ ⎟

+⎝ ⎠

s

s
  (47) 

 (0) 2( ) = ( | ) = (1 || ( ) || ) ( | 1) ( ) ( )T

n n nn n n n n n nμ μ− − +h h s h B s y   (48) 

 
2

2 2
= .

2 || ( ) ||

v n
n

n vn

σ βδ
β σ+s

  (49) 

We then use the so-obtained (0) ( )nh  in the aforementioned iterative procedure to improve 

its accuracy. 
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Remark 1: Note that the simplified Kalman filter requires the knowledge of the symbol 

vector ns  (or ( ( ))nB s ). However, the primary objective is to decode ( )ns . To overcome this 

obstacle, we propose to replace ns  in the Kalman filter equations (46)--(49), by its estimate, 

which is obtained by replacing the true channel vector in (13) by the predicted channel 

vector ( | 1)n n −h  as  

 
2

1
= ( ( | 1)) .

|| ( | 1) ||

T

n nA n n
n n

−
−

s h y
h

  (50) 

Note that given the predicted channel vector ( | 1)n n −h , the symbol estimate in (50) is 

optimal in the ML sense. 

Remark 2: To initiate the whole process, we also need to obtain an accurate channel estimate 

(0)h  as well as its initial covariance 0 2MNδ I . To obtain such an initial channel estimate, one 

can use a training block (0)s , which is known at the receiver. At the beginning of the 

tracking process, the receiver can then use (26) to obtain the ML estimate of (0)h  as  

 0 02

1
(0) = ( )

|| (0) ||

T
h B s y

s
  (51) 

where 0 = (0)s s  is defined. 

To find 0δ , we note that  

�( ) �( ){ }0 2 = (0) (0) (0) (0)
T

MN Eδ − −I h h h h  

 { } { } { }= (0) (0) (0) (0) 2 (0) (0)T T TE E E+ −h h h h h h   (52) 

where channel is assumed zero-mean and  
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Therefore, one can obtain 0δ  as  

 
2

0 2

1
= .

2 || (0) ||

vσδ
s

  (54) 
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Remark 3: To avoid error propagation, training should be repeated at regular intervals. The 

training repetition period (TRP) determines the bandwidth efficiency of the system and it is 

defined as the distance, in terms of number of blocks, between two consecutive training 

blocks. 

Remark 4: In terms of computational complexity, the proposed channel tracking method 
enjoys the low computational complexity of linear processing. More specifically, the first 

step requires the computation of ( ) ( )T

n nB s y , and therefore, 2MT  real multiplications are 

required for computation of each entry of ( | )n nh . Taking into account that ( | )n nh  is of 

length 2MN , the total computational complexity of the first step is of order 2( )O M NT . The 

second step is indeed an iterative algorithm. In each iteration, we need to compute four 

quantities: ( 1) 2|| ( ) ||k n−
h , ( 1)( ( ))T k

nn−A h y , 2|| ||k

ns , and ( )( )T k

n nB s y . Computing these four 

quantities requires 2MN , 4KMT , 2K , and 24M NT  real multiplications, respectively. 

Therefore, the computational complexity of the second step is of the order 2( )O M NT  per 

iteration of the first step. The traditional Kalman filtering method involves the computation 

of 1( )nν
−P . This amounts to a computational complexity of the order 3 3( )O M T  per iteration. 

Therefore, the proposed method significantly reduces the computational complexity of the 
traditional Kalman filtering.  

4. Simulation results 

In our numerical example, we consider the 3/4 rate code of (Larsson & Stoica, 2003) with 

= = = 4N M T , and = 3K . The SNR is defined as 2 2/h vσ σ . In each simulation run, the 

elements of ( )H n  are generated according to Jakes model (Jakes Jr, 1974) corresponding to 

= 0.0045m sF T  where mF  is the doppler frequency and sT  is the sampling time. This results 

in 
2 0.0283

0= (0.2 ) = 0.9998
j F T jo s

m sJ F T e e
πα π  where 0 ( )J ⋅  is the zeroth order Bessel function of 

first kind. In terms of channel estimation accuracy, we compare our Kalman filtering based 

channel tracking technique with the online implementation of the technique developed in 

(Shahbazpanahi et al., 2005). In order to implement the method of (Shahbazpanahi et al., 

2005) in an online manner, we have used the subspace tracking approach proposed in 

section III.G of (Shahbazpanahi et al., 2005). In our comparison, we use normalized mean 

squared error (NMSE) of the channel estimates defined as  

 
l 2

2

|| ( ) ( ) ||
= .

|| ( ) ||

n n
E

n

⎧ ⎫−⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

H H
NMSE

H
  (55) 

In terms of symbol error rate (SER), we compare our method not only with the method of 

(Shahbazpanahi et al., 2005) but also with the differential space-time coding scheme 

(Larsson & Stoica, 2003).  

Figure 1 illustrates the SERs of different methods, versus SNR, for TRP = 10. In this figure, 

we have also plotted the SER for the (clairvoyant) coherent ML receiver that is aware of the 

time-varying channel. It is noteworthy that the latter receiver does not correspond to any 

practical application and it is herein considered only for the sake of comparison. We have 
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also plotted the performance of a differential coding scheme which uses the same OTSTBC 

which we have used in our method. As can be seen from this figure, for TRP = 10, our 

Kalman filtering based technique outperforms the differential space-time coding scheme by 

1 dB. 

It is worthwhile to observe that our technique outperforms the technique of (Shahbazpanahi 

et al., 2005) by more than 2 dB. In fact, when applied to track a time-varying MIMO channel, 

the algorithm of (Shahbazpanahi et al., 2005) performs even worse than the differential 

scheme. This is not surprising as (Shahbazpanahi et al., 2005) assumes that the MIMO 

channel is fixed within the observation interval. Therefore, the method of (Shahbazpanahi et 

al., 2005) is not applicable whenever the MIMO channel variations are fairly fast. 

 

Fig. 1. The SERs versus SNR for different methods and for TRP = 10. 

5. Conclusions 

In this Chapter, an efficient Kalman filtering solution for the problem of channel tracking in 

MIMO communication systems where the MIMO channel is time-varying is presented. 

Considering the type of MIMO systems where orthogonal space-time block codes are used 

to encode the information symbols a two-step MIMO channel tracking algorithm is 

presented. As the first step, Kalman filtering is used to obtain an initial channel estimate for 

the current block based on the channel estimates obtained for previous blocks. In the second 

step, the so-obtained initial channel estimate is refined using a decision-directed iterative 
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method. In is shown that due to the interesting properties of orthogonal space-time block 

codes, both the Kalman filter and the decision-directed algorithm can be significantly 

simplified.  
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