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Abstract

With the advent of increased computer capacities, improved computational resources,
and easier access to large-scale computer facilities, the use of density functional theory
methods has become nowadays a frequently used and highly successful approach for the
research of solid-state materials. However, the study of solid materials containing heavy
elements as lanthanide and actinide elements is very complex due to the large size of these
atoms and the requirement of including relativistic effects. These features impose the
availability of large computational resources and the use of high quality relativistic
pseudopotentials for the description of the electrons localized in the inner shells of these
atoms. The important case of the description of uranyl-containing materials and their
properties has been faced recently. The study of these materials is very important in the
energetic and environmental disciplines. Uranyl-containing materials are fundamental
components of the paragenetic sequence of secondary phases that results from the
weathering of uraninite ore deposits and are also prominent phases appearing from the
alteration of the spent nuclear fuel. The development of a new norm-conserving relativis-
tic pseudopotential for uranium, the use of energy density functionals specific for solids,
and the inclusion of empirical dispersion corrections for describing the long-range inter-
actions present in the structures of these materials have allowed the study of the proper-
ties of these materials with an unprecedented accuracy level. This feature is very relevant
because these methods provide a safe, accurate, and cheap manner of obtaining these
properties for uranium-containing materials which are highly radiotoxic, and their exper-
imental studies demand a careful handling of the samples used. In this work, the results of
recent applications of theoretical solid state methods based on density functional theory
using plane waves and pseudopotentials to the determination of the thermodynamic
properties and stability of uranyl-containing materials are reviewed. The knowledge of
these thermodynamic properties is indispensable to model the dynamical behavior of
nuclear materials under diverse geochemical conditions. The theoretical methods provide
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a profound understanding of the thermodynamic stability of these mineral phases and
represent a powerful predictive tool to determine their thermodynamic properties.

Keywords: uranyl-containing minerals, spent nuclear fuel, density functional theory,
thermodynamic stability, heat capacities, entropies, enthalpies, Gibbs free energies,
thermodynamic properties of formation, Gibbs free energies of reaction

1. Introduction

The basis of thermodynamic theory [1] is known since the end of the nineteenth century, and

the fundamental developments carried out in the twentieth century have established this

theory as a self-contained system of knowledge. The thermodynamic calculations are mainly

used for the description of the changes of state associated with the transfer of matter and

energy and are an indispensable part of technical and scientific investigations in various fields

such as chemistry, metallurgy, chemical engineering, and the energy and environmental tech-

nologies. The reliability of the results of thermochemical calculations depends, in the first

instance, on the accuracy of the thermochemical data used and the inclusion of the most

important species involved, which are often quite numerous if one desires to obtain a fair

description of real systems.

There are different sources of data available for establishing thermodynamic information such

as calorimetric and solubility measurements [2, 3], phase equilibrium data [4], experimental

data on solid solutions [5], and heat capacities and entropies estimated from lattice vibrational

models [6–8]. Reasonably complete sets of basic data needed for the calculation of thermo-

chemical functions are available only for a relatively small number of substances [9], and

frequently these sets must be completed with empirical data of lower accuracy obtained by

analyzing values from different sources as well as by performing estimations before they can

be used for actual calculations.

The data listed in the thermochemical tables generally form databases [10–18, 4]. An internally

consistent database is one which permits the computation of phase equilibrium relations as

established by experimental studies, and it is at the same time compatible with calorimetric

and other measurements of thermochemical properties of the phases involved. The generation

of such databases is very complex due to the large uncertainties associated with phase equilib-

rium studies at high temperature and pressure and because many experiments may be irre-

versible. The CALPHAD method (CALculation of PHAse Diagrams) [19, 20] may be used in

the derivation and assessment of this kind of databases [21].

These databases can be used to carry out thermodynamic multi-component, multi-phase,

multi-reaction equilibrium calculations on systems made up of any of the substances present

in the database. These calculations are best performed by adopting the method of minimiza-

tion of the total Gibbs free energy of the closed system [22–28]. A detailed description of the

principles and techniques used in the computation of equilibrium assemblages of a closed

system can be found in the work of Smith and Missen [24]. Thus, these databases are the basis
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for the software packages for the calculation of equilibria in multi-component systems [12, 13,

18, 19, 22, 23, 29–32]. Examples of successful applications of thermodynamic techniques to the

computation of equilibrium phase assemblages in geological and planetary systems have been

reported [33–36].

In the field of nuclear technology, the thermodynamic information is indispensable in order to

predict the chemical behavior and dynamics of nuclear materials under diverse environmental

conditions. The knowledge of precise thermodynamic data is fundamental for the develop-

ment of geochemical models for nuclear fuel degradation, to evaluate the origin and evolution

of uranium ore bodies, in developing programs for the solution mining of uranium deposits or

mine dumps, in the study of spent nuclear fuel (SNF) radioactive waste and in the containment

of such waste, and may also be of importance in reactions within breeder reactors [37–41].

The behavior of a deep geologic repository (DGR) of high level radioactive waste (HLWR) will

depend mainly on the interaction between the SNF and their surroundings. The hydration and

corrosion of the SNF under oxidizing conditions will result in the dissolution of the uranium

dioxide composing the SNF matrix and the formation of uranyl secondary mineral phases

[42–54]. Therefore, the formation and stability of uranyl minerals will determine the release of

U(VI) and other actinide elements from the HLWR container and subsequently from the

repository to the biosphere [55–70].

The stabilities and dissolution rates of uranyl minerals are functions of the solution composi-

tion, temperature, and local conditions (mainly pH and electrochemical potential), and their

prediction requires the knowledge of the Gibbs free energy, enthalpy, and entropy thermody-

namic functions of formation for each phase of interest and their variation with temperature.

The simulation of the release of uranium from DGRs under oxidizing conditions and the

mobility of uranium in the environment can be only performed if the thermodynamic proper-

ties of the secondary uranyl minerals that may form in the DGR are available. Consequently,

the knowledge of the thermodynamic parameters is crucial for predicting DGR performance

[71–73]. However, reliable temperature-dependent thermodynamic data are completely

lacking, except for the simplest uranyl-containing materials. Therefore, the development of a

complete thermodynamic database for these minerals is mandatory.

The rapid development of the nuclear technology strongly encouraged the research on the

field of thermodynamics of nuclear materials and the development of nuclear thermodynamic

databases [74, 75]. The great significance of the thermodynamic information of materials

containing uranium and related elements in the assessment of the safety of DGRs is reflected

by the large number of recent experimental works leading to large reviews and updates of

thermodynamic properties of materials [72–77]. Among these studies, we may remark the

recent experimental measurements by means of solubility and calorimetry techniques of the

thermodynamic properties of uranyl peroxide hydrates [51–54], uranyl carbonate minerals

[78], uranyl phosphate and orthophosphate minerals [79], and uranyl silicates [71, 80–84].

Despite of the fast progress in the generation of the nuclear thermodynamic database, there are

many uranium-containing materials for which the corresponding data are unreliable due to

the large experimental uncertainties [38]. A large amount of effort has been dedicated to the
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assignment and correction of these uncertainties by means of the implementation of new

statistical methods for hypothesis testing and the improvement of the techniques used for

measuring the thermodynamic properties of these systems [73]. The need to make available a

comprehensive, internationally recognized and quality assured chemical thermodynamic

database that meets the modeling requirements for the safety assessment of radioactive waste

disposal systems prompted the Radioactive Waste Management Committee (RWMC) of the

Organization for Economic Co-operation and Development (OECD) Nuclear Energy Agency

(NEA) to launch the Thermochemical Database Project (NEA TDB). The RWMC assigned a

high priority to the critical review of relevant chemical thermodynamic data of inorganic

species, actinide compounds, and fission products [72, 73]. Besides, the range of conditions of

temperature and pressure for which the thermodynamic parameters are available for most

nuclear materials is rather limited.

While the knowledge of the temperature dependence of these properties for anhydrous ura-

nium oxides is very complete [73–75], the corresponding data for the secondary phases which

arise from alteration of SNF under final DGR conditions are surprisingly scarce. For these

secondary phases, the thermodynamic parameters are known only for the standard state

(298.15 K and 1 bar). The lack of temperature-dependent information for these phases rules

out the possibility of performing reliable thermodynamic modeling studies for the perfor-

mance assessment of DGRs for SNF. Because the corresponding information is available for

anhydrous species, thermodynamic computations have been performed for the uranium-

oxygen and sodium-uranium-oxygen system [85–95]. A detailed analysis of previous studies

[41, 96–105] suggests that first principles methodology is an excellent complement to experi-

mental methodology for determining the thermodynamic functions of these materials.

In this work, the computation of the thermodynamic properties of a large set of uranyl-

containing materials is reviewed [99–105]. This set includes the uranyl peroxide studtite [(UO2)

O2�4H2O] and metastudtite [(UO2)O2�2H2O], the uranyl hydroxide dehydrated schoepite

[UO2(OH)2], the uranyl oxyhydroxide schoepite [(UO2)8O2(OH)12�12H2O], metaschoepite

[(UO2)8O2(OH)12�10H2O] and becquerelite [Ca(UO2)6O4(OH)6�8H2O], the uranyl silicate

soddyite [(UO2)2(SiO4)�2H2O], the uranyl carbonate rutherfordine [UO2CO3], and gamma ura-

nium trioxide [γ-UO3]. The first eight materials have been identified to be basic components of

the paragenetic sequence of secondary phases arising from the alteration of uraninite ore

deposits and corrosion of SNF under the final DGR conditions [42–54], and gamma uranium

trioxide is the main oxide of hexavalent uranium [100, 106, 107]. Uranyl peroxides appear in the

earlier stages of this paragenetic sequence [50–54, 108–111] due to the production of hydrogen

peroxide and other oxidants resulting from the radiolysis of water due to the ionizing radiation

of the SNF. The uranyl oxyhydroxides also begin to appear soon from the alteration of uranium

dioxide [42–48]. Studtite, schoepite, metaschoepite, and becquerelite phases have been observed

as alteration products of spent fuel in cooling basins at the Hanford Site (Washington) [112–116]

and on Chernobyl “lava” formed during the nuclear accident that occurred in 1986 [117]. The

next mineral phases appearing in this sequence are uranyl silicates and, less frequently, uranyl

phosphates [42–48]. Uranyl carbonates may precipitate where the evaporation is significant, and

the carbon dioxide partial pressure is large [49, 118]. The main ingredients of this paragenetic

sequence were inferred by Frondel already in 1956 [42, 43]. The sequence is still widely accepted

Density Functional Theory94



today [44–48, 118, 119]. However, our knowledge of this sequence is only qualitative, and the

performance assessment of the DGRs for HLRW and many other applications in nuclear tech-

nology require its quantitative specification.

The crystal structures of these materials [100, 102, 105, 120–123] were successfully determined

by means of density functional theory using plane waves and pseudopotentials [124]. A new

norm-conserving relativistic pseudopotential specific for uranium atom was generated from

first principles with this purpose [101, 121]. Then, using these optimized structures, the ther-

modynamic properties of these materials were determined including specific heats, entropies,

enthalpies, and Gibbs free energies [99–105]. The computed thermodynamic properties were

combined with those of the corresponding elements in order to determine the enthalpy and

free energy of formation of these materials and its variation with temperature [102, 104, 105].

The methods used in the computation of these thermodynamic functions are briefly described

in Section 2. Additionally, the calculation of the Gibbs free energies of reaction and associated

reaction constants is also described in this section. The main results obtained are described in

Section 3, including a study of the thermodynamic stability of the secondary phases of SNF

[102, 104, 105]. Finally, the main conclusions are given in Section 4.

2. Methods

2.1. Computational methodology

The generalized gradient approximation (GGA) together with PBE functional [125] supplemented

with Grimme empirical dispersion correction [126] was used to study the uranyl-containing

materials such as studtite, metastudtite, dehydrated schoepite, schoepite, metaschoepite,

becquerelite, soddyite, rutherfordine, and gamma uranium trioxide [99–105, 120–123]. The intro-

duction of dispersion corrections improved significantly the computed structural, vibrational,

mechanic and thermodynamic properties of studtite, metastudtite, dehydrated schoepite,

schoepite, metaschoepite, becquerelite, and soddyite as a consequence of the better description of

the hydrogen bonding present in the crystal structures of thesematerials. However, for the case of

rutherfordine and gamma uranium trioxide phases, the specialized version of PBE functional for

solid materials, PBEsol [127], provided much better results [99, 100, 121]. The improved descrip-

tion of the structure of properties of anhydrous materials using this functional over the one

obtained using PBEwas observed in recent calculations [99, 100, 121] and later confirmed by other

research groups [128, 129]. This justifies the great amount of effort made in developing density

functionals specific for solid materials [130] and emphasizes the need of determining empirical

dispersion parameters specific for these functionals. These functionals are implemented in

CASTEP program [131], a module of the Materials Studio package [132], which was employed to

model the structures of the materials considered. The pseudopotentials used for H, C, O, Si, and

Ca atoms in the unit cells of these minerals were standard norm-conserving pseudopotentials

[133] given in CASTEP code (00PBE-OP type). The norm-conserving relativistic pseudopotential

for U atom was generated from first principles as shown in the previous works [101, 121].

While our uranium atom pseudopotential includes scalar relativistic effects, the corresponding
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pseudopotentials used for H, C, O, Si, and Ca atoms do not include them. This pseudopotential
has been used extensively in the research of uranyl-containingmaterials [99–105, 120–123].

The atomic positions and cell parameters were optimized using the Broyden-Fletcher--
Goldfarb-Shanno method [124, 134] with a convergence threshold on atomic forces of
0.01 eV/Å. The kinetic energy cut-off and K-point mesh [135] were chosen to ensure good
convergence for computed structures and energies. The structures of the materials considered
in this work were optimized in calculations with augmented complexity by increasing these
parameters. The precise calculation parameters used to determine the final results may be
found in the corresponding articles [99–105, 120–123]. The flow diagram associated to the
theoretical treatment used to study a given crystalline material is shown in Figure 1 [101].
The crystal structure is first optimized starting from an initial atomistic model of the
corresponding unit cell (lattice parameters and atomic positions) employing trial values of the
calculation parameters (kinetic energy cut-off and K-point mesh). The crystal structure is then
updated and the initial values of the kinetic cutoff and K-point density (number of k-points
divided by the k-point separation) are systematically increased. The geometry optimization is
performed again until the variation of the energy is below a given threshold. The variation of
the crystal unit cell is then analyzed, and the structure is reoptimized until this variation is
small enough. Once the convergence in the computed energy and structure is met, the

Figure 1. Flow diagram associated to the theoretical solid state treatment used to study the uranyl-containing materials
considered in this work.
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corresponding X-ray powder pattern is determined [136] and compared with the experimental

one. Only if the comparison is satisfactory, the crystal structure is accepted in order to obtain

the final vibrational, mechanic, thermodynamic, and optic properties of the material under

study. Otherwise, the calculation parameters are made more stringent and the structural

optimization starts again. The convergence of this procedure depends on the proximity of the

initial input used to the final solution. If it does not converge or converges towards a structure

yielding an X-ray powder pattern which does not agree with the experimental one, the proce-

dure should be restarted from a different initial input (atomic positions and cell parameters).

2.2. Thermodynamic properties

The methods employed for the calculation of thermodynamic properties of these materials

were described in the previous papers [99–105]. The phonon spectrum at the different points of

Brillouin zone can be determined by density functional perturbation theory (DFPT) [137–139]

as second-order derivatives of the total energy [137]. Phonon dispersion curves and density of

states were calculated, and from them, several important thermodynamic quantities in the

quasi-harmonic approximation, such as Gibbs free energy, enthalpy, entropy, and specific heat,

were evaluated [140].

2.3. Enthalpy and Gibbs free energy of formation in terms of the elements

The thermodynamic functions of formation at the different temperatures were determined

[102] from the calculated enthalpy and entropy functions of the material being considered,

[HT -H298]
calc and ST

calc, the experimental value of its standard enthalpy of formation, ∆fH
0, and

the experimental enthalpy and entropy functions of the elements forming part of the material.

The enthalpy and entropy functions for the elements were taken from JANAF tables [11], and

the corresponding functions for uranium atom were taken from Barin [12]. The equilibrium

constants for the formation reactions were determined in terms of the corresponding calcu-

lated Gibbs free energies of formation using the well-known relationship [11], ∆fG(T) = � R T

Ln Kf.

2.4. Enthalpies and free energies of reaction

The enthalpies and Gibbs free energies of a given reaction at the different temperatures, ∆rH(T)

and ∆rG(T), were determined [103] from the Gibbs free energy of formation and entropy

functions of the materials entering in the reaction, ∆fG
i(T) and Si(T), i = 1,…,Nmat. The specific

values used of these properties for studtite, metastudtite, dehydrated schoepite, schoepite,

metaschoepite, becquerelite, soddyite, rutherfordine, and gamma uranium trioxide were

determined in our previous works [102, 104, 105]. The corresponding data for the remaining

materials, which do not contain the uranyl ion, SiO2(cr), H2O(l), CO2(g), O2(g), and H2(g), were

taken from JANAF tables [11] and the data for H2O2(l) were taken from Barin [12]. The reaction

equilibrium constants were determined in terms of the corresponding Gibbs free energies of

reaction, ∆rG(T) = � R T Ln Kr.
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3. Results and discussion

3.1. Thermodynamic properties

The computed isobaric heats and entropies at 298.15 K for all the uranyl-containing materials

considered in this work [99, 100, 102, 104, 105] are given in Table 1. In this table, the values

obtained for rutherfordine, gamma uranium trioxide, and metaschoepite [99, 100, 104] are

compared with the corresponding experimental values. For the rest of the materials, there are

not experimental values to compare with. As it can be seen, the computed values agree very

well with their experimental counterparts. In fact, the differences between the computed and

experimental values of these and other thermodynamic properties are frequently smaller than

the difference among several different experimental values. From the analysis of the results

obtained, the expected accuracy in the computed-specific heats and entropies of studtite,

metastudtite, dehydrated schoepite, schoepite, and soddyite is better than 3–5%.

The calculated isobaric specific heat, entropy, and Gibbs free energy functions of rutherfordine,

gamma uranium trioxide, and metaschoepite are displayed in Figure 2, where they are com-

pared with the experimental functions of Hemingway [37], Cordfunke andWestrum [143], and

Barin [12], respectively. For rutherfordine, the computed thermodynamic functions are com-

pared with those of Hemingway [37] in the temperature range of 298–700 K, and as it can be

appreciated, the calculated and experimental curves are nearly parallel. The computed value of

Cp at 700 K, near the limit of thermal stability of rutherfordine [37], Cp = 153.3 J K�1 mol�1,

differs from the experimental value at this temperature, 147.6 J � K�1 mol�1, by only 3.9%.

Material Source Cp S

Rutherfordine Calc. [99] 115.02 143.11

Exp. 106.5 [37] (8.0%), 120.1 [141] (�5.1%) 142.70 [37] (0.3%), 139 [142] (3.0%)

γ-UO3 Calc. [100] 77.36 92.96

Exp. 81.67 [143] (�5.3%), 84.72 [37] (�8.7%) 96.11 [143] (�3.3%), 98.6 [144] (�5.7%)

Metaschoepite Calc. [104] 142.01 166.24

Exp. 154.40 [12] (�8.0%) 167.00 [12] (�0.5%)

Studtite Calc. [102] 219.97, 211.17 [41] 232.12

Metastudtite Calc. [102] 163.14, 155.81 [41] 179.27

Dehydrated schoepite Calc. [102] 103.85 125.18

Schoepite Calc. [104] 150.62 168.75

Soddyite Calc. [102] 275.15 315.95

Becquerelite Calc. [105] 148.40 172.34

All the values are given in units of J K�1 mol�1. The percent difference of the theoretical and experimental results is given

in parenthesis for the specific heats and entropies of rutherfordine, gamma uranium trioxide, and metaschoepite.

Table 1. Specific heats and entropies at 298.15 K for the uranyl-containing material studied in this work.
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Similarly, the differences of the computed entropy and Gibbs free energy with respect to

Hemingway’s experimental values at 700 K are only 2.3 and 1.3%, respectively. Our theoretical

calculations allowed to obtain the values of the thermodynamic functions for the low and high

temperature ranges 0–300 and 700–1000 K, which were unknown so far and, consequently,

extended the range in which the thermodynamic functions were known to 0–1000 K.

The computed thermodynamic properties of uranium trioxide are also in excellent agreement

with the experimental data of Cordfunke and Westrum [143] in the full range of temperatures

considered 0–1000 K. The differences in the specific heat, entropy, and Gibbs free energy

functions are 3.9, 1.8, and 0.1% at 100 K and 6.1, 3.6, and 3.5% at 1000 K. The comparison

reveals that the low temperature calculated thermodynamic data are also very accurate. It

must be emphasized that while the experimental isobaric heat capacity function of gamma

uranium trioxide at 1000 K is above the asymptotic Dulong-Petit limit, our computed function

satisfies properly the requirement of being below this limit [100].

Figure 2. Calculated and experimental isobaric specific heat entropies and Gibbs free energies of rutherfordine, gamma

uranium trioxide, and metaschoepite as a function of temperature. The experimental thermodynamic functions of

rutherfordine, uranium trioxide, and metaschoepite are from Hemingway [37], Cordfunke and Westrum [143], and Barin

[12], respectively.
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Finally, the theoretical results for metaschoepite mineral phase agree very well with the

experimental thermodynamic properties reported by Barin [12] even at temperatures of

the order of 800 K, the percent differences of the calculated specific heat, entropy, and

Gibbs energy with respect to the corresponding experimental values being 5.4%, 3.2%,

and 2.0% at 800 K. The present theoretical data have permitted to discriminate between

the experimental thermodynamic functions of metaschoepite reported up to date because

the experimental functions reported by Tasker et al. [145] deviate from those of Barin [12]

and from our theoretical results already at moderate temperatures [104].

The comparisons performed in the previous paragraph have shown that the variation of the

computed thermodynamic functions with temperature is excellent. Hence, it may be

expected that the theoretical functions obtained for studtite, metastudtite, dehydrated scho-

epite, soddyite, schoepite, and becquerelite [102, 104, 105] will also be reliable even at low

and high temperatures. For rutherfordine and metaschoepite [99, 104], the calculated ther-

modynamic properties are recommended instead of the experimental functions because

they cover the full temperature range going from 0 to 1000 K and they should provide a

uniform accuracy at all temperatures. For gamma uranium trioxide, both sets of data are

considered to be equally accurate, but the theoretical specific heat function satisfies prop-

erly the asymptotic conditions [100].

3.2. Enthalpies and free energies of formation in terms of the elements

The enthalpies and free energies of formation in terms of the elements of the considered

mineral phases as a function or temperature were determined [102, 104, 105] from the calcu-

lated thermodynamic data, the experimental or estimated [104] standard enthalpy of forma-

tion, and the thermodynamic functions of the corresponding elements [11–12]. The calculated

Gibbs free energies of formation of rutherfordine, gamma uranium trioxide, and metasch-

oepite [102, 104] are shown in Figure 3 together with the corresponding experimental data

[12, 37, 143].

As it may be observed in Figure 3, and as it occurred with the thermodynamic functions of

the pure substances reported in Section 3.1, the calculated thermodynamic properties of

formation agree with the experimental functions in an excellent manner. For these three

materials, the differences of the calculated and experimental values are lower than 1%

at ambient temperature and the differences remain very small at high temperatures.

The differences become 1.6%, 1.0%, and 2.0% at 700, 900, and 800 K for rutherfordine, γ-

UO3, and metaschoepite, respectively [102, 104]. Since the theoretical solid state treatments

used for studtite, metastudtite, dehydrated schoepite, soddyite, schoepite, and becquerelite

were essentially the same as those used for these three materials, we expect a similar

accuracy level for their calculated thermodynamic parameters of formation. An example of

these calculated parameters for a material in which there are no experimental data to

compare with is the case of the schoepite mineral phase, and the corresponding results are

also shown in Figure 3. The combination of the results for schoepite and metaschoepite

allowed to study the thermodynamics of the dehydration transformation of schoepite into

metaschoepite [104].
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3.3. Enthalpies and free energies of reaction

3.3.1. Reactions of formation in terms of oxides

Let us first consider the following reactions:

Studtite : UO3 crð Þ þ 4 H2O lð Þ þ 1=2O2 gð Þ ! UO2ð ÞO2 � 4H2O crð Þ (I)

Metastudtite : UO3 crð Þ þ 2 H2O lð Þ þ 1=2O2 gð Þ ! UO2ð ÞO2 � 2H2O crð Þ (II)

Dehydrated schoepite : UO3 crð Þ þH2O lð Þ ! UO2 OHð Þ2 crð Þ (III)

Becquerelite : UO3 crð Þ þ 1=6 CaO crð Þ þ 11=6H2O lð Þ ! 1=6 Ca UO2ð Þ6O4 OHð Þ6 � 8H2O crð Þ (IV)

Schoepite : UO3 crð Þ þ 9=4 H2O lð Þ ! 1=8 UO2ð Þ8O2 OHð Þ12
� �

� 12H2O crð Þ (V)

Metaschoepite : UO3 crð Þ þ 2 H2O lð Þ ! 1=8 UO2ð Þ8O2 OHð Þ12
� �

� 10 H2O crð Þ (VI)

Rutherfordine : UO3 crð Þ þ CO2 gð Þ ! UO2CO3 crð Þ (VII)

Soddyite : 2UO3 crð Þ þ SiO2 crð Þ þ 2H2O lð Þ ! UO2ð Þ2 SiO4ð Þ � 2H2O crð Þ (VIII)

Figure 3. Calculated Gibbs free energies of formation of rutherfordine, gamma uranium trioxide, and metaschoepite in

terms of the elements as a function of temperature. The experimental Gibbs free energies of formation of rutherfordine,

uranium trioxide, and metaschoepite are from Hemingway [37], Cordfunke and Westrum [143], and Barin [12], respec-

tively. For schoepite, there are no experimental data to compare with.
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These important reactions represent the formation of the considered uranyl-containing mate-

rials in terms of the corresponding oxides. By combining the calculated thermodynamic prop-

erties of formation of these materials in terms of the elements [102, 104, 105] with those of the

non-uranyl-bearing materials [11] present in reactions (I)–(VIII), we obtained the Gibbs free

energies and associated reaction constants displayed in Figure 4 [103–105].

Figure 4 shows that studtite and metastudtite are unstable with respect to the corresponding

oxides at the full range of temperatures studied, 250–500 K, since the corresponding Gibbs free

energies of reaction are positive everywhere. Therefore, they are metastable phases at normal

conditions. The opposite is true for soddyite mineral phase, which is stable at all the tempera-

tures. However, dehydrated schoepite, becquerelite, schoepite, metaschoepite, and rutherfordine

mineral phases are stable at ambient temperature and become unstable at the temperatures of

462, 491, 383, 352, and 514 K, respectively, because the Gibbs free energy of reaction becomes

positive at these temperatures. The observation of changes of stability for these phases at these

relatively low temperatures was unexpected and highlights the great relevance of the availability

of accurate temperature-dependent thermodynamic functions [102, 103].

3.3.2. Reactions of transformation of uranyl-containing materials into studtite in the presence of high

hydrogen peroxide concentrations

We will now study the thermodynamic properties of the following set of reactions:

UO2 OHð Þ2 crð Þ þ 2 H2O2 lð Þ þH2 gð Þ ! UO2ð ÞO2 � 4H2O crð Þ (IX)

1=2 UO2ð Þ2 SiO4ð Þ � 2H2O crð Þ þ 2 H2O2 lð Þ þH2 gð Þ ! UO2ð ÞO2 � 4H2O crð Þ þ 1=2 SiO2 crð Þ (X)

UO3 crð Þ þ 3 H2O2 lð Þ þH2 gð Þ ! UO2ð ÞO2 � 4H2O crð Þ þ 1=2 O2 gð Þ (XI)

UO2CO3 crð Þ þ 3 H2O2 lð Þ þH2 gð Þ ! UO2ð ÞO2 � 4H2O crð Þ þ CO2 gð Þ þ 1=2O2 gð Þ (XII)

UO2ð ÞO2 � 2H2O crð Þ þH2O2 lð Þ þH2 gð Þ ! UO2ð ÞO2 � 4H2O crð Þ (XIII)

1=6 Ca UO2ð Þ6O4 OHð Þ6 � 8H2O crð Þ þ 13=6 H2O2 lð Þ ! UO2ð ÞO2 � 4H2O crð Þ þ 1=16 CaO crð Þ

þ 7=12 O2 gð Þ

(XIV)

1=8 UO2ð Þ8O2 OHð Þ12
� �

� 12H2O crð Þ þ 7=4 H2O2 lð Þ ! UO2ð ÞO2 � 4H2O crð Þ þ 3=8 O2 gð Þ (XV)

1=8 UO2ð Þ8O2 OHð Þ12
� �

� 12H2O crð Þ þ 1=8 O2 gð Þ ! 1=8 UO2ð Þ8O2 OHð Þ12
� �

� 10 H2O crð Þ

þ 1=4 H2O2 lð Þ

(XVI)

Reactions (IX) to (XV) are the reactions of transformation of dehydrated schoepite, soddyite,

uranium trioxide, rutherfordine, metastudtite, becquerelite, and schoepite into studtite in the

presence of high hydrogen peroxide concentrations (and absence of water) [103–105]. Reaction

(XVI) represents the conversion of schoepite into metaschoepite at these conditions. The com-

puted Gibbs free energies of these reactions are shown in Figure 5. As it can be observed, all

Density Functional Theory102



Figure 4. Calculated Gibbs free energies of formation of studtite, metastudtite, dehydrated schoepite, becquerelite,

schoepite, metaschoepite, rutherfordine, and soddyite in terms of the corresponding oxides as a function of temperature

[103–105].
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Figure 5. Calculated Gibbs free energies of the reactions of transformation of dehydrated schoepite, soddyite, gamma

uranium trioxide, rutherfordine, metastudtite, becquerelite, and schoepite into studtite and of metaschoepite into

schoepite in the presence of high hydrogen peroxide concentrations as a function of temperature [103–105].
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these phases will transform spontaneously into studtite in the presence of high hydrogen

peroxide concentrations, since the Gibbs free energy of all these reactions are negative for the

full range of temperatures considered, 300–500 K. In the case of metaschoepite, the thermody-

namics of reaction (XVI) shows that it will convert into schoepite mineral phase, but according

to reaction (XV) the last phase also transforms spontaneously into studtite [104].

Forbes et al. [110] investigated experimentally the transformation of dehydrated schoepite and

soddyite into studtite phase in solutions with large concentrations of hydrogen peroxide. They

observed that, at ambient temperature, these materials transform into studtite following the

reaction stoichiometry. The results of our calculations [103] for the conversion of dehydrated

schoepite and soddyite under high hydrogen peroxide concentrations into studtite agree

completely with this experimental study. However, our results extend this study because it

shows that the same will happen not only at 298.15 K but also at temperature as high as 500 K.

The study performed by Kubatko et al. [146] showed that becquerelite mineral phase also

transforms into studtite within 8 hours under high hydrogen peroxide concentrations. The

thermodynamics of the conversion of becquerelite into studtite under variable concentrations

of hydrogen peroxide was studied by our group in a recent paper [105]. The results displayed

in Figure 4 [103–105] show that the same will happen for gamma uranium trioxide,

rutherfordine, metastudtite, schoepite, and metaschoepite phases. In fact, because the stability

of studtite under these conditions is very high, it is likely that the same will happen for most of

the other secondary phases of SNF, as it was suggested in 2017 [101].

Our study of the thermodynamics of these reactions also permits to comprehend why uranyl

peroxide hydrates were the unique phases found in a 2-year corrosion experiment of SNF in

deionized water [109]. These phases should be the unique phases found not only in deionized

water but also in water containing silicate ions, since studtite is much more stable than

soddyite and probably more stable than most other uranyl silicate phases under high hydro-

gen peroxide concentrations.

3.4. Thermodynamic stability

From the thermodynamic data reported in our previous papers [103–105], the order of ther-

modynamic stability of the uranyl-containing materials considered in this work was evaluated

as a function of temperature under three different conditions: (A) under high concentrations of

hydrogen peroxide; (B) in the presence of water and hydrogen peroxide; and (C) in the absence

of hydrogen peroxide. The stability of these phases at these conditions in the range of temper-

atures from 300 to 500 K is displayed in Figures 5A and 6B and C. In these three figures, the

relative stabilities are given with respect to studtite, metastudtite, and gamma uranium triox-

ide, respectively.

Figure 6 provides a very clear idea of the temporal evolution of the paragenetic sequence of

secondary phases appearing as a result of the corrosion of SNF under final DGR conditions.

Uranyl peroxide phase studtite will appear as the prominent phase at the earlier stages of this

paragenetic sequence (see Figure 6A) due to the presence of high hydrogen peroxide concen-

trations caused by the radiolysis of most of the water reaching the surface of SNF. If the

hydrogen peroxide concentration diminishes with time, as expected from the decrease of the
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intensity of radiation fields over time in a DGR [147], the studtite stability will decrease and the

formation of other secondary phases will occur. In the presence of water and hydrogen

peroxide (see Figure 6B), the uranyl oxyhydroxide phases (schoepite, metaschoepite, and

becquerelite) appear to be the most stable ones. Finally, in the absence of hydrogen peroxide,

soddyite is the most stable phase and rutherfordine is also more stable than becquerelite for

temperatures lower than 492 K (Figure 6C). Thus, at hydrogen peroxide free conditions,

uranyl silicates and carbonates must be the most prominent phases of the SNF.

A full evaluation and understanding of the number and relative amount of the secondary

phases of spent nuclear fuel present at the conditions of a final geological disposal over time

require the realization of complete thermodynamic calculations employing thermochemical

data for a significant number of materials, including the most important secondary phases,

amorphous phases, and aqueous species, at a wide range of temperature and pressure condi-

tions [103]. The determination of these thermodynamic data, the evaluation of their tempera-

ture and pressure dependence, and the realization of the corresponding thermodynamic

computations are one of the main objectives of our current research.

3.5. Solubility constants

The important solubility reactions of schoepite, metaschoepite, rutherfordine, and becquerelite

may be written, respectively, as follows:

1=8 UO2ð Þ8O2 OHð Þ12
� �

� 12H2O crð Þ þ 2 Hþ aq
� �

! UO2
2þ aq
� �

þ 13=4 H2O lð Þ (XVII)

1=8 UO2ð Þ8O2 OHð Þ12
� �

� 10H2O crð Þ þ 2 Hþ aq
� �

! UO2
2þ aq
� �

þ 3 H2O lð Þ (XVIII)

Ca UO2ð Þ6O4 OHð Þ6 � 8H2O crð Þ þ 14 Hþ aq
� �

! Ca2þ aq
� �

þ 6 UO2
2þ aq
� �

þ 16 H2O lð Þ (XIX)

UO2CO3 crð Þ ! UO2
2þ aq
� �

þ CO3
2� aq
� �

(XX)

Using the computed values of the Gibbs free energies of formation of schoepite, metaschoepite,

becquerelite, and rutherfordine and theGibbs free energies of formation of aqueous ions,UO2
2+(aq),

Figure 6. Relative thermodynamic stability of a selected set of secondary phases of SNF: (A) under high hydrogen

peroxide concentrations; (B) under the presence of water and hydrogen peroxide; and (C) under the absence of hydrogen

peroxide.
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UO2þ
2 aq

� �

, CO3
2�(aq), Ca2+(aq), and H+(aq), and liquid water at 298.15 K [148], one obtains the

Gibbs free energies and associated reaction constants of solubility given in Table 2.

The calculated solubility products, LogKcalc
sp of metaschoepite, becquerelite, and rutherfordine

5.98, 50.38, and �16.96 respectively, are in very good agreement with the most recent experi-

mental values (LogK exp
sp = 5.6 � 0.2 [149], 40.5 � 1.4 [149], �14.91 � 0.10 [153]). Since there

solubility constant of schoepite has not been determined experimentally, its value was

predicted [104]. Schoepite is shown to be more insoluble than metaschoepite.

4. Conclusions

It has been demonstrated [99–105, 120–123] that Periodic Density Functional Theory methods

are an extremely powerful tool in the research of uranium-containing compounds. The use of

the new relativistic norm-conserving pseudopotential [101, 121] permitted the computation of

the structural properties, X-ray powder patterns, vibrational Raman spectra, and mechanical

and thermodynamic properties of these materials. These methods are free of the problems

involved in the experimental methods associated to the radiotoxicity of these compounds.

The first principles methodology allowed the safe, accurate, and cheap study of secondary

phases of SNF definitive geological disposal conditions. The theoretical methods may be used,

in conjunction with experimental techniques, as an interpretative tool of the experimental data

or as a predictive tool to determine the structural, vibrational, mechanic, and thermodynamic

properties of these substances. One of the most successful applications of this methodology

has been achieved when studying their fundamental thermodynamic properties [99–105].

The development of empirical dispersion corrections [126] and the development of density

functionals specific for solid materials [130] have improved extraordinarily the reliability of the

calculated thermodynamic functions and their temperature dependence. The results were

Material ∆spG (calc.) Log Ksp (calc.) Log Ksp (exp.)

Schoepite �26.11 4.57 —

Metaschoepite �34.14 5.98 5.6 � 0.2 [149], 5.52 � 0.04 [150],

6.23 � 0.14 [151], 5.9 � 0.1 [152],

5.14 � 0.05 [153], 5.72 � 0.19 [154],

5.79 � 0.19 [155]

Becquerelite �287.55 50.38 40.5 � 1.4 [149], 41.2 � 0.52 [156],

43.2 [157], 29 � 1 [158],

41.89 � 0.52 [159], 43.70 � 0.47 [159]

Rutherfordine 96.83 �16.96 �14.91 � 0.10 [153], �13.89 � 0.11 [154],

�13.29 � 0.01 [155]

The values of ∆spG ∆rG are in units of kJ�mol�1.

Table 2. Calculated and experimental Gibbs free energies (∆spG) and associated reaction constants (Log Ksp) of the

solubility reactions of schoepite, metaschoepite, becquerelite, and rutherfordine.
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shown to be accurate at very low and high temperatures [99–105]. The description of the

temperature dependence of these functions is very difficult from the experimental point of

view. The theoretical approach has permitted in some cases, as those of the rutherfordine [99]

and metaschoepite [104] mineral phases, to extend the range of temperatures in which the

thermodynamic properties were known and to determine the variation with temperature of

these properties for a large series of important phases in which it was completely unknown:

studtite, metastudtite, dehydrated schoepite, becquerelite, schoepite, and soddyite. Further-

more, the calculated thermodynamic functions satisfy properly the Dulong-Petit asymptotic

constraints.

The comparison of the computed heat capacities and entropies with experimental data was very

satisfactory in those cases in which there ware experimental data to compare with. The calcu-

lated Gibbs free energies of formation of rutherfordine, γ-UO3, and metaschoepite [102, 104]

were in good agreement with experiment at ambient temperature, and the differences with the

corresponding experimental values were only 1.6%, 1.0%, and 2.0% at 700, 900, and 800 K,

respectively. Because the theoretical treatments used for studtite, metastudtite, dehydrated

schoepite, soddyite, schoepite, and becquerelite were essentially the same as those used for

these three materials, we expect a similar accuracy level for their calculated thermodynamic

parameters of formation [102, 104, 105].

As an application of the calculated thermodynamic properties of the considered uranyl

materials, the Gibbs free energies and associated reaction constants of a large number of

reactions involving these materials were determined. The results provided a deep and

clear understanding of the temporal evolution of the paragenetic sequence of secondary

phases appearing at the surface of SNF as a result of its corrosion under final DGR

conditions [103–105]. Additional work is now in progress to determine the thermody-

namic properties of a significant number of additional phases. The use of these thermo-

dynamic parameters in detailed multi-component thermodynamic computations should be

pursued in a near future.
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