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Abstract

Natural hydraulic lime (NHL) mortars are widely used for restoration works due to 
their good compatibility with the substrate material in terms of physical, chemical, and 
mechanical properties. Regarding their mechanical characterization, there is still a need 
for further understanding of their fracture behavior and the influence of their dosage 
methodology on the mechanical properties. Thus, this chapter focuses on the mechani-
cal characterization of NHL mortars, such as flexural, compressive, and splitting tensile 
strengths, elastic modulus, and fracture energy. Moreover, the influence of the composi-
tion and production process on such properties was studied as well. Furthermore, the 
loading rate effect on the fracture behavior was also presented. The results show that 
NHL mortars have shape and size effect on the compressive strength. In addition, NHL 
mortar is rate sensitive, mainly due to the viscous effects caused by the presence of free 
water in the porous structure.

Keywords: mechanical characterization, dosage, empirical equations, size effect, 
loading rate effect

1. Introduction

Natural hydraulic lime (NHL) is a binding material formed by burning of argillaceous or 

siliceous limestones with reduction to powder by slaking with or without grinding [1]. From 

a mineralogical point of view, it is mainly composed of portlandite (Ca(OH)
2
), dicalcium 

silicates (C
2
S), gehlenite (C

2
AS), and small amounts of tricalcium silicates (C

3
S). Tricalcium 

aluminate (C
3
A) and tetracalcium aluminoferrite (C

4
AF) can be present as well [2]. Moreover, 
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calcite (CaCO
3
) can also appear in NHL as a result of a slight carbonation (reaction with carbon 

dioxide from the air) of portlandite during storage [3]. When mixed appropriately with water 
and aggregates, NHL produces mortars which are able to harden and gain strength with time 

[1]. As a hydraulic material, NHL mortars have the property of setting and hardening under 
water and reacting with carbon dioxide from the air (carbonation) [1, 4]. According to the 

standard EN 459-1 [1], NHL is classified as NHL 2, NHL 3.5, and NHL 5; the corresponding 
compressive strength at 28 days in MPa is as follows:  2 ≤ NHL 2 ≤ 7 ,  3.5 ≤ NHL 3.5 ≤ 10 , 

and  5 ≤ NHL 5 ≤ 15 .

The use of NHL mortars prevails presently for restoration works due to their good compat-

ibility with the substrate material in terms of physical, chemical, and mechanical properties 

[5, 6]. That is to say, NHL mortars interact quite well with stones and blocks of masonry walls; 
the interventions with the materials are durable in time and do not originate spalling of the 

stones [7]. Moreover, NHL mortars are more appropriate than air-hardening or lime poz-

zolana ones when the early strength gain is essential [6]. Furthermore, NHL mortars are eco-

efficient as they require low amount of energy during their production process and absorb 
CO

2
 from the air while carbonating [6].

Knowledge on the mechanical properties of mortar is crucial to ensure a good performance of 

masonry structures [8]. In general, NHL mortars are well investigated in terms of compressive 
and flexural strengths [5, 9–11]. Recently, Garijo, Zhang, and Ruiz et al. [12, 13] have measured 

fracture energy, splitting tensile strength and characteristic length of such materials. At pres-

ent time, the dynamic mechanical behavior of lime mortars is getting more attention due to 
the fact that most masonry structures are situated in zones of seismic activity, such as Lisbon 

(Portugal), L’Aquila (Italy), Lorca (Spain), Kathmandu (Nepal), Nairobi (Kenya), etc. Pereira 
and Lourenço [14] studied the dynamic compressive behavior of masonry specimens, clay 

brick, and mortar prisms by using a drop-weight tower. The corresponding strain rate range 

was from 2 to 200 s−1. A commercial ready-mix mortar (Mapei Mape-Antique MC) was used 
for the fabrication of masonry and mortar specimens. The dynamic increase factor (DIF, a ratio 
of the dynamic response over the corresponding quasi-static one) 2.73 was obtained for the 

compressive fracture energy of the mortar specimens. Asprone et al. [15] analyzed the tensile 

behavior of a basalt fiber-reinforced natural hydraulic lime mortar at medium and high strain 
rates, using a hydropneumatic machine and a modified Hopkinson bar apparatus, respec-

tively. The DIF for tensile strength was 5.11 at the strain rate 90 s−1. For bending behavior, 

Chan and Bindiganavile [16] studied the strain rate sensitivity of plain and fiber-reinforced 
hydraulic lime mortar by adopting a universal testing machine and a drop-weight impact 

machine at strain rate range from 10−6 to 10 s−1. Impact tests on notched beams with dimen-

sions 100 mm × 100 mm × 350 mm were conducted; the notch depth was 12.5 mm and 2 mm in 

width, and the span was 300 mm. For plain hydraulic lime mortar, the results show that the DIF 
for modulus of rupture was 12 at the drop height 500 mm (corresponding to strain rate 10 s−1), 

while it was 53 for fracture toughness. Moreover, the flexural behavior of hydraulic lime mor-

tar is more sensitive to strain rate than fiber-reinforced hydraulic lime mortar. Later, the bond 
behavior between the stone masonry block and the plain and fiber-reinforced hydraulic lime 
mortar was also investigated by Bindiganavile et al. [17, 18]. The results show that there was 

an improvement in the bond strength due to polypropylene microfibers (20 mm in length) 

Sustainable Construction and Building Materials2



but a difference in the fracture performance between the Portland cement-lime and hydraulic 
lime mortars. Whereas with the former, the fibers promoted failure through fracture in the 
stone block especially under dynamic loading conditions; with the latter, the fibers moved the 
failure plane from the interface to within the bulk mortar.

Nevertheless, there is still a need for the further understanding of the mechanical behavior of 

NHL mortars under quasi-static and dynamic loading conditions, especially for the latter. In 
this chapter, under quasi-static loading condition, an advanced mechanical characterization 

of NHL 3.5 mortars has been performed, such as elastic modulus, fracture energy, splitting 
tensile strength, and compressive and flexural strengths. Particularly, compressive strengths 
from prisms and cylinders were compared to study the size and shape influence. Moreover, 
the effects of dosage and production process on these properties were analyzed as well. Under 
dynamic loading condition, NHL mortar beams were tested at various loading rates (loading-

point displacement rates) by using a servo-hydraulic testing machine, from the quasi-static 

one, 5.0 × 10−4 mm/s, to rate sensitive ones, 5.0 × 10−1 mm/s (intermediate loading rate) and 

1.6 × 101 mm/s (fast loading rate). The results show that the peak load and fracture energy are 

rate sensitive, which is mainly due to the viscous effect caused by the presence of free water 
in the porous structure.

2. Experimental procedure

2.1. Raw materials

The binder used for all seven types of mortars was a NHL 3.5, according to EN 459-1 [1]. 

It was supplied by “Socli, Italcementi group (France)” with an apparent particle density of 
2.58 g/cm3 and apparent density of 0.85 g/cm3. Three types of aggregates were adopted in 

the fabrication process. The usual one was a commercial crushed limestone with maximum 
size of 4 mm; the rest were the crushed limestones with a maximum size of 2 mm and river 
sand with a maximum size of 4 mm. The particle-size distribution curves of the aggregates 
were determined in accordance with EN 1015-1 [19] and are shown in Figure 1. The appar-

ent density and apparent particle density of each aggregate listed in Table 1 were measured 

according to EN 1097-3 [20] and EN 1097-6 [21], respectively.

2.2. Mortar preparation

In total, seven types of mortars were prepared and tested (see Table 2). All of them presented 

a lime/aggregate volume ratio 1:3 as it is the one commonly used for the historical mortars 

[22, 23]. Volume proportions of compounds were converted to weight to obtain a convenient 

measurement for the mixing process. First of all, a benchmark mortar, named as NHL09C04M 
as a simplification, was fabricated with a water/lime volume ratio of 0.9, which provided 
a plastic consistency (between 140 and 200 mm), determined by the flow table test accord-

ing to EN 1015-3 [24] and EN 1015-6 [25]. In addition, a crushed limestone aggregate with a 
maximum grain size of 4 mm and a metallic mold were used. The rest of the mortars were 
prepared by varying one aspect of the benchmark mortar, such as the water/lime ratio, the 
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maximum aggregate size, the aggregate type, the material of the mold, and the curing condi-
tions (see Table 2). In order to isolate and quantify the influence of the type and maximum 
size of aggregate, materials of mold, and curing conditions on the mechanical properties of 

mortars, the water/lime ratio was kept constant as 0.9 instead of following the conventional 

procedure by adapting the water/lime ratio to obtain an approximately constant consistency 
as presented in the Refs. [5, 6, 9].

The mixing process was performed according to EN 1015-2 [26]. Both prismatic (40 × 40 × 160 mm) 

and cylindrical (75 mm in diameter and 150 mm in height) specimens were prepared. The 

mortar was poured in two layers when using the prismatic molds and in three layers instead 

when the cylindrical molds were used; each layer was compacted with 25 strokes of the tam-

per. All specimens were removed from the molds in 2 days after the fabrication according to 

EN 1015-11 [27].

2.3. Mechanical tests

The flexural, compressive, and splitting tensile strengths, elastic modulus, and fracture energy 
were measured by various types of tests as shown in Figure 2, at an age of 56 days. Moreover, 

Figure 1. Aggregates grading curves.

Density Standards Crushed limestone 

0/4 mm

Crushed limestone 

0/2 mm

River sand 

0/4 mm

Apparent density (g/cm3) EN 1097-3 [20] 1.82 1.81 1.46

Apparent particle density 

(g/cm3)

EN 1097-6 [21] 2.68 2.74 2.59

Table 1. Apparent density and apparent particle density of the aggregates used.
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the loading rate effect on fracture energy was studied by performing three-point bending 
tests on beams at various loading rates (loading-point displacement rates), 5.0 × 10−4 mm/s 

(quasi-static loading rate), 5.0 × 10−1 mm/s (intermediate loading rate), and 1.6 × 101 mm/s 

(high loading rate), respectively.

2.3.1. Flexural and compressive strength

The flexural and compressive strengths were measured according to EN 1015-11 [27] by using 

the Instron 1011 testing machine. The flexural strength was obtained by a three-point bend-

ing test on three beams at a loading rate of 10 N/s and a span of 100 mm (see Figure 2(a)). 

It is worth noting that the anti-torsion supports were used for the test, which is specially 
important for quasi-brittle materials. That is to say, the beam rests on two rigid-steel cylinders 
placed on two supports which permit rotation out of the plane of the beam and rolling along 

the longitudinal axis of the beam with negligible friction.

The compressive tests were performed at a loading rate of 50 N/s on the six half prisms 
remaining from the bending tests, as presented in Figure 2(b). The load was centered in the 

middle of the longest side by using a steel plate (40 mm × 40 mm × 10 mm). Moreover, an 

individualized ball-and-socket joint over the steel plate was used to reduce the eccentricity 

during the loading process.

2.3.2. Elastic modulus and compressive strength from cylinders

For studying the size and shape effects on the compressive strength, compressive tests were 
also performed on four cylinders (75 mm in diameter and 150 mm in height) at a loading rate 

of 10 N/s by using the Instron 8805 testing machine. Moreover, the elastic modulus was deter-

mined following the principles of EN 12390-13 [28] (see Figure 2(c)). Two clips (strain gauge 

Mortar composition Volumetric 

water/lime 

ratio

Consistency 

(mm)

Type of 

aggregate

Maximum 

grain size 

(mm)

Material of 

the mold

Curing 

conditions

NHL09C04M 0.9 150–155 Crushed 

limestone

4 Metallic 56 days in CC

NHL08C04M 0.8 130–135 Crushed 

limestone

4 Metallic 56 days in CC

NHL11C04M 1.1 238–240 Crushed 

limestone

4 Metallic 56 days in CC

NHL09C02M 0.9 120–125 Crushed 

limestone

2 Metallic 56 days in CC

NHL09R04M 0.9 180–187 River sand 4 Metallic 56 days in CC

NHL09C04W 0.9 150–155 Crushed 

limestone

4 Wooden 56 days in CC

NHL09C04MA 0.9 150–155 Crushed 

limestone

4 Metallic 7 days in CC 

and 49 in AC

CC, climatic chamber (RH: 97 ± 0.5%, 20 ± 0.5°C); AC, ambient laboratory conditions (RH: 50 ± 10%, 23 ± 3°C).

Table 2. Characteristics of the seven mortar compositions prepared.
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extensometers Instron 2630) were used to measure the axial deformation. They were placed 
centrally in opposite generatrices of the specimen covering a span of 50 mm in order to avoid 

local constrictions caused by the friction of the specimen surface and the steel platens of the 

machine. Two rubber layers with 2 mm thickness each were used between the upper surface 

of the sample and the steel platen to keep away from contact problems due to the irregular 

roughness of the sample. In order to obtain a stable value, five repeat monotonic tests were 
conducted up to 30% of the compressive strength at a loading rate 10 N/s for each cylinder; the 
mean of the last three values measured was taken as the elastic modulus.

2.3.3. Fracture energy and loading rate effect

The fracture energy, defined as the energy required to open a unit area of crack surface, was 
measured through a three-point bending test by using the Instron 8805 testing machine, 
following the procedure recommended by the RILEM [29] and the improvements proposed 

by Planas, Guinea, and Elices [30–32] (see Figure 2(d)). The beams were the same size 

as those used for the flexural tests. A precast notch in the middle of the specimens was 
introduced by using a cardboard piece (2 mm in width and 20 mm in depth) during the 

fabrication. More detailed information on how to determine the fracture energy can be 

found in the Refs. [12, 13].

Figure 2. Tests for (a) flexural strength, (b) compressive strength, (c) elastic modulus and compressive strength from 
cylinders, (d) fracture energy and elastic modulus from prisms, and (e) splitting tensile strength.
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The tests were performed in the displacement control. In order to study the rate effect on the 
fracture energy, three various loading rates (loading-point displacement rates) were applied 

during the test from a quasi-static level (5.0 × 10−4 mm/s) to rate dependent (dynamic) levels 

(5.0 × 10−1 mm/s and 1.6 × 101 mm/s). In such way, it took around 30 minutes and 0.3 seconds 
to finish the tests for the lowest and fastest loading rates, respectively. Three beams were 
tested at each loading rate. The corresponding strain rate,   ε   ̇  , can be calculated approximately 
according to the Eq. (1):

   ε   ̇  =   
6 (D − a)   δ   ̇ 

 _______ 
 S   2 

    (1)

where   δ   ̇   stands for the loading rate; D and S are the beam depth and span, respectively; and 
a is the notch depth.

2.3.4. Elastic modulus from prisms

When performing the three-point bending tests at quasi-static loading rate, an extensometer 
(strain gauge extensometer Instron 2620) was attached to the lower surface of the specimen to 
obtain the crack-mouth opening displacement (CMOD). In this way, the elastic modulus (  E  

pr
   ) 

could be obtained from prisms by applying general Eqs. (2) and (3) for span/depth (S/D) ratios 

(β) between 2.5 and 16 [33]:

   E  
pr

   = 6    Sa ________ 
 C  

i
   B  D   2 

    υ  β   (α)   (2)

   υ  β   (α)  =  υ  β   (a / D)  = 0.8 − 1.7α + 2.4  α   2  +   0.66 _____ 
  (1 − α)    2 

   +   4 __ β   (− 0.04 − 0.58α + 1.47  α   2  − 2.04  α   3 )   (3)

where   C  
i
    is the initial compliance determined from load-CMOD curve,   υ  

β
   (α)   is a dimensionless 

shape function depending on  β , and the relative notch/depth ratio  α . The other parameters of 

the beam have been previously defined.

2.3.5. Splitting tensile strength (indirect tensile strength)

The splitting tensile strength was measured through quasi-static splitting tensile tests (Brazilian 
tests) on four prismatic halves resulting from the preceding bending test for measuring frac-

ture energy, following the procedure recommended by EN 12390-6 [34]. To conduct the test, 

the Instron 1011 testing machine was used, and the loading rate was set at 50 N/s. The propor-

tion between the load-bearing width and the height of the specimens was maintained as low 

as 1/10 following the recommendations in [35–37]. The bearing strips were made of plywood, 

and they were placed in the middle of the longest side of the halves (see Figure 2(e)). The 

splitting tensile strength is determined as

   f  
t
   = 2F / 𝜋BD  (4)

Mechanical Behavior of Natural Hydraulic Lime Mortars
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where   f  
t
    is the splitting tensile strength,  F  is the maximum load, and B and D are the specimen 

width and depth, respectively, as mentioned previously.

2.3.6. Characteristic length

Once the splitting tensile strength (f
t
), elastic modulus from cylinders (E

cy
), and quasi-static 

fracture energy (G
F
) are obtained, the characteristic length, l

ch
, is calculated in accordance with 

Eq. (5). It is a parameter proposed by Hillerborg et al. [38] for fracture behavior, which is 

related to the length of the fracture process zone. It could be used to predict the brittleness of 
a material. As it decreases, brittle nature dominates and vice versa:

   l  
ch

   =  E  
cy

    G  
F
   /  f  

t
  2   (5)

3. Results and discussion

In this section, the results of the experimental campaign described in Section 2 are presented. 
It is organized as follows: influence of dosage and production process on the mechanical 
properties of seven types of NHL mortars, size effect on the compressive strength, and the 
loading rate effect on the fracture behavior.

3.1. Influence of dosage and production process on the mechanical properties

In total, five influence factors on the mechanical properties of seven types of NHL mortars 
were studied, i.e., water/lime ratio, material of the mold, type and maximum size of the aggre-

gates, and curing conditions. As explained in Section 2, a benchmark mortar was prepared, 
named as NHL09C04M (see Table 2). The influence of each factor was analyzed by varying an 
aspect of the mortar. That is to say, the influence of the water/lime ratio was studied among 
NHL08C04M, NHL09C04M, and NHL11C04M; the effect of the material of the mold was 
investigated by comparing NHL09C04W and the benchmark mortar, the influence of the type 
and maximum size of the aggregates through mortars NHL09R04M and NHL09C02M with 
the benchmark mortar, respectively. Finally, the impact of the curing conditions was obtained 

by comparing NHL09C04MA with the benchmark one. The detailed experimental results on 
the mechanical properties are listed in Table 3, fflex, fcpr

, f
ccy

, G
F
, f

t
, E

cy
, E

pr
, and l

ch
, respectively, the 

flexural strength, compressive strength from prisms, compressive strength from cylinders, 
fracture energy at quasi-static loading rate, elastic modulus from cylinders, elastic modu-

lus from prisms, and characteristic length. It is worth noting that for NHL09C04W, only the 
flexural and splitting tensile strengths (Figure 3(a) and (c)) were measured as the cylindri-

cal wooden molds were not fabricated. Moreover, the notched beams were damaged when 

demolding the specimens from the prismatic wooden molds [12].

It is observed from Table 3, in general, the mechanical properties of NHL mortars are improved 

for low water/lime ratio when comparing the experimental results among NHL08C04M, 
NHL09C04M, and NHL11C04M, due to the fact that the open porosity increases with an 
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increase in water/lime ratio which results in a weakening of the mortar structure and its 

mechanical properties [12]. Moreover, using wooden molds also benefits the mechanical 
properties as they absorb the excess of free water. The influence of the aggregate size is cou-

pled with the effect of the water/lime ratio. According to the Ref. [6], larger coarse aggregates 

improve the resistance in a comparison among mortars with similar consistencies. However, 

this is achieved by adding more water to mortars with smaller aggregates, as they have a 

higher water demand, which modifies the water/lime ratio. In our case, NHL09C04M and 
NHL09C02M have the same water/lime ratio as 0.9. As both have similar mechanical proper-

ties, it could be due to the positive effect of a lower water/lime ratio offsetting the possible 
lower capacity of smaller aggregates.

NHL09C04M and NHL09R04M mortars were fabricated with crushed limestone and river 

sand, respectively. In a fresh state, NHL09R04M has a higher consistency (180–187 mm) than 
NHL09C04M (150–155 mm) for the same water/lime ratio. It is obvious that the crushed lime-

stone aggregates exhibit better interlocking behavior than the river sands with round particles 
[39]. It should be noted if less water were added to NHL09R04M to get similar consistency as 
NHL09C04M, the mortar would be stronger.

The effect of the curing conditions were studied between NHL09C04MA, cured in the climatic 
chamber (RH: 97 ± 0.5%, 20 ± 0.5°C) for the first 7 days and at ambient laboratory conditions 
(RH: 50 ± 10%, 23 ± 3°C) for the rest 49 days, and NHL09C04M, cured in the climatic chamber 

for 56 days. The former presents lower mechanical properties than the latter. For example, 

Mortar composition fflex 
(MPa)

f
cpr

 

(MPa)

f
ccy

 

(MPa)

G
F
 

(N/m)

f
t
 (MPa) E

cy
 

(GPa)

E
pr

 

(GPa)

l
ch

 (mm)

NHL09C04M Mean 1.3 3.2 2.0 12 0.39 5.0 5.2 390

Std. dev. 0.1 0.1 0.2 3 0.02 0.2 0.5

NHL08C04M Mean 1.3 4.2 2.7 13 0.51 5.4 6.0 260

Std. dev. 0.1 0.3 0.3 1 0.01 0.6 0.2

NHL11C04M Mean 0.89 1.7 1.4 4.9 0.24 2.8 3.8 240

Std. dev. 0.04 0.1 0.1 0.8 0.03 0.7 1.0

NHL09C04W Mean 1.7 3.5 — — 0.57 — — —

Std. dev. 0.1 0.1 0.05

NHL09C02M Mean 1.1 3.2 2.0 12 0.49 4.6 5.1 220

Std. dev. 0.1 0.2 0.1 1 0.05 0.2 0.6

NHL09R04M Mean 0.96 2.3 1.5 10 0.38 4.2 4.4 280

Std. dev. 0.06 0.1 0.1 2 0.03 0.2 0.4

NHL09C04MA Mean 0.91 2.4 1.5 8 0.34 2.8 3.2 190

Std. dev. 0.02 0.1 0.1 1 0.03 0.4 0.6

Table 3. Mechanical properties of NHL mortars at an age of 56 days.

Mechanical Behavior of Natural Hydraulic Lime Mortars
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Figure 3. Relationship between compressive strength from prisms and other mechanical properties: (a) flexural strength, 
(b) compressive strength from cylinders, (c) splitting tensile strength, (d) fracture energy, (e) elastic modulus from 
cylinders, (f) elastic modulus from prisms.
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their flexural strengths are 0.91 and 1.3 MPa, respectively. This is mainly due to the fact that 
high humid conditions favor the hydration of NHL mortars [9, 10, 12].

As mentioned in Section 2.3.6, characteristic length is an indicator of brittleness of quasi-
brittle materials. The shorter a material is, the more brittle it is. It is clear that using river sand 
in the fabrication and curing at ambient laboratory make the mortars more brittle. Moreover, 
smaller aggregate size of the mortar favors the brittle behavior.

In Figure 3, various empirical equations relating some mechanical properties with the com-

pressive strength from prisms were obtained (Eq. (6); Table 4) by fitting the experimental 
results. This could be useful for numerical simulations and structural design when only the 

compressive strength is measured owing to the convenience of performing the test. It is similar 
with the application of equations provided by the FIB Model Code [40] and ACI Building Code 
[41] for concrete. In most cases, R2, the determination coefficient, is over 75%. However, for the 
flexural strength, it is only 56%, due to the fact that the result of the specimens fabricated in the 
wooden mold does not follow the trend. The equation used to do the empirical correlations is:

  Y = m  f  
cpr

  n    (6)

3.2. Size effect on compressive strength

From Table 3 and Figure 3(b), it is observed that there is a big difference between the com-

pressive strength obtained from prisms and cylinders. For example, they are 4.2 and 2.7 MPa, 
respectively, for NHL08C04M, while 1.7 and 1.4 MPa for NHL11C04M, respectively. This 

could be due to improper curing throughout the specimen in the case of the cylinders, which 

are more massive than prisms [42]. However, this would not be the main cause as both speci-

mens present similar densities and open porosities [12]. Instead, the difference is mainly 
because of geometry and size effects, which are confirmed by the following numerical simu-

lation on the compressive tests of prisms.

The numerical model was created by using a commercial software, ATENA [43]. This program 

uses the finite element method and has nonlinear constitutive material models implemented, 

Y m n

fflex 0.60 0.62

f
ccy

0.76 0.85

f
t

0.18 0.78

G
F

4.19 0.82

E
cy

1.89 0.75

E
pr

2.46 0.61

Table 4. Values of adjusting parameters according to Eq. (6).
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especially aimed for cohesive materials [13, 44]. The geometry of the model is formed by the 

mortar specimen itself and two metallic plates as used in the experimental test (see Figure 4). In 
order to reduce the number of finite elements and computing cost, symmetry was used in the 
model, defined by two vertical axes of symmetry. The material properties (E

cy
, G

F
, f

t
, and f

c
) were 

taken from the experimental results of mortars NHL08C04M (dry consistency) and NHL11C04M 
(fluid consistency), respectively (Table 3). Under the hypothesis that the compressive strength 
of cylinder is closer to the intrinsic compressive strength of the material, we adopted their cor-

responding values as f
c
, instead of the corresponding to prisms. The metallic plates were defined 

as perfect linear elastic as their only function was to transmit the load and their strength was 

much higher than the one of the mortar [13].

In order to complete the comprehension of the possible size effect, two additional models of 
both mortars were performed by doubling the size of the original one once (80 mm × 80 mm × 

160 mm) and twice (160 mm × 160 mm × 320 mm), respectively, and it followed the procedure 

described by del Viso et al. in [45]. Then, it was possible to obtain the nominal strength of 

each model,   σ  
N
   , as the ratio of the corresponding maximum loads and their respective bearing 

surfaces.

In Figure 5, the square of the nominal strength of the three models for each mortar,   σ  
N
  2   , is plot-

ted against the inverse of Hillerborg’s brittleness number, 1/β
H
 or l

ch
/D. By adjusting a linear 

fitting of these three points, it is possible to obtain the asymptotic value of the compressive 
strength when the specimen depth, D, tends to infinite, that is to say, the intrinsic compressive 
strength of the material,   σ  

inf
    [13, 45]. This fitted line is defined in Eq. (7):

   σ  
N
  2   =  σ  

inf
  2   +  σ  

inf
  2   A   1 ___  β  

H
      (7)

Figure 4. Geometry of the numerical model.
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where A is obtained from the slope of the fitted line of Figure 5 for each mortar. With   σ  
inf

    , it is 

possible to obtain the non-dimensional values of   σ  
N
    (the ratio   σ  

N
   /  σ  

inf
   ) and plot them related to 

β
H
 with a logarithmic scale (Figure 6). Then, it is possible to adjust one curve per mortar mix 

fitting these points. These two curves represent their size effect laws. As shown by them, for 
large specimen sizes, the size effect tends to disappear. In both cases,   σ  

inf
    is close to the com-

pressive strength of cylinders, meaning that this value can roughly be considered as the intrin-

sic compressive strength of the material, instead of the compressive strength of the prisms.

3.3. Loading rate effect on the fracture behavior

In order to study the rate effect on the fracture behavior of NHL mortars, the benchmark 
mortar, NHL09C04M, was tested in three-point bending under three different loading rates, 

Figure 5. Regression for setting   σ  
inf

    and A for (a) NHL08C04M and (b) NHL11C04M.

Figure 6. Size effect law for (a) NHL08C04M and (b) NHL11C04M.
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5.0 × 10−4 mm/s (quasi-static loading rate), 5.0 × 10−1 mm/s, and 1.6 × 101 mm/s. Table 5 presents 

the experimental results, where the values in brackets refer to the corresponding standard 
deviation. Moreover, an estimation of the strain rate,   ε   ̇  , is included as well for comparison 

with results of the literature under other loading methods. The DIF is defined by the ratios of 
peak load (P

max
) and fracture energy (G

F
) to their corresponding quasi-static values. Figure 7 

shows the peak load and fracture energy obtained under three different loading rates.

From Table 5 and Figure 7, it is observed that the maximum load and fracture energy of the 
NHL mortar increase with the loading rate. For example, their DIFs at the highest rate are 1.4 
and 1.9, respectively.

The tendency of the rate effect on the peak load and fracture energy is also presented in 
Figure 8. Moreover, following Eqs. (8) and (9), curve fittings of the DIFs are derived from 
the experimental results in regard to the peak load and the fracture energy, respectively, by 
using the least squares method. These adjustments provide a correlation coefficient higher 
than 95%. Though the format of such equations is original for plain and steel fiber-reinforced 
concretes [46–49], they are still valid for NHL mortars:

   DIF  
 P  
max

  
   = 1 + 0.19   (   δ   ̇  ___ 

  δ   ̇   
0
  
  )    

0.29

   (8)

   DIF  
 G  
F
  
   = 1 + 0.44   (   δ   ̇  ___ 

  δ   ̇   
0
  
  )    

0.25

   (9)

where    δ   ̇   
0
    is set as 1 mm/s. Such equations may be useful to predict the rate effect on the peak 

load and the fracture energy and when performing numerical simulations involving fracture 

on NHL mortars.

For understanding the cause of the loading rate dependency, six specimens (three per load-

ing rate) were dried for 48 hours at 105°C and tested at the lowest and highest loading rates. 

The experimental results of the dry specimens are also presented in Table 5. Moreover, the 

comparison of the maximum DIF between the normal and dry lime mortars is shown in 
Figure 9. It is obvious that the rate effect of NHL mortar is mainly related with the move-

ment of free water in pores. For example, for the dry NHL mortar, the peak load is almost 

Type of NHL 

specimens
Loading rate,   δ   ̇  

(mm/s)

Strain rate,   ε   ̇  
(s−1)

Maximum load, 

Pmax (N)

DIF 

for 

P
max

Fracture 

energy, G
F
 

(N/m)

DIF 

for 

G
F

Water 

content (%)

Normal 5.0 × 10−4 6 × 10−6 99 (10) 1.0 12.2 (1) 1.0 2.52 (0.24)

5.0 × 10−1 6 × 10−3 120 (10) 1.2 17.3 (1) 1.4

1.6 × 101 2 × 10−1 140 (15) 1.4 22.8 (10) 1.9

Dry 5.0 × 10−4 6 × 10−6 110 (20) 1.0 17.9 (2) 1.0

1.6 × 101 2 × 10−1 110 (10) 1.0 22.5 (7) 1.3

Table 5. Experimental results at various loading rates for NHL09C04M.
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Figure 7. Peak load and fracture energy at various loading rates. (a) Peak load. (b) Fracture energy.

Figure 8. Loading rate effect on (a) peak load and (b) fracture energy.

Figure 9. Maximum DIF of the normal and dry specimens of NHL09C04M.
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constant at different loading rates, a 30% increase in fracture energy. However, for the nor-

mal NHL mortar, the DIFs of the peak load and fracture energy are 1.4 and 1.9, respectively.

4. Conclusions

In the chapter, the influence of five factors affecting the dosage and fabrication process of seven 
types of NHL 3.5 mortars on their mechanical properties was studied. Moreover, the shape 

and size effect on the compressive strength was disclosed by numerical simulation and experi-
ments. Furthermore, the loading rate effect on the fracture energy was investigated as well.

Regarding the five influence factors on the mechanical properties, the results show that high 
water/lime ratios produce structural weakening and reduce mechanical properties. High rela-

tive humidity (97 ± 0.5%) is more suitable than ambient laboratory conditions for the hydra-

tion of the compounds of NHL mortars and for the increase of its ductility. Moreover, using 

wooden molds also improves these properties as they absorb the excess of free water. When 
maintaining constant water/lime ratios, using aggregates with higher grain size increases the 

mechanical properties. Mortars with river sand have lower mechanical properties. Certainly, 

if the water/lime ratio also varies at the same time, the tendency would be different.

There exists a big variation on the compressive strengths from prisms and cylinders; the ratio 
could reach 1.6. A numerical simulation analysis of the compressive test on prisms of two 

NHL mortars confirms that such variation is mainly due to the geometry and size effects.

With respect to the loading rate effect, from 5.0 × 10−4 to 1.6 × 101 mm/s, on the fracture behav-

ior of NHL mortar, it is obvious that the material is rate sensitive. The DIFs of the peak load 
and fracture energy are 1.6 and 1.9, respectively. Such phenomenon is mainly because of the 

viscous effects caused by the presence of free water in the porous structure.
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