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Abstract

This study investigates the interference alignment techniques for cognitive radio networks
toward 5G to meet the demand and challenges for future wireless communications require-
ments. In this context, we examine the performance of the interference alignment in two
parts. In the first part of this chapter, a multi-input multi-output (MIMO) cognitive radio
network in the presence of multiple secondary users (SUs) is investigated. The proposed
model assumes that linear interference alignment is used at the primary system to lessen the
interference between primary and secondary networks. Herein, we derive the closed-form
mathematical equations for the outage probability considering the interference leakage
occurred in the primary system. The second part of this study analyzes the performance of
interference alignment for underlay cognitive two-way relay networks with channel state
information (CSI) quantization error. Here, a two-way amplify-and-forward relaying
scheme is considered for independent and identically distributed Rayleigh fading channel.
The closed-form average pairwise error probability expressions are derived, and the effect of
CSI quantization error is analyzed based on the bit error rate performance. Finally, we
evaluate the instantaneous capacity for both primary and secondary networks*.

Keywords: 5G wireless communication systems, average pairwise error probability, CSI
quantization, cognitive radio networks, interference alignment, MIMO, outage probability
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*

The content of this study has partially been submitted in IEEE 41st International Conference on Telecommunications and

Signal Processing (TSP 2018).

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

The rapidly growing number of mobile devices, higher data rates and cellular traffic, and

quality of service requirements trigger the development of mobile communications. It is

expected that the next-generation cellular networks (5G and beyond) will meet the advanced

technology requirements. 4G networks are not powerful enough to support massively

connected devices with low latency and high spectral efficiency, which is critical for next-

generation networks. 5G networks are characterized by three fundamental functions in gen-

eral: connectivity for everywhere, low latency for communication, and very high-speed data

transmission [1].

In the near future, a large number of mobile devices will connect to one another in everywhere

and provide a seamless mobile user experience. Real-time applications and critical systems and

services (medical applications, traffic flow, etc.) with zero latency are expected to be offered over

5G cellular networks. Besides, the fast data transmission and reception will be ensured by

supporting zero latency using a high-speed link. For this reason, the scope of 5G cellular

networks bring the emerging advantages, new architectures, methodologies, and technologies

on telecommunications such as energy-efficient heterogeneous networks, software-defined net-

works (SDN), full-duplex radio communications, device-to-device (D2D) communications, and

cognitive radio (CR) networks. An increasing number of mobile devices and the bandwidth

requirement for large amounts of data require the development of the new technologies and

infrastructures in addition to the existing technology. It is inevitable that the number of smart

phones, high-definition televisions, cameras, computers, transport systems, video surveillance

systems, robots, sensors, and wearable devices produces a huge amount of voice-data traffic in

the near future. To meet the growth and to provide fast and ubiquitous Internet access, several

promising technologies have been developed. Regarding the deployment of the 5G wireless

communication systems, the corresponding growth in the demand for wireless radio spectrum

resources will appear. The capacity of the communication networks will be increased by using

the energy-efficiency techniques with the evolving technology in 5G networks [2–5].

One of the candidates for solving the problem of spectrum shortage is the CR network which

will be a key technology for 5G networks. CR has attracted considerable interest as it can cope

with the spectrum underutilization phenomenon. Performing spectrum sharing using a CR

network is an important issue in wireless communication networks. There are three main ways

for a primary network user to share the frequency spectrum with a cognitive user: underlay,

overlay, and interweave. In the underlay method, the secondary user (SU) transmits its infor-

mation simultaneously with the primary user (PU) as long as the interference between SU and

PU receivers is within a predefined threshold. In the overlay approach, SU helps PU by sharing

its resources, and in return, PU allows SU to communicate. In the interweave technique, SU

can use the bandwidth of PU if PU is not active. In this model, SU should have perfect

spectrum-sensing features to analyze the spectrum [6–9].

Among the various methods of solving the interference problem, interference alignment (IA)

is one of the most promising ways to achieve it. IA is an important approach for CR to
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recover the desired signal by utilizing the precoding and linear suppression matrices which

consolidates the interference beam into one subspace in order to eliminate it [10–13].

In the literature, linear IA is adopted in CR interference channels in [14–20] and the refer-

ences therein. In [14], adaptive power allocation schemes are considered for linear IA-based

CR networks where the outage probability and sum rate were derived. In [15], adaptive

power allocation was studied for linear IA-based CR using antenna selection at the receiver

side. Ref. [16] enhances the security of CR networks by using a zero-forcing precoder. More-

over, in [17], a similar work was proposed to improve the overall outage performance of

the interference channel by using power allocation optimization. These studies have shown

that interference management is a critical issue to be handled in all multiuser wireless

networks.

CR technology can be capable of utilizing the spectrum efficiently as long as the interference

between PU and SU is perfectly aligned as shown in Figure 1. A set of studies discussing IA is

presented in the literature [21–29].

Motivated by the above works, in the first part of this study, we examine the impact of

interference leakage on multi-input multi-output (MIMO) CR networks with multiple SUs.

Specifically, a closed-form outage probability expression is derived to provide the performance

of the primary system. Then, in the second part of our work, we investigate the performance of

IA in underlay CR networks for Rayleigh fading channel. Moreover, unlike the mentioned

papers, the effect of CSI quantization error is taken into account in our analysis. Then, a two-

way relaying scheme with amplify-and-forward (AF) strategy is studied. Finally, the effects of

the relay location and the path loss exponent on the BER performance and system capacity and

CSI quantization on the average pairwise error probability (PEP) performance for this two-

way AF system are presented.

The main simulation parameters and their descriptions used in this study are summarized in

Table 1.

Figure 1. Illustration of the primary link between PU pair and interference links generated by the SUs.
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2. The impact of interference leakage on MIMO CR networks

In this study, MIMO interference alignment-based CR network with a PU and multiple SUs is

considered under Rayleigh fading channel.

2.1. System model

In the system model as it is shown in Figure 2, the number of transmit-and-receive antennas of

the PU is given by Mp and Np. The transmit antennas at each SU are given as Ms. The received

signal, yp, implementing the IA technique is given as

yp ¼ UH
p HppVpxp þ

ffiffiffi

α

p X

K

i¼1

UH
s Hpsi

Vsxsi þUH
p n, (1)

where xp and xsi are the transmitted signals from PU and the ith SU for i ¼ 1; 2;…;Kð Þ,
respectively. Herein, Hpp is the matrix of channel coefficients between the PU pair, and Hpsi

denotes the channel matrix between the primary receiver and the ith secondary transmitter.

The interference leakage is modeled similar to the one in [30]. The interference-leakage param-

eter α 0 ≤α ≤ 1ð Þ represents the status of the alignment, i.e., α ¼ 0 and 1 corresponds to perfect

alignment and perfect misalignment cases, respectively. V and U are the precoding- and

interference-suppression matrices. The superscript �ð ÞH denotes the Hermitian operator, and n

is the zero-mean unit variance (σ2N ¼ 1) circularly symmetric additive white Gaussian noise

(AWGN) vector.

The following conditions must be satisfied for perfect interference alignment between PU

and SUs:

Symbol Description

P1 and P2 Transmitted powers of the PU and SU

σ
2
N

Variance of the circularly symmetric additive white Gaussian noise vector

Rth Data rate threshold

α Interference-leakage parameter

Mp and Np Number of transmit-and-receive antennas of PU

Ms and Ns Number of transmit-and-receive antennas of SU

K Number of SU

dj, i Distance between the ith transmitter and the jth receiver nodes

τj, i Path loss exponent between the ith transmitter and the jth receiver nodes

Bj, i Channel state information exchange amount between the ith transmitter and the jth receiver nodes

Table 1. The simulation symbols and their descriptions.
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UH
s Hpsi

Vsxsi ¼ 0, (2)

Rank UH
s Hpsi

Vsxsi

� �

¼ d: (3)

Each user transmits d data streams. Using the ideal linear IA technique, (1) can be re-expressed

as

yp ¼ UH
p HppVpxp þUH

p n: (4)

2.2. Outage probability analysis

The channel capacity and outage probability are the most important impairments which affect

the quality of service (QoS) in wireless communication systems. When no CSI conditions are

Figure 2. IA-based CR network with single PU and K SUs sharing the spectrum.
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given, MIMO channel capacity is expressed as in [31]. The channel capacity of the considered

MIMO system in PU can be expressed as

C ¼ log 2det Iþ
γ1

1þ γ2

� �

Np

HppH
H
pp

�

�

�

�

�

�

�

�

�

�

, (5)

where γ1 ¼ P1 Hpp

�

�

�

�

2
=σ2N is the signal-to-noise ratio (SNR) of the primary link. γ2 can be

expressed as γ2 ¼ P2=σ
2
N

� �
PK

i¼1 Hpsi

�

�

�

�

2
. Note that :k k2 demonstrates the squared Frobenius

norm of the channel matrix, I denotes for identity matrix, and P1 and P2 are the transmitted

powers of the PU and SUs, respectively. If linear IA perfectly eliminates the interference

between SU and PU, then SNR of the interference channel, γ2, becomes zero. It is important

to note that precoding and linear suppression vectors are assumed as U
H
p

�

�

�

�

�

�

2

¼ Vp

�

�

�

�

2
¼ U

H
si

�

�

�

�

�

�

2

¼ Vsi

�

�

�

�

2
¼ 1. In the presence of interference-free communication, primary system works in the

single-input and single-output (SISO) fashion [14]. Hence, the probability density function

(PDF) of γ1 can be written as f
γ1

γð Þ ¼ 1
γ1
exp �γ=γ1

� �

, and the outage probability of the system

can be obtained as

Pout ¼

ð2Rth�1

0

f
γ1

γð Þdγ, (6)

where Rth is the data rate threshold and γ1 ¼ P1=σ
2
N denotes the average SNR of the primary

system. By substituting f
γ1

γð Þ into (6), the outage probability can be obtained as

Pout ¼ 1� exp
2Rth � 1

γ1

	 


: (7)

In the presence of interference, the primary system works in MIMO fashion, and leakages may

occur due to fast-fading Rayleigh channel. To improve the performance of the primary system,

we adopt maximum ratio transmission and maximum ratio combining at the transmitter and

receiver, respectively. Thereby, the end-to-end signal-to-interference-plus-noise ratio (SINR) of

the primary system can be written as γ
τ
¼ γ1= 1þ γ2

� �

. In the proposed system, all channels

are modeled as independent and identically distributed Chi-squared distribution, and the PDF

of γ1 can be expressed as

f
γ1

γð Þ ¼
γMpNp�1exp �γ= γ1=Mp

� �� �

γ1

Mp

� �MpNp

MpNp � 1
� �

!

: (8)

In addition, the PDF of γ2 can be defined as

f
γ2

γð Þ ¼
γKMsNp�1exp �γ= αγ2=Ms

� �� �

αγ2
Ms

� �KMsNp

KMsNp � 1
� �

!

, (9)
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where γ2 ¼ P2=σ
2
N is the average SNR of the secondary system. Finally, the PDF of γτ can be

written as

f γτ
γð Þ ¼

ð

∞

0

xþ 1ð Þf γ1
xþ 1ð Þγð Þf γ2

xð Þdx: (10)

By substituting (8) and (9) into (10), then with the help of [32, Eq. 3.351.3] and after few

manipulations, PDF expression of f γτ
γð Þ is given as

f γτ
γð Þ ¼ Δ

X

MpNp

m¼0

MpNp

m

	 


KMsNp þm� 1
� �

!
γMp

γ1

þ
Ms

αγ2

	 
�KMsNpþm

: (11)

Furthermore, collecting constant terms in (11), Δ is defined by

Δ ¼ βγMpNp�1exp �
Mpγ

γ1

	 


: (12)

Hereby, β is constituted as

β ¼

γ1
Mp

� ��MpNp αγ2

Ms

� ��KMsNp

MpNp � 1
� �

! KMsNp � 1
� �

!
: (13)

To achieve the closed-form expression of (11), binomial expression of
γMp

γ1
þ Ms

αγ2

� ��KMsNpþm
term

must be completed. The binomial expansion of this negative exponential term is given as

γMp

γ1

þ
Ms

αγ2

	 
�ζ

¼
X

∞

t¼0

�1ð Þt
ζþ t� 1

t

	 


γMp

γ1

	 
t Ms

αγ2

	 
ζþt

, (14)

where ζ is given as ζ ¼ KMsNp þm. Besides, the validation of (14) is restricted via ∣
γMp

γ1
∣ < Ms

αγ2

condition. Under these conditions, the closed-form expression of f γτ
is given below:

f γτ
γð Þ ¼ Δ

X

MpNp

m¼0

X

∞

t¼0

�1ð Þt
MpNp

m

	 


ζ� 1ð Þ!
ζþ t� 1

t

	 


γMp

γ1

	 
t Ms

αγ2

	 
ζþt

: (15)

Outage probability function of the proposed MIMO system with respect to f γτ
can be

expressed as

Pout ¼

ð2Rth�1

0

f γτ
γð Þdγ: (16)

The closed-form expression for (16) can be validated with the numerical integral operation

[33].
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2.3. Performance evaluation

Herein, the system performance of the MIMO CR network is studied in the presence of

interference leakage for Rayleigh fading channel by comparing the analytical results with

computer simulations. We assumed P1 = P2 = r while σ2N ¼ 1 in the performance evaluation.

In Figure 3, the Pout performance for different Rth values is presented. We take α ¼ �20 dB,

Mp ¼ 2, Np ¼ 2, K ¼ 5, and Ms ¼ 1. It can be seen from Figure 3 that when Rth is increased

from 1 to 4 bits/channel, the Pout performance is degraded.

In Figure 4, the impact of the leakage coefficient, α, on the outage probability performance is

depicted for Mp ¼ 2, Np ¼ 2, K ¼ 1, Ms ¼ 1, and Rth ¼ 3 bits/channel. As can be seen from the

figure, when α is changed from �10 dB to �30 dB, the performance of the primary system is

enhanced.

In Figure 5, α,Mp, Np,Ms, and Rth are taken as �20 dB, 2, 2, 1, and 1 bits/channel, respectively.

It can be observed from the figure that increasing the number of SUs decreases the outage

probability performance of the primary system considerably.

In Figure 6, the impact of antenna diversity on the Pout performance is investigated for α ¼ �10

dB, K ¼ 2, and Rth ¼ 1 dB. It is observed from the figure that, when the number of antennas at the

primary transmitter and receiver increases, the system performance enhances. Besides, the receiver

diversity effect on the system performance is greater than the transmitter diversity, as expected.

Figure 3. Pout performance for different data rate threshold Rth.
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Figure 4. Pout performance with varying SNR for different interference-leakage values.

Figure 5. Pout vs. SNR for different numbers of SUs.
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3. The effect of CSI quantization on interference alignment in CR

networks

In this section, we investigate a cognitive two-way relaying network composed of a primary

network (PN) with one pair of PU and a secondary network (SN) with two source terminals

and a relay terminal (R).

3.1. System model

We consider a MIMO interference network shown in Figure 7, where the transmitter, Tx, and

receiver, Rx, are equipped with M1 and N1 antennas in PN, respectively. Each PN transmitter

transmits to its corresponding receiver by interfering with the SN nodes, namely, two source

terminals (S1 and S2) and a relay terminal. That means Tx transmitter sends messages to its

intended receiver Rx, whereas it also causes interference to the unintended receivers in the SN.

The SN consists of two source terminals and a relay terminal. We assume that all nodes in SN

operate in an AF half-duplex mode with the help of information relaying from each source

terminal to R in two phases. All nodes in SN are assumed to haveMIMO antennas, and there is

no direct transmission between S1 and S2 [34–36]. We consider a scenario where the source

terminals and a relay terminal are equipped with NS1 , NS2 , and NR antennas, respectively. In

the systemmodel based on IA for cognitive two-way relay network, the received signal at Rx in

PN can be written as

yRx
¼

ffiffiffiffiffiffiffiffiffiffiffiffi

PTx

d
τRx,Tx
Rx ,Tx

s

UH
Rx
HRx,Tx

VTx
sTx

þ ϒ þ ~nRx
, (17)

Figure 6. The effect of antenna diversity on the outage probability performance.
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where ϒ is the interference term generated from SN to Rx defined as follows:

ϒ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

PS1

d
τRx,S1
Rx ,S1

s

UH
Rx
HRx,S1VS1sS1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi

PS2

d
τRx,S2
Rx,S2

s

UH
Rx
HRx ,S2VS2sS2 , first phase

ffiffiffiffiffiffiffiffiffiffiffi

PR

d
τRx,R
Rx ,R

s

UH
Rx
HRx,RVRsR, second phase:

8

>

>

>

>

>

<

>

>

>

>

>

:

(18)

The effective additivewhiteGaussian noise (AWGN) termwith zeromean andunit variance, ~nRx
at

Rx in PN, is defined byUH
Rx
nRx

, where nRx
is the AWGN vector with E nRx

nH
Rx

h i

= σ2Rx
I in which I is

the unitary matrix, σ2Rx
is the noise variance, and E :½ � is the expectation operator. The transmit

powers at the terminals Tx, S1, S2, and R are denoted by Pi, for i = Tx, S1, S2, and R, respectively.

Each receive node employs the interference-suppressionmatrix,Uj, (for j =Rx,R, S1, S2), while each

transmit node employs a precoding matrix Vi [37]. The conjugate transpose of the matrix is

associated with the Hermitian operator :ð ÞH [38]. The transmit signal vector for the ith user is

defined by si. The channel between the ith transmitter and the jth receiver nodes is denoted byHj, i

for both PN and SN. The quantized CSI is passed to the transmitter by the corresponding receiver.

Because of limited feedback, the transmitters have imperfect CSI causing certain performance loss.

To clarify the effect of CSI quantization error on the performance of interference alignment in

underlay cognitive two-way relay networks, we investigate the BER performance, instantaneous

capacity, and average PEP of the considered system. Based upon the accuracy parameter, the

relation between perfect CSI (rj, i ¼ 0) and imperfect CSI (0 < rj, i ≤ 1) can be given as

Hj, i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rj, i

q

Ĥ j, i þ
ffiffiffiffiffiffi

rj, i
p

Ej, i, (19)

whereHj, i is the real channel matrix and Ĥ j, i is the estimated channel matrix. The quantization

error, Ej, i1mm, can be expressed with the upper bound of 2�Bj, i= M1N1�1ð Þ, where Bj, i is the CSI

Figure 7. System model for interference alignment-based cognitive two-way relay network with primary network and

secondary network.
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exchange amount and M1 and N1 are the numbers of transmit-and-receive antennas, succes-

sively [21, 39]. It is assumed that both Ĥ j, i and Ej, i are independent of Hj, i. Besides, each

channel link is also modeled by two additional parameters: the distance between ith transmit-

ter and the jth receiver nodes dj, i and the path loss exponent for the corresponding link, τj, i,

regarding for different radio environments, respectively.

In the first phase of the transmission (multiple-access phase) in SN, both S1 and S2 transmit their

signals simultaneously to the relay terminal, R. Then the received signal at R can be written as

yR ¼

ffiffiffiffiffiffiffiffiffiffiffi

PS1

d
τR,S1
R,S1

s

UH
RHR,S1VS1sS1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi

PS2

d
τRx,S2
Rx,S2

s

UH
RHR,S2VS2sS2 þ

ffiffiffiffiffiffiffiffiffiffiffi

PTx

d
τR,Tx
R,Tx

s

UH
RHR,Tx

VTx
sTx

þ ~nR, (20)

where ~nR ¼ UH
RnR at the relay terminal in SN is expressed as zero-mean AWGN vector with

E nRn
H
R

� �

= σ
2
RI in which the noise variance at the relay terminal is depicted with σ

2
R. Besides,

the received signal at S1 and S2 terminals in SN is defined, respectively, as

yS1 ¼

ffiffiffiffiffiffiffiffiffiffiffi

PR

d
τS1,R
S1,R

s

UH
S1
HS1,RVRsR þ

ffiffiffiffiffiffiffiffiffiffiffiffi

PTx

d
τS1,Tx
S1,Tx

s

UH
S1
HS1,Tx

VTx
sTx

þ ~nS1
, (21)

yS2 ¼

ffiffiffiffiffiffiffiffiffiffiffi

PR

d
τS2,R
S2,R

s

UH
S2
HS2,RVRsR þ

ffiffiffiffiffiffiffiffiffiffiffiffi

PTx

d
τS2 ,Tx
S2 ,Tx

s

UH
S2
HS2 ,Tx

VTx
sTx

þ ~nS2
: (22)

Here, ~nS1
and ~nS2

are the AWGN vector with E nSkn
H
Sk

h i

= σ
2
Sk
I, for k ¼ 1, 2 and the noise

variance of σ2Sk . In addition to that, in the second phase of the signal transmission (broadcast

phase), R broadcasts the combined signal yR after multiplying with an ideal amplifying gain,

G, which is expressed as

G¼1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PS1 1� rR,S1

� �

d
τR,S1
R,S1

∥UH
R ĤR,S1VS1∥

2
þ
PS2 1� rR,S2

� �

d
τR,S2
R,S2

∥UH
R ĤR,S2VS2∥

2:

s

:

::þ
PTx

1� rR,Tx

� �

d
τR,Tx
R,Tx

∥UH
R ĤR,Tx

VTx
∥2,

(23)

where sR ¼ GyR. We assume that both S1 and S2 have knowledge about their own information

and can remove back-propagating self-interference from the imposed signals. We also assume

that all interference at the receive terminals are perfectly aligned and the following feasible

conditions are satisfied for the receive nodes:

UH
j Hj, iVisi ¼ 0, (24)

rank UH
j Hj, iVisi

� �

¼ f i, (25)

where f i is the degree of freedom and rank (.) denotes the rank operation of a matrix. By

assuming that the interference is perfectly aligned by the proposed IA algorithm, and the
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channel matrices are constant during the transmission, we ensure that there is no interference

from the unintended transmitters and guarantee that received signal achieves f i degrees of

freedom [39]. The corresponding signal-to-interference-plus-noise ratio (SINR) for the links

Tx ! Rx, S1 ! R, and R ! S2 can be derived by

γTx!Rx
¼

PTx 1�rRx,Txð Þ
d
τRx,Tx
Rx,Tx

∥UH
Rx
ĤRx,Tx

VTx
∥2

Ψþ σ
~n
Rx

2 ,
(26)

γS1!R ¼

PS1
1�rR,S1ð Þ
d
τR,S1
R,S1

∥UH
R ĤR,S1VS1sS1∥

2

PTx rR,Tx
d
τR,Tx
R,Tx

∥UH
RER,Tx

VTx
∥2 þ σ2

~n
R

, (27)

γR!S2
¼

PR 1�rS2 ,Rð Þ
d
τS2,R
S2,R

∥UH
S2
ĤS2,RVRsR∥

2

PTx rS2 ,Tx

d
τS2,Tx
S2 ,Tx

∥UH
S2
ES2,Tx

VTx
∥2 þ σ2

~n
S2

, (28)

Ψ ¼

PS1 rRx ,S1

d
τRx,S1
Rx,S1

∥UH
Rx
ERx ,S1VS1∥

2 þ
PS2 rRx,S2

d
τRx ,S2
Rx,S2

∥UH
Rx
ERx,S2VS2∥

2, first phase

PR rRx,R

d
τRx,R
Rx,R

∥UH
Rx
ERx,RVR∥

2, second phase

8

>

>

>

>

<

>

>

>

>

:

(29)

where Ej, i is the quantization error and :k k is the Euclidean norm. In here, γS2!R and γR!S1
can

be found by changing the subscript S1 with S2 of (27) and S2 with S1 of (28). Assuming the

channels are reciprocal over SN direct links, thus the channel gains for S1 ! R and R ! S1 and

S2 ! R and R ! S2 links are identical, respectively.

3.2. Performance analysis

This section starts by the instantaneous capacity analysis of the proposed system with interfer-

ence alignment in underlay cognitive two-way relay networks with CSI quantization. We then

study the BER and average PEP performance.

The capacity is expressed as the expected value of the mutual information between the trans-

mitting terminal and receiving one. In light of this fact, we consider the method developed in

[29]; the instantaneous capacity in PN can be expressed as

CRx
¼ log 2 1þ γTx!Rx

� �

, (30)

where γTx!Rx
is the instantaneous SINR for the corresponding link of Tx ! Rx. On the other

hand, end-to-end capacity for the SN, based on the least strong link over two-hop transmis-

sion, is denoted as follows:
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CR ¼ 1

2
log 2 1þmin γS1!R;γR!S2

� �� �

þ 1

2
log 2 1þmin γS2!R;γR!S1

� �� �

: (31)

γS1!R and γR!S2
are the instantaneous SINR for the S1 ! R and R ! S2 links, respectively.

Average BER for binary phase shift keying (BPSK) modulation can be expressed as

BERj ¼ Q
ffiffiffiffi

γj

p

� �

(32)

where Q xð Þ is the Gaussian Q-function and defined by Q xð Þ ¼ 1=
ffiffiffiffiffiffi

2π
p� � Ð

∞

x e�t2=2dt [37].

Average pairwise error probability (PEP) can be computed as averaging the Gaussian Q-

function over Rayleigh fading statistics [40], f
γTx!Rx

γð Þ ¼ e�γ=γTx!Rx

� �

=γTx!Rx
1mm, where

γTx!Rx
¼ PTx

1� rRx ,Tx

� �

=d
τRx,Tx
Rx,Tx

σ2
~n
Rx

PEP ¼
ð

∞

0

Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γTx!Rx

p

� �

f
γTx!Rx

γð Þdγ: (33)

Finally, this integral can be evaluated with the help of Mathematica and average PEP under

Rayleigh fading channel can be derived in a closed form as follows:

PEP ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γTx!Rx

2þ γTx!Rx

s !

: (34)

3.3. Numerical results

In this section the numerical results are provided with various scenarios to evaluate the

performance analysis for IA in underlay cognitive two-way relay networks with CSI quantiza-

tion. BER performance for direct transmission links of the proposed system is illustrated in

Figure 8 over Rayleigh distribution for different amounts of CSI exchange with varying SNR.

For convenience, we set dj, i ¼ 3 m and τ ¼ 2:7, and 3�3 MIMO configuration is studied in this

figure. Because of the number of interfering links, the quantization error for the Tx ! Rx

transmission is greater than the other links (S1 ⇄R⇄S2). Even if the analyzed BER perfor-

mance of the SN seems better than the PN, it should not be forgotten that SN operates in half-

duplex mode. Performance loss in BER due to imperfect CSI (Bj, i ¼ 4, for instance) becomes

larger as SNR increases compared to the perfect CSI (for Bj, i ¼ ∞) case.

In Figure 9, the average PEP versus SNR is plotted for dj, i ¼ 3 m and τ ¼ 2:7 over Rayleigh

fading channel in PN. It can be noticed from the figure that as SNR increases, average PEP

decreases, as expected. To reach the perfect CSI case, we take Bj, i ¼ ∞, and the average PEP

performance noticeably enhances. We also consider the case of imperfect CSI (Bj, i ¼ 4) for the

comparison purposes in the same figure.
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Figure 9. Average PEP performance for different amounts of CSI exchange with varying SNR over Rayleigh fading

channel in primary network.

Figure 8. BER performance for different amounts of CSI exchange with varying SNR.
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Figure 10 examines the capacity analysis with perfect and imperfect CSI for different direct

links in PN and SN. The results clearly show that, examining the capacity with perfect CSI,

performance improvement becomes larger as the SNR increases.

Figure 11 demonstrates the effects of Bj, i and dj, i parameters on the BER performance for the

SN with varying SNR when τ ¼ 2:7 and 3�3 MIMO scheme is used. The results clearly show

that for a fixed SNR value, the performance of the considered system increases with the

decrease of the dj, i. It can be seen from the same figure that the increase on the amount of CSI

exchange Bj, i positively affects the BER performance.

Figure 12 shows the capacity performance of PU in the underlay cognitive two-way relay

network over Rayleigh fading channel with varying path loss exponent, τ. The results show a

performance improvement while the value of τ decreases. In this plot, Bj, i = 8, dj, i = 3 m, and the

3�3 MIMO scheme are considered. Depending on the environmental conditions for mobile

communications, typical τ values, ranging from 1.6 to 5, are used to plot this figure. First, for

the line of sight in a building, the environment is considered with the τ values of 1.6 and 1.8.

Second, capacity is computed for the free-space environment with τ ¼ 2. Then, the capacity

performance is presented with τ values of 2.7 and 3.3 for urban area cellular radio environ-

ment. Finally, the shadowed urban cellular radio environment is associated with two different

τ values of 3 and 5 to analyze the capacity performance with varying SNR [41].

Figure 10. Capacity vs. SNR of the primary network and secondary network nodes under different CSI scenarios.
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Figure 12. Capacity changes with SNR for the environmental conditions having different path loss exponents.

Figure 11. BER performance for different amounts of CSI exchange and distances with varying SNR over Rayleigh fading

channel for secondary network.
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4. Conclusion

In this chapter, the system performance of linear interference alignment on the MIMO CR

network is investigated under interference leakage. To quantify the performance of the pri-

mary system under a certain level of interference leakage, the closed-form outage probability

expression is derived for Rayleigh fading channel. In all analyses, the theoretical results closely

match with the simulations which confirm the accuracy of the derived expressions.

In the second part of this work, considering a practical issue, we investigate the performance of

interference alignment in underlay cognitive radio network with CSI quantization error over

general MIMO interference channel. Amplify-and-forward scheme for two-way relay network

under Rayleigh fading is considered. The impact of the CSI exchange amount, the distance

between the ith transmitter and the jth receiver nodes, and the path loss exponent on the BER

performance, system capacity, and average PEP for the proposed system model are analyzed.

We provide the exact closed-form expression for the average PEP in primary network over

Rayleigh distribution, while IA algorithm perfectly eliminates the interference. The present

performance analysis can be extended to the multiple secondary user pairs, and this approach

will be another subject of our future work.

It would be interesting to study on various scenarios, including single-hop, multi-hop, and

multi-way networks in future work to analyze the system performance over the recently devel-

oped interference alignment algorithms for next-generation 5Gwireless communication systems.
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