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Abstract

The clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 method 
is a powerful tool for genome editing, by introducing a DNA double-strand break 
(DSB) at the specific site. The gene knock-out can be achieved by the deletion or inser-
tion at the CRISPR/Cas9-mediated DSB site by error-prone nonhomologous end joining 
repair in targeted cells. However, the gene knock-in is still difficult as compared to the 
knock-out, because of the low efficiency of homology directed repair with donor DNA 
in cells. Therefore, to efficiently select the knock-in cells, we developed a complicated 
donor DNA plasmid containing an antibiotic-resistance gene, in addition to the knock-in 
sequence and the two homology arms. MultiSite Gateway technology is a useful tool for 
constructing this complicated plasmid. We describe the MultiSite Gateway technology 
and provide an overview of the DSB repair pathways to clarify the knock-out and knock-
in methods by the CRISPR/Cas9 system.

Keywords: knock-in, homology directed repair (HDR), MultiSite Gateway, donor DNA 
plasmid, CRISPR/Cas9, DSB repair

1. Introduction

Genome editing has been an important technique to investigate gene function in biology since 
before the development of the clustered regulatory interspaced short palindromic repeats 

(CRISPR)/Cas9 system. In microorganisms such as Escherichia coli (E. coli) and yeast, gene disrup-

tion can be achieved by simply introducing a donor DNA into the cells without inducing a DSB in 
the targeted gene [1–3]. With regards to gene disruption in vertebrate cells, chicken B lymphocyte 
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line DT 40 cells have been widely used because of their high efficiency of homologous DNA 
recombination [4–6]. Similar to E. coli and yeast cells, gene disruption in DT 40 cells can also be 

achieved by introducing a DNA vector for gene targeting into the cells. In contrast, gene disrup-

tion by this method in human cells is difficult, because of the inefficient homologous recombina-

tion in the cells. Therefore, gene knockdown by RNA interference (RNAi) has usually been used 
in human cells, in order to examine the functions of human genes [7]. However, the targeted 
protein cannot be completely eliminated from the cells by RNAi. Therefore, an efficient method 
for targeted gene disruption in human cells has been keenly desired.

The CRISPR/Cas9 method is an innovative genome editing technology. The history of this tech-

nology originated from the finding of unusual, functionally unknown repeated sequences in E. 

coli [8, 9]. In the repeated sequences, highly homologous repeats are separated by nonrepeti-
tive nucleotides as spacers. Repeated sequences, composed of repeats and spacers, were also 
found in numerous genomes of other bacteria and archaea [10] and were named CRISPR [11]. 
In addition, well-conserved genes were identified adjacent to the CRISPR loci and were named 
CRISPR-associated (Cas) genes [11]. Some of the Cas protein families were found to share 
sequence homology with proteins involved in DNA metabolism, such as helicases and exo-

nucleases [11], and the purified Cas proteins exhibited endonuclease activity [12–14]. Sequences 
identical to the CRISPR spacers were found among bacterial mobile genetic elements, such as 

plasmids and phages, suggesting that the CRISPR spacers in the bacterial genome are derived 
from DNA fragments of the invading foreign genetic elements [15, 16]. In bacteria, CRISPR/Cas 
serves as a defense system against the invasion of mobile genetic elements [17]. The molecu-

lar mechanism of the defense system was elucidated by biochemical experiments [13, 14, 18, 

19]. Cas proteins bind to RNA transcribed from the CRISPR spacer sequence and cleave the 
precursor CRISPR RNA (pre-crRNA) [18]. Cas proteins exist in the complex with the cleaved 
mature crRNA [18] and cleave invading foreign genetic elements mediated by the crRNA guide, 
containing the complementary sequence with the targeted genetic elements [13, 14, 19]. Among 
the Cas family proteins, a single Cas9 protein complexed with a crRNA can introduce a specific 
DSB at the desired site in the target DNA [13, 14]. Therefore, the CRISPR/Cas9 system is being 
applied for genome engineering [20, 21]. The biology and technology of the CRISPR/Cas system 
are described in detail in excellent reviews [22–27].

A variety of CRISPR/Cas9-mediated genome editing tools is now commercially available. A 
gene knock-out can be accomplished simply by using the CRISPR/Cas9 tool. However, for a 
gene knock-in or replacement, a donor DNA must also be prepared individually. Here, we 
describe the usefulness of the MultiSite Gateway technology [28, 29] for the construction of the 

donor DNA plasmid.

2. DSB repair pathways involved in genome editing

The CRISPR/Cas9-mediated gene knock-out or knock-in is based on the mechanisms of DSB 

repair. To better understand the genome editing by the CRISPR/Cas9 method, we first pro-

vide an overview of the DSB repair mechanisms.

DSBs are repaired by multiple mechanisms [30] (Figure 1). One of the major DSB repair mech-

anisms is nonhomologous end joining (NHEJ). NHEJ is the simplest method for DSB repair, 
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in which the broken ends of the DNA are rejoined, and is a rapid and predominant DSB repair 

pathway in mammalian cells [31]. The DSB is accurately repaired to its normal state when 
the broken ends are protected during repair. However, if the broken ends are digested before 
rejoining, the DNA information at or around the DSB site is lost. Thus, NHEJ is an error-
prone DSB repair pathway [32]. CRISPR/Cas9-mediated gene knock-out technology utilizes 
this mutagenic aspect of NHEJ, and thus requires only DSB induction in the targeted gene. 
Most of the DSBs are repaired accurately by NHEJ [33]. However, if the DSB site is repaired 
accurately, then the target DNA site seems to be attacked repeatedly by CRISPR/Cas9, until 
the site is broken and thus insensitive to the hybridization with the crRNA (Figure 2). This 
apparently enhances the knock-out efficiency by CRISPR/Cas9.

The second major DSB repair pathway is homologous DNA recombination (HR) [34, 35] 

(Figure 1). In HR, DSBs are repaired by DNA strand exchange with the undamaged homolo-

gous DNA strand. In E. coli or yeast, HR is the predominant mechanism for DSB repair. In 
the first step of HR, the DSB ends are resected by a nuclease to generate 3′ single-strand 

(ss) DNA overhangs. Then, the ssDNA overhangs invade and anneal with the undamaged 
homologous DNA strand. New DNA is synthesized from the 3′ end of the invaded DNA as 
a primer, according to the sequence information of the undamaged DNA template, thereby 

Figure 1. Multiple DSB repair pathways. The targeted DSB induced by CRISPR/Cas9 is repaired by NHEJ, MMEJ, SSA, 
or HR.
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restoring the lost sequence information at the damaged sites. The branch point in the crossed 
DNA strands moves during the repair process. Finally, the crossed DNA strands are resolved 
by cutting and rejoining. Thus, the DNA information can be restored by HR repair even if the 
broken DNA ends are digested, such as by nucleases. Therefore, HR is a more precise DSB 
repair mechanism, as compared to NHEJ. If the homologous DNA strand is available in the 
donor DNA, then the donor DNA is integrated into the damaged site by HR (Figure 2). Thus, 
HR is an important mechanism for a gene knock-in.

DSBs are also repaired by other mechanisms, including microhomology-mediated end joining 

(MMEJ) and single-strand annealing (SSA) (Figure 1). Although MMEJ and SSA are mecha-

nistically similar, they are distinct pathways with different repair proteins. Both MMEJ and 
SSA use relatively short internal homologous sequences flanking both sides of the DNA break. 
The length of the homologous sequence required for MMEJ is shorter than that for SSA. The 
first step of MMEJ or SSA is the resection of the DSB site, and thereby the homologous dsDNA 
region becomes ssDNA. In the next step, the ssDNA regions with the homologous sequence 
are annealed, and the 3′ flaps of the nonhomologous region are removed. Finally, the gapped 

Figure 2. Gene knock-in or knock-out by DSB repair pathways. (A) Targeted gene disruption induced by NHEJ. (B) 
Targeted short DNA fragment insertion mediated by MMEJ or SSA. (C) Targeted long DNA fragment insertion mediated 
by HR.
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DNA regions are filled by DNA synthesis, and the resulting nicks are rejoined [36–39]. Both 
repair pathways induce a DNA deletion at the damaged site, and therefore could contribute to 

the CRISPR-Cas9-mediated gene knock-out in the absence of a DNA donor [40, 41]. However, 
when the donor DNA is provided, the repair pathways can be used for gene knock-in [42–44] 

(Figure 2).

3. Donor DNA plasmid for homology directed gene knock-in

The knock-in of a relatively short gene fragment (up to ~1.5 kb) can be achieved by MMEJ or 
SSA with a linearized donor DNA fragment containing short (about 20–60 bp) homologous 
DNA regions, called homology arms [42, 43, 45–47]. The knock-in efficiency decreases as the 
size of the insert DNA increases [48]. In the case of the insertion of a long DNA fragment (more 
than 1.5 kb), the knock-in efficiency increased as the length of the homology arms increased, 
up to about 1500 bp [48]. Thus, long homology arms (more than 500 bp) are usually used for 
the knock-in of such a long DNA fragment [45, 49–52]. In this case, the knock-in is mediated 
by HR. The knock-in efficiency by HR is low [53], and accordingly, a selectable marker is intro-

duced into the donor DNA plasmid for screening the knock-in clones in some cases [49–52]. 
Therefore, the selectable donor DNA plasmid for the HR-mediated gene knock-in contains left 
and right arms, the inserted gene of interest, and a selectable marker gene with promoter and 

transcription terminator regions. An example of a donor DNA plasmid is shown in Figure 3 

[52]. In our donor DNA plasmid, the left and right arms contain the promoter and transcrip-

tion terminator regions of the inserted gene of interest, respectively. However, the native tran-

scription terminator region is separated from the gene of interest by the neighboring selectable 

Figure 3. A donor DNA plasmid for HR-mediated gene knock-in.
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Figure 4. Standard Gateway method for single-fragment cloning. The DNA fragment of a gene of interest is amplified 
by PCR with a cloned DNA or cDNA library as the PCR template. The destination clone containing a polyadenylation 
(polyA) tail region downstream from the cDNA can be used as a PCR template for the next MultiSite Gateway cloning. 
Abbreviations: Kan, kanamycin resistance gene; Amp, ampicillin resistance gene; Cm, chloramphenicol resistance gene.

marker gene. Therefore, the SV40 transcription terminator sequence is also placed just down-

stream of the gene of interest. Thus, the structure of the donor DNA plasmid is complicated, 
as it contains multiple inserted DNA regions. It is difficult to construct such a complicated 
plasmid by using classical restriction enzyme-mediated cloning methods. In some cases, the 
donor DNA plasmids were constructed by a site-specific recombinational cloning method 
named In-Fusion technology [54], provided by Clontech [42, 55].

4. Gateway technology for DNA cloning

Gateway technology is another site-specific recombinational cloning method [54, 56] (Figure 4). 
This technology is based on the site-specific recombination system of E. coli bacteriophage λ 

[57]. Βacteriophage λ integrates into the E. coli chromosome by site-specific recombination 
between the attachment (att) sites on the bacterial chromosome (attB) and the att sites on the 

phage chromosome (attP), to generate left (attL) and right (attR) att sites. This recombination 
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reaction is mediated by the integrase (Int) enzyme of bacteriophage λ and the integration host 

factor (IHF) of E. coli. The excision reaction requires another host factor, excisionase (Xis), in 

addition to Int and IHF. The Gateway technology has developed mutant att sites (such as attB1, 
attB2, attP1, and attP2) [56]. The attB1 site specifically recombines with the attP1 site, but not 
attP2, to generate the attL1 and attR1 sites. Similarly, the attB2 site specifically recombines with 
the attP2 site to generate the attL2 and attR2 sites.

In the first step of the Gateway cloning, the DNA fragment for cloning is amplified by PCR with 
primer sets containing attB1 or attB2 sequences at the 5′ ends (Figure 4). Gateway cloning vec-

tors (pDONR) contain attP1 and attP2 sites for cloning. Therefore, the PCR product containing 
the attB1 or attB2 sites at both ends can be specifically inserted in between the attP1 and attP2 
sites of the pDONR vector by site-specific recombination, to generate the entry clone of the 
Gateway system. A protein mixture (BP clonase) containing Int and IHF is used for this in vitro 

site-specific recombination reaction (BP reaction). In the pDONR vector, the ccdB gene from F 
factor of E. coli is located between the attP1 and attP2 sites. The CcdB protein is a toxin for E. 

coli cells that lack the antitoxin, the CcdA protein, which is also produced from F factor of E. coli 

[58–61]. Therefore, E. coli cells without F factor or the ccdA gene cannot grow, due to the produc-

tion of the CcdB protein from the pDONR vector. For example, E. coli DH5α cells lack F factor 
and the ccdA gene. Therefore, the cell growth of the DH5α strain is inhibited in the presence of 

the pDONR vector. The Gateway cloning method applies this cell killing mechanism mediated 
by the ccdB gene for efficient DNA cloning. If the PCR product is successfully cloned between 
the attP1 and attP2 sites of the pDONR vector, then the ccdB gene is removed from the vector 
by the site-specific recombination. Therefore, when the in vitro site-specific reaction mixture 
is transformed into DH5α cells, only the cells containing the generated entry clone can grow. 
Thus, all of the transformed colonies contain the successfully cloned plasmid DNA. This is an 
excellent point of the Gateway cloning method. In the constructed entry clone, the cloned gene 
is present between the generated attL1 and attL2 sites.

The Gateway cloning system provides destination vectors for numerous purposes, such as for 
expressing the cloned gene in a variety of organisms. Each destination vector contains attR 
sites for cloning on both sides of the ccdB gene (Figure 4). The cloned gene in the entry clone 
can be transferred to destination vectors by an in vitro site-specific recombination reaction (LR 
reaction) between the attL and attR sites with a protein mixture (LR clonase) containing Int, 
IHF, and Xis, to generate the destination clone. As a result of the reaction, the ccdB gene of the 

destination vector is replaced with the gene of interest and is transferred to the pDONR vector 
as a by-product. Therefore, when the LR reaction mixture is transformed into DH5α cells, the 

growth of the cells containing the by-product plasmid is inhibited by the expression of the 

toxic ccdB gene. The antibiotic resistance gene of the destination vector is different from that of 
the pDONR vector. Therefore, only the desired destination clone is selected in the presence of 
the appropriate antibiotics. Thus, once the DNA fragment of interest is cloned into the pDONR 
vector, the DNA fragment can be transferred to a variety of destination vectors quite easily.

5. MultiSite Gateway technology for donor DNA plasmid 

construction

The original Gateway cloning system was further improved for cloning multiple DNA frag-

ments into a single vector [28, 62]. The improved cloning method is called MultiSite Gateway 
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Figure 5. Cloning four-fragments by the MultiSite Gateway method. The strategy for the construction of the donor DNA 
plasmid is shown.

[29, 63] (Figure 5). In the MultiSite Gateway cloning method, numerous attB, attP, attL, and attR 
variant sites were developed. Each attB site is specifically recombined with the corresponding 
attP site by the BP reaction, to generate the corresponding attL and attR sites. Similarly, each attL 
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site is specifically recombined with the corresponding attR site by the LR reaction. At present, 
up to four DNA fragments can be cloned into a single vector. The 4-fragment MultiSite Gateway 
cloning technology is suitable for the construction of a donor DNA plasmid for CRISPR/Cas9 

and HR-mediated gene knock-in (Figure 5). In the first step of the 4-fragment cloning, each 
PCR-amplified DNA fragment is cloned into the corresponding pDONR vectors. As shown 
in Figure 5, the orientation of the att site sequence is important. The attB3r, attB4r, and attB5r 
sequences are reversely oriented relative to the attB3, attB4, and attB5 sequences, respectively. 
In the second cloning step, the four entry clones are mixed with an appropriate destination 

vector and are subjected to the LR reaction. Thus, the four DNA fragments are simultaneously 
assembled and inserted into a single destination vector, in the desired order and orientation. 
The outline of our example is described below [52].

We used a CRISPR/Cas9-mediated gene knock-in, in order to express the wild type or mutant 
gene of interest (human RAD52 gene in our case) with its own native promoter in the genome 
and to examine the cellular effects of the mutant protein expressed at the endogenous level. 
The 1000 bp genomic DNA region upstream from the start codon of the gene of interest was 

amplified by PCR with primer sets containing attB1 or attB5r sequences at the 5′ ends and 

was cloned between the corresponding attP1 and attP5r sites of the first pDONR vector. 
The 1000 bp genomic DNA region downstream from the stop codon of the gene was cloned 

between the attP3 and attP2 sites of the fourth pDONR vector (Figures 3 and 5). The cDNA 
of the gene (wild type or mutant) was first cloned via standard Gateway cloning into a des-

tination vector (pT-Rex-DEST30), for gene expression with the CMV promoter of the vector 
(Figure 4). In the destination clone, the SV40 polyadenylation region required for transcrip-

tional termination is present downstream from the stop codon of the cloned gene. We ampli-
fied the DNA region encoding the cDNA of the gene and the SV40 polyadenylation region by 
PCR, using the destination clone as the PCR template. The PCR product was cloned between 
the attP5 and attP4 sites of the second pDONR vector (Figure 5). The DNA region containing 
the SV40 promoter, neomycin resistance gene, and polyadenylation region was amplified by 
PCR with pT-Rex-DEST30 as the PCR template and was cloned between the attP4r and attP3r 
sites of the third pDONR vector (Figure 5). The DNA fragments in each of the entry clones 
were verified by DNA sequencing. Then, the LR reaction was performed with the confirmed 
four types of entry clones and the destination vector (a simple vector, pDEST14, in our case). 
Thus, the complicated donor DNA plasmids could be constructed relatively easily, by using 
the MultiSite Gateway technology.

6. Advantages of MultiSite Gateway technology for donor DNA 

plasmid construction

MultiSite Gateway technology is suitable for the construction of a complicated donor DNA 
plasmid, for several reasons. In this method, all parts of the complicated donor DNA are first 
cloned into entry vectors, before their assembly. The cloned parts are easily verified by DNA 
sequencing. The verified entry clones can be used as parts for constructing other donor DNAs. 
For example, the entry clone containing the required part for expressing the neomycin resis-

tance gene can be reused for constructing donor DNA plasmids targeting the other genes. For 
generating knock-in cells, other antibiotic (such as blasticidin, puromycin, hygromycin, and 

zeocin) resistance genes are sometimes required as the selection markers. In this case, if the 
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DNA fragments required for expressing the other antibiotic resistance genes are cloned into 

the entry vector, we can substitute the neomycin resistance gene of the donor DNA plasmid in 
Figure 3 with the other antibiotic genes very easily (Figure 5). One of the purposes of generat-
ing knock-in cells is to elucidate the function and regulation of the gene product of interest, by 

expressing the mutants of the gene related to genetic diseases or altered protein modification 
sites. By using the MultiSite Gateway cloning method, the donor DNA plasmids containing a 
variety of mutant genes can be easily constructed by simply substituting only the entry clones 
containing the mutant genes of interest (Figure 5). For these reasons, MultiSite Gateway clon-

ing is a convenient and useful method for constructing the complicated donor DNA plasmids.

7. Strategies and improvements for generating knock-in cells

To replace the whole endogenous gene with the donor gene, the targeted gene was cleaved 
around both the start and stop codons by the CRISPR/Cas9 method [52]. To avoid the cleav-

age of the donor vector, a specific cleavage sequence that does not exist within the donor 
DNA must be selected in the endogenous gene. Therefore, the targeted sequence for CRISPR/
Cas9-mediated cleavage was designed within introns around both the start and stop codons 
of the gene. In our case, the cDNA of the donor gene contains FLAG and HA tag sequences at 
the amino (N)- and carboxyl (C)-terminal ends, respectively. Therefore, the DNA sequences 
around the start and stop codons are different and allow discrimination between the endog-

enous gene and the donor gene. By selecting the sequence containing the start or stop codon 
as the CRISPR/Cas9-targeted region, the endogenous gene can be cleaved selectively. For 
CRISPR/Cas9-mediated cleavage, a 5’-NGG-3′ sequence named the proto-spacer adjacent 

motif (PAM) is required on the 3′ end of the target sequence. In our case, PAM sequences were 
found in the vicinities of the start and stop codons of the target gene. Therefore, we could 
design the CRISPR RNAs to specifically guide Cas9 to the vicinity of the start or stop codon of 
the targeted endogenous gene. We used the commercially available GeneArt CRISPR Nuclease 
Vector from Life Technologies for the production of the CRISPR RNA and the Cas9 protein 
in cells. To generate the knock-in cells, the donor DNA plasmid was transfected into the cells 
with the two plasmids expressing the CRISPR RNAs targeting the vicinities of the start codon 
and the stop codon of the targeted gene. The transfected cells were initially cultured in the 
absence of selectable antibiotics for a few days and subsequently cultured in the presence of 

appropriate concentrations of the antibiotics for the selection of the knock-in cells. Most of the 
cells died after the selection. However, the antibiotic-resistant cells were observed after a long 
cultivation in the same culture dish. The antibiotic-resistant clones were isolated, the genomic 
DNA from each clone was purified, and the desired knock-in cells were subsequently veri-
fied by PCR and sequencing analyses. Thus, we obtained the desired knock-in cells by our 
method. However, we think that there is still room for improvements of our method.

In our method, we used circular plasmid DNA as the donor DNA (Figure 3). However, the 
knock-in efficiency is reportedly enhanced when the circular DNA is linearized [53]. Therefore, 
our strategy might be improved by using linearized donor DNA. According to the report, the 
knock-in efficiency of the donor DNA fragment is decreased when nonhomologous terminal 
DNA regions are present adjacent to the two homology arms [53]. The inhibitory effect of 
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the nonhomologous DNA regions is increased in accordance with the length. Therefore, the 
most suitable donor DNA is a linearized DNA fragment containing homology arms at both 
terminal ends, without nonhomologous regions at the ends. When restriction enzyme sites 
are introduced at the terminal ends of the homology arms of our donor DNA plasmid, this 

linearized donor DNA can be produced by restriction enzyme cleavage. This modification of 
our strategy will improve the knock-in efficiency.

The DSB repair pathway choice is an important consideration to improve the knock-in effi-

ciency. Among the several DSB repair pathways, the HR pathway choice is enhanced when 
the NHEJ pathway does not work [64]. Therefore, in order to increase the knock-in efficiency 
by HR, the inhibition of the NHEJ pathway was attempted in CRISPR/Cas9-mediated genome 
editing [65–68]. A chemical compound, SCR7, inhibits DNA ligase IV, which is an essential 
protein for NHEJ [69]. The CRISPR/Cas9-mediated homology-directed genome editing was 
enhanced by treating the cells with SCR7 [65, 66, 68]. In addition, a high throughput chemical 
screen identified small molecules that modulate CRISPR/Cas9-mediated genome editing [70]. 
The HR-mediated knock-in efficiency was improved by two chemical compounds, L755507 and 
BrefeldinA, which are a β3-adrenergic receptor agonist and an inhibitor of protein transport 

from the ER to the Golgi apparatus, respectively [70]. In contrast, the HR-mediated knock-in 
efficiency was decreased by the chemical compounds azidothymidine (AZT) and Trifluridine 
(TFT), which are anti-HIV and anti-herpes virus drugs, respectively [70]. In contrast to their 
effects on the HR-mediated knock-in, L755507 inhibits the NHEJ-mediated knock-out, whereas 
AZT enhanced it [70]. Therefore, in addition to their known activities, these chemical com-

pounds could modulate the DSB repair pathway choice. The effectiveness of L755507 for the 
HR-mediated knock-in was also demonstrated in another study [68]. Therefore, the knock-in 
strategy could be further improved in combination with the usage of these chemical compounds.

8. Experimental procedure for donor DNA plasmid construction by 

MultiSite Gateway technology

Here, we describe our protocol for the donor DNA plasmid construction by the MultiSite 
Gateway technology.

8.1. PCR amplification of arm DNA fragments (1000 bp)

8.1.1. The first-round PCR

Primers (forward and reverse): arm DNA-specific oligonucleotides (35 mer)

Primer stocks (50 or 100 μM) are diluted to 10 μM prior to use.

Template: human genomic DNA, purified with a Blood & Cell Culture DNA Mini Kit 
(QIAGEN).

Template stock is diluted to 50 ng/μl prior to use.

PCR amplification is performed with PrimeSTAR GXL DNA Polymerase kit (Takara).
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5X PrimeSTAR GXL buffer: 10 μl

dNTP Mixture (2.5 mM each): 4 μl

Forward primer (10 μM): 1 μl

Reverse primer (10 μM): 1 μl

Template (50 ng/μl): 1 μl

Sterile distilled water: 32 μl

PrimeSTAR GXL DNA Polymerase: 1 μl

PCR conditions

Initial step: 3 s at 98°C (denaturation)

25 cycles:

10 s at 98°C (denaturation)

15 s at 55°C (annealing)

1–2 min/kb at 68°C (extension)

Hold: 4°C (storage)

The PCR reaction mixture is purified with a QIAquick PCR Purification Kit (QIAGEN) to 
remove the PCR primers.

8.1.2. The second-round PCR

Forward primer for the left arm:

5′-GGGG-attB1 (ACAAGTTTGTACAAAAAAGCAGGCT)-(NN)-(template-specific sequence)-3´

     

Reverse primer for the left arm:

5′-GGGG-attB5r (ACAACTTTTGTATACAAAGTTG)T-(template-specific sequence)-3´

     

Forward primer for the right arm:

5′-GGGG-attB3 (ACAACTTTGTATAATAAAGTTG)-(NN)-(template-specific sequence)-3´

     

Reverse primer for the right arm:

5′-GGGG-attB2 (ACCACTTTGTACAAGAAAGCTGGGT)A-(template-specific sequence)-3´

     

The first-round primer sequences are used as each template-specific sequence.
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If AA, AG, or GA is present 5′ of the template-specific sequence, then NN (except for AA, AG, 
or GA) is added in order to avoid the generation of a stop codon, as described in the MultiSite 
Gateway User Manual.

5X PrimeSTAR GXL buffer: 10 μl

dNTP Mixture (2.5 mM each): 4 μl

Forward primer (100 μM): 0.5 μl

Reverse primer (100 μM): 0.5 μl

Template (5 ng/μl): 2 μl

Sterile distilled water: 32 μl

PrimeSTAR GXL DNA Polymerase: 1 μl

PCR conditions

Initial step: 3 s at 98°C (denaturation)

10 cycles:

10 s at 98°C (denaturation)

1 min/kb at 68°C (annealing/extension)

Hold: 4°C (storage)

8.2. PCR amplification of the gene of interest (cDNA of the gene and 
polyadenylation region) or the antibiotic resistance gene (promoter, antibiotic 
resistance gene, and polyadenylation region)

Template: plasmid DNA

Forward primer for the gene of interest:

5′-GGGG-attB5 (ACAACTTTGTATACAAAAGTTG)-(NN)-Kozak sequence and start codon 
(ACCATG)-template-specific sequence)-3´

          

Reverse primer for the gene of interest:

5′-GGGG-attB4 (ACAACTTTGTATAGAAAAGTTGGGT)G-(template-specific sequence)-3´

     

Forward primer for the antibiotic resistance gene:

5′-GGGG-attB4r (ACAACTTTTCTATACAAAGTTG)-(NN)-(template-specific sequence)-3´

     

Reverse primer for the antibiotic resistance gene:
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5′-GGGG-attB3r (ACAACTTTATTATACAAAGTTG)T-(template-specific sequence)-3´

     

If AA, AG, or GA is present 5′ of the template-specific sequence, then NN is added as 
above-mentioned.

5X PrimeSTAR GXL buffer: 10 μl

dNTP Mixture (2.5 mM each): 4 μl

Forward primer (100 μM): 0.5 μl

Reverse primer (100 μM): 0.5 μl

Template: 10 ng

PrimeSTAR GXL DNA Polymerase: 1 μl

Sterile distilled water: to final reaction volume of 50 μl

PCR conditions

Initial step: 3 s at 98°C (denaturation)

30–35 cycles:

10 s at 98°C (denaturation)

min/kb at 68°C (annealing/extension)

Hold: 4°C (storage)

If the template plasmid DNA contains a kanamycin resistance gene, which also exists in the 

pDONR entry vector, then the PCR reaction mixture is treated with the DpnI enzyme to digest 
the template DNA.

The PCR products are purified by phenol/chloroform extraction and ethanol precipitation 
and are resuspended in TE buffer (10–50 μl).

8.3. BP reaction

pDONR entry vector (150 ng/μl; Invitrogen): 0.25 μl

BP Clonase II enzyme mix (Invitrogen): 0.5 μl

PCR product: 1–1.75 μl (10–100 ng)

TE buffer: to final reaction volume of 2.5 μl

Incubate at 25°C for 60 min (for attB4r/attB3r and attB3/attB2 fragments) or overnight (for 
attB1/attB5r and attB5/attB4 fragments).

(Note: the cloning efficiencies of the attB1/attB5r and attB5/attB4 fragments were low. A lon-

ger incubation time in the BP reaction improved the cloning efficiency.)
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Add 0.25 μl Proteinase K solution (20 mg/ml; Invitrogen) to the reaction mixture. Incubate at 
37°C for 10 min.

Transform the reaction mixture into DH5α competent cells by the heat-shock method. Spread 
the transformed cells on an LB agar plate containing 20 μg/ml of kanamycin and incubate it 

at 37°C overnight. The plasmids are purified from each colony on the LB agar plate and are 
verified by DNA sequencing.

8.4. MultiSite Gateway LR reaction

Destination vector (20 fmol/μl; Invitrogen): 0.5 μl

attB1/attB5r entry clone (10 fmol/μl): 0.5 μl

attB5/attB4 entry clone (10 fmol/μl): 0.5 μl

attB4r/attB3r entry clone (10 fmol/μl): 0.5 μl

attB3/attB2 entry clone (10 fmol/μl): 0.5 μl

TE buffer: 1.5 μl

LR Clonase II Plus enzyme mix (Invitrogen): 1 μl

(Note: LR Clonase enzyme and LR Clonase II enzyme mix, which are used for standard single 
fragment cloning, cannot be used for cloning multiple fragments.)

Incubate at 25°C for 1–2 days.

Add 0.5 μl Proteinase K solution (20 mg/ml; Invitrogen) to the reaction mixture. Incubate at 
37°C for 10 min.

Transform the reaction mixture into Mach T1 competent cells (Invitrogen) by the heat-shock 
method. Spread the transformed cells on LB agar plates containing appropriate antibiotics 
and incubate them at 37°C overnight. The plasmid DNA is purified from the colonies on the 
LB agar plates and used as the donor DNA after verification.

(Notes: Mach T1 competent cells were more suitable for cloning multiple fragments than DH5α 

competent cells.)

9. Conclusion

The CRISPR/Cas9 technology has opened a new window to investigate gene functions by 
targeted knock-ins. By replacing the endogenous gene with the mutant gene, the cellular 
effects of the mutant can be examined under the most suitable native conditions of the gene 
expressed from the native promoter. The native expression level of the gene is also important 
for investigating the intracellular localization and behavior of the gene product, because over-

expression of the gene by a nonnative promoter sometimes induces artifactual effects on the 
intracellular localization of the protein. The CRISPR/Cas9-mediated knock-in of specific tag 
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sequences into the endogenous gene allows the investigation of the intracellular localization 
of the protein at the native expression level, by monitoring the introduced tag sequences. 
The construction of a complicated donor DNA is required for gene knock-in mediated by 

HR. This is a bottleneck point for the CRISPR/Cas9-mediated targeted knock-in technol-
ogy. Standard Gateway cloning is a popular method for constructing ordinary expression 
plasmids and is therefore more commonly used as compared to MultiSite Gateway cloning. 
However, MultiSite Gateway cloning is a quite useful method, especially for constructing the 
complicated donor DNA plasmid. Therefore, this technology will contribute to the spread of 
CRISPR/Cas9-mediated targeted knock-in methods.
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