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Localization Using Extended Kalman Filters in 
Wireless Sensor Networks 

Ali Shareef and Yifeng Zhu 
Electrical and Computer Engineering 

University of Maine 
United States of America 

1. Introduction     

Localization arises repeatedly in many location-aware applications such as navigation, 
autonomous robotic movement, and asset tracking. Analytical localization methods include 
triangulation and trilateration. Triangulation uses angles, distances, and trigonometric 
relationships to locate an object. Trilateration, on the other hand, uses only distance 
measurements to identify the position of the target. Figure 1A, describes a simple example 
of trilateration. Using three reference points S1, S2, and S3 with known locations and 
distances d1, d2, and d3 to the target object, the object can be located at the intersecting point 
of the three circles. 
However, in a dynamic system where distance measurements are noisy and fluctuate, the 
task of localizing becomes difficult. This can be seen in Figure 1B, where with fluctuating 
distances, regions within the circles become possible locations for the tracked object. In this 
case, rather than the object being located at a single point at the intersection of the circles as 
in Figure 1A, the object can be located anywhere in the dark overlapped region in  Figure 
1B. 
 

                 
                           A.                                                         B. 

Fig. 1A. Trilateration          Fig. 1B. Trilateration with noise 

This uncertainty due to measurement noises renders analytical methods almost useless. 
Localization methods capable of accounting for and filtering out the measurement noises are O
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Source: Kalman Filter: Recent Advances and Applications, Book edited by: Victor M. Moreno and Alberto Pigazo,  
 ISBN 978-953-307-000-1, pp. 584, April 2009, I-Tech, Vienna, Austria
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system, utilizing infrared signals, was only capable of localizing the room that the mobile 
node was located in, many other systems based on this concept have been proposed. 
The Bat system (Harter, et al., 1999), much like the Active-Badge System, also utilizes a 
network of sensors. A central controller broadcasts an RF query to a mobile node and resets 
a network of serially linked receivers at the same time. The mobile node responds by 
emitting an ultrasonic pulse which is picked up by the receivers. The time it takes for the 
ultrasound pulse to reach different receivers in the network indicates the distance the 
mobile node is from those receivers and the position of the mobile node can then be 
trilaterated. 
Researchers at MIT have utilized similar concepts from the Bat System in their Cricket 
sensors, albeit using a more decentralized structure. However, one drawback to the Crickets 
is the risk of collisions during the RF and Ultrasound transmissions between different 
beacons. The Cricket Location System (Smith, et al., 2004) uses a hybrid approach involving 
the use of an Extended Kalman filter, Least Square Minimization to reset the Kalman filter 
during the Active state, and Outlier Rejection to eliminate bad distance readings. 
Other researchers at MIT have proposed another method of localization utilizing the Cricket 
system exploiting properties of robust quadrilaterals to localize an ad-hoc collection of 
sensors without the use of beacons (Moore, et al., 2004). 
It is also possible to localize optically as in the HiBall head tracking system (Welch, et al., 
2001). Arrays of LEDs flash synchronously, and cameras capture the position of these LEDs. 
The system utilizes information about the geometry of the system and computes the 
position. 
Localization using signal strength of RF signals has been studied extensively, (Alippi, et al., 
2005) and (Patwari, et al., 2003) are all examples of methods that were devised using this 
approach. 
Neural networks have also been used for  localization (Shareef, et al., 2008). In fact, neural 
networks have been shown to perform better than the Kalman filter in a low-noise 
environment. However, neural networks suffer from weak self-adaptivity and have a high 
over-head due to training costs. A neural network, once trained for a particular set of 
parameters can only be used in the scenario corresponding to those parameters. If the 
number or the position of beacons or the size of the localization area was to change, then the 
neural network would have to be trained again. 

3. Kalman filter applied to localization 

The Kalman filter is an iterative approach that uses prior knowledge of noise characteristics 
to account for and filter out the noise. However, problems arise when attempting to model 
noise. Attempts at measuring noise are only approximations and do not indicate the real 
distribution of the noise. The Kalman filter can only be used for linear stochastic processes 
and for non-linear processes the Extended Kalman Filter (EKF) must be used. The assumption 
with these two methods is that the process and noise measurements are independent, white, 
and with normal probability. 
There are different parameters that the EKF can use in modeling the trajectory of a moving 
object. It is possible to model the motion of an object using just the state of the X and Y 
position to obtain the position (P) model of the Kalman filter. The velocity can also be 
incorporated in the state in addition to the position to form the position-velocity (PV) model. 

www.intechopen.com



Kalman Filter: Recent Advances and Applications 300 

Of course, if acceleration is included also, this results in the position-velocity-acceleration 
(PVA) model. 
In two-dimensional space, the distances to three known beacons returned by a sensor can be 
related to the position of this sensor ሺݔ,  ,using the distance formula given in (1) (ݕ

 ݀௜ ൌ ඥሺݔ െ ௜ሻଶݔ ൅ ሺݕ െ   ௜ሻଶ  (1)ݕ

 

where  ሺ݅ݔ,   .is the coordinations of beacon i (i = 1, 2, and 3) (݅ݕ

A way of modeling motion is by setting up a linear system composed of the kinematics 

equations for each dimension of tracked motion. The following example of a linear system 

describes an object’s two-dimensional motion using the position, velocity, and acceleration 

(PVA) at time step k. 

 

ێێۏ
ۍێێ
ۑۑےሷ௞ݕሷ௞ݔሶ௞ݕሶ௞ݔ௞ݕ௞ݔ

ېۑۑ ൌ ܣ ·
ێێۏ
ۍێێ
ۑۑےሷ௞ିଵݕ௞ିଵሷݔሶ௞ିଵݕሶ௞ିଵݔ௞ିଵݕ௞ିଵݔ

ېۑۑ ൅ ܤ · ቂݑ௫௞ݑ௬௞ቃ ൅ ܳ    (2)  

Equation (2) can be written in a simpler way. 

  ܺ௞ ൌ ܣ · ܺ௞ିଵ ൅ ܤ · ܷ௞ ൅ ܳ           

 

The state transition matrix ܣ arises from the respective kinematics equations. For a PVA 

model, the ܣ matrix becomes: 

ܣ  ൌ ێێۏ 
ͳͲͲͲͲͲۍێێ

ͲͳͲͲͲͲ
ͲܶͳͲͲͲ

ͲܶͲͳͲͲ
భమܶଶͲܶͲͳͲ

ͲభమܶଶͲܶͲͳ ۑۑے
 (3)  ېۑۑ

 

The uxk and uyk are the inputs to the system, and the ܤ matrix is the input matrix. However, 

the input kinematics parameters of the moving object to be tracked are not known so the uxk, 

uyk, and ܤ can be dropped from the linear system. If this information had been known, then 

there would be no need to, “track“ the object. The inputs to this system are the distance 

measurements dk, and these distance measurement will be used to update the state of the 

object as given in step 4 of the Kalman filter procedure in Table 1. 

The process noise covariance matrix Q accounts for the unmodeled factors of the system that 

will be treated as random noise. For example, in the systems of equations above, while the 

change of velocity is accounted for by acceleration, the change in acceleration is not 

considered. The contribution of this effect to the state is accounted for as random noise. See 

(Welch, et al., 2007)  for a more in depth discussion. In this example, ݍ௫ and ݍ௬can be 

considered as the standard deviations of the acceleration noise in the x and y direction, 

respectively.   
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   ܳ ൌ  
ێێۏ
ێێێ
ێێێ
௫ݍۍێ డ௧ఱଶ଴ Ͳ ௫ݍ డ௧ర଼Ͳ ௬ݍ డ௧ఱଶ଴ Ͳݍ௫ డ௧ర଼ Ͳ ௫ݍ డ௧యଷ

Ͳ ௫ݍ డ௧య଺ Ͳݍ௬ డ௧ర଼ Ͳ ௬ݍ డ௧య଺Ͳ ௫ݍ డ௧మଶ ͲͲ ௬ݍ డ௧ర଼ Ͳݍ௫ డ௧యଷ Ͳ ௫ݍ డ௧మଶͲ ௬ݍ డ௧యଷ Ͳ
௬ݍ డ௧యଷ Ͳ ௬ݍ డ௧మଶͲ ݐ௫߲ݍ Ͳݍ௬ డ௧మଶ Ͳ ݐ௬߲ݍ ۑۑے

ۑۑۑ
ۑۑۑ
ېۑ
     (4) 

 

At time step k, the three measured distances dik (i=1, 2, 3) to the locations of the three 
beacons (xi, yi), can be used to relate the location of the target object (xk, yk) using the 
following equation: ݀ଵ௞ ൌ ඥሺݔ௞ െ ଵሻଶݔ ൅ ሺݕ௞ െ ଵሻଶݕ ൅ ሚ݀ଵ௞ 

    ݀ଶ௞ ൌ ඥሺݔ௞ െ ଶሻଶݔ ൅ ሺݕ௞ െ ଶሻଶݕ ൅  ሚ݀ଶ௞      (5) ݀ଷ௞ ൌ ඥሺݔ௞ െ ଷሻଶݔ ൅ ሺݕ௞ െ ଷሻଶݕ ൅ ሚ݀ଷ௞ 

where ሚ݀ଵ௞, ሚ݀ଶ௞ and ݀ ሚଷ௞ are distance measurement errors. The equation (5) can be expressed as (6). 

    ൥݀ଵ௞݀ଶ௞݀ଷ௞൩ ൌ ܪ ·
ێێۏ
ۍێێ
ۑۑےሷ௞ݕሷ௞ݔሶ௞ݕሶ௞ݔ௞ݕ௞ݔ

ېۑۑ ൅ ቎ ሚ݀ଵ௞ሚ݀ଶ௞ሚ݀ଷ௞቏ (6) 

Where ܪ is the measurement matrix that relates the current state to the output. Since the 
output equations (5) are non-linear, the Jacobian needs to be used, where 

ܪ    ൌ ێێۏ 
డௗభడ௫ۍێ డௗభడ௬ Ͳ Ͳ Ͳ Ͳడௗమడ௫ డௗమడ௬ Ͳ Ͳ Ͳ Ͳడௗయడ௫ డௗయడ௬ Ͳ Ͳ Ͳ Ͳۑۑے

ېۑ
 (7) 

and the partial derivatives are given in (8) and (9) below. 

     
డௗ೔డ௫ ൌ ௫ି௫೔ඥሺ௫ି௫೔ሻమାሺ௬ି௬೔ሻమ  (8) 

     
డௗ೔డ௬ ൌ ௬ି௬೔ඥሺ௫ି௫೔ሻమାሺ௬ି௬೔ሻమ  (9) 

The assumption that, the measurement noise associated with the distance measurements of 
a beacon is independent among the three beacons, will be made. This will result in 
measurement noise values for the appropriate beacon only along the diagonal of the 
measurment noise matrix R. 
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 ܴ ൌ  ൥ܯ ଵܰ Ͳ ͲͲ ܯ ଶܰ ͲͲ Ͳ ܯ ଷܰ൩   (10) 

Where MN1, MN2, and MN3 are the measurement noises to beacon 1, 2 and 3, respectively. 
Using the formulation of the problem as described above, the following equations can be 
evaluated iteratively to track the target object. In each iteration, five steps are performed, as 
shown in Table 1. The current state ܺ௞ିଵ is used to estimate the location at the next time 

instant. The error covariance matrix ௞ܲି  in the next time step is also projected using the state 

space model ܣ and the process noise matrix ܳ in step 2. In step 3, the Kalman gain ܭ௞ is 
computed. The Kalman gain is used in step 4, when the distance measurements ܦ௞ ൌሾ݀௞ଵ, ݀௞ଶ, ݀௞ଷሿ் from the beacons to the target object are obtained and are used to update the 

state ܺ௞. The current position (xk, yk)  is a subset of the state vector ܺ௞. 
 

Procedure of Extended Kalman Filter  

1. Project the state ahead ܺ௞ି ൌ ܣ · ܺ௞ିଵ ൅ ܤ · ܷ௞         (11) 

2. Project the error covariance ahead ௞ܲି ൌ ܣ · ௞ܲିଵ · ்ܣ ൅ ܳ         (12) 

3. Compute the Kalman gain ܭ௞ ൌ ௞ܲି · ்ܪ · ሺܪ · ௞ܲି · ்ܪ ൅ ܴሻିଵ         (13) 

4. Update estimation with 
measurements 

ܺ௞ ൌ ܺ௞ି ൅ ௞ܭ · ሺܦ௞ െ ܪ · ܺ௞ି ሻ         (14) 

5. Update the error covariance ௞ܲ ൌ ሺܫ െ ௞ܭ · ሻܪ · ௞ܲି          (15) 

Table 1. Procedure of Extended Kalman Filter 

Figure 3 depicts the iterative process described in Table 1. The current state and the error 
covariance matrix are projected for the next time step using equations (11) and (12). The next 
state is then computed by correcting the estimate that was made in step 1. This is done by 
using the measurement noise matrix ܴ to compute the Kalman gain K. The Kalman gain K is 
used to scale the contribution of the distance measurement inputs to the next state estimate 
in step 4. The error covariance matrix that was projected for the next time step is corrected, 
and the process repeats all over again. 
 

 

Fig. 3. Extended Kalman filter operation 
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In this chapter, the performance of the P, PV, and PVA extended Kalman filter models will 
be compared. The benefit of one over the other depends upon the characteristics of the 
motion of the object. A system modeled using just P will work when the position is mostly 
constant and the velocity can be treated as noise. In the case of a PV model, it will tend to 
work better when velocity is mostly constant, and the acceleration can be treated as noise. 
PVA on the other hand works better when the acceleration is mostly constant (Welch, et al., 
2007). 

4. Experiment design 

We will explore the performance of the P, PV, and PVA models of the Kalman filters using 
MIT's Cricket sensors (Priyantha, et al., 2000). However, as was discussed, the use of 
ultrasound introduces noise. The distance measurements returned by the sensors fluctuate 
often and these measurements are the inputs to the Kalman filters. We simulate the two 
dimensional motion of an object by collecting distance measurements of the mobile node 
while physically moving it in a network composed of Cricket sensors (see Figure 4). A tile 
floor provided a very regular grid of 30 cm in size upon which the sensors could be 
accurately located. Four Cricket sensors are used, three as beacons and the other as the 
mobile node. 
 

 

Fig. 4. Cricket sensor 

 

Fig. 5. Experiment Test Bed                                Fig. 6. Locations of Testing Data Collected 
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Using a grid of 300 cm × 300 cm, beacons were placed at the coordinates of (0,  300), (300, 
300), and (300, 0) of the grid as shown in Figure 5. For each of the 121 tested position, 
distances measurements were collected from the three beacons. This is indicated using the 
“*" sign in Figure 6.  The distances are input as Dk in step 4 of the Kalman filter procedure to 
update the state estimate, as shown in Table 1. 
The measurement noise for each of the sensors was assumed to be independent of the 
others. The measurement noise was obtained by taking the average difference between the 
actual and estimated distances from the beacons to the nodes. However, it should be noted 
that for the path generated in Figure 6, the measurement noise was restricted to 30 cm. Any 
measurement with error greater than this was discarded. In the next section, the robustness 
of the Kalman filter will be analyzed using the raw distance measurements of another path 
traced out by a moving object.   
The process noise matrix Q is more difficult to obtain. Approximate behavior such as the 
standard deviation of the position for the P model about the estimated movement of the 
object can be used. Of course, the standard deviation of velocity would be applied for the 
PV model, and the standard deviation of the acceleration for the PVA model. 
Determination of the correct process noise parameters are key to accurate localization as will 
be seen in the next section. The process noise parameters for comparing the three models of 
the Kalman filter were obtained by computing the average error in localization for varying 
values of process noise, and the noise parameters that correspond to the least localization 
error were used. 

5. Results 

5.1 Performance comparison 
Figures 7A, 7C, and 7E show the localization accuracy of the P, PV, and PVA methods, 
respectively. Two metrics were utilized in comparing the performances of the Kalman 
filters. The first is the average distance error in localization per estimate, as defined by 
equation (16).  
Another metric that was used is the Root Mean Square Error (RMSE). This metric computes 
the error in localization for the X and Y coordinates and squares it. The sum of all errors are 
computed, divided by the number of estimates, and the square root is taken of the resulting 
value. The benefit of the RMSE given in equation (17) is that the error in localization of the X 
and Y coordinates is available. The X and Y RMSE values can be combined using equation 
(18) to result in the Net RMSE that describes the net error.  An interesting characteristics of 
the RMSE is that it is biased towards large errors. A large error make a larger contribution in 
RMSE than in average distance error.  

ݎ݋ݎݎܧ ݁ܿ݊ܽݐݏ݅ܦ    ൌ  ∑ ඥሺ௑ಲ೎೟ೠೌ೗ି ௑ಶೞ೟ሻమାሺ௒ಲ೎೟ೠೌ೗ି௒ಶೞ೟ሻమே௨௠௕௘௥ ௢௙ ா௦௧௜௠௔௧௘௦   (16) 

ܧܵܯܴ    ൌ  ට∑ሺ஺௖௧௨௔௟ ି ா௦௧௜௠௔௧௘ௗሻమே௨௠௕௘௥ ௢௙ ா௦௧௜௠௔௧௘௦   (17) 

ܧܵܯܴ ݐ݁ܰ      ൌ  ටܺோெௌாଶ ൅ ோܻெௌாଶ   (18) 

As Table 2 indicates, the P model has the least distance error per estimate and the least Net 
RMSE and hence the best localization performance. This is followed closely by the PV 
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model, and finally the PVA model. It should be noted, that Table 2 lists the minimum error 
that can possibly be attained by these methods. This was done, by evaluating the Kalman 
filter for a variety of process noise parameters and selecting the resulting minimum error.  
The discussion that follows will clarify this point. 
 

Method Avg. Distance Error 
Per Estimate (cm) 

RMSE  
(cm) 

Net RMSE 
 (cm) 

P 8.1626 (6.8520, 7.2268) 9.9587 

PV 8.5811 (6.8160, 7.5349) 10.1603 

PVA 9.4023 (7.7226, 7.9404) 11.0741 

Table 2. Accuracy Comparison between P, PV and PVA models 

There is an interesting anomaly between the RMSE values of the X coordinates for the P and 
PV models. Although the P model has the lower distance error per estimate and Net RMSE, 
its localization in the X direction is not as good as the PV model. This anomaly indicates that 
the PV model can potentially be a better candidate in some scenarios. 
A good portion of the error for all of the methods seems to be along the edge of the testing 
boundary in the vicinity of the beacons. This may be due to the fact that the use of 
ultrasound on the Cricket sensors results in large interferences between signals close to the 
beacons.  
The experiments also show that the Kalman filters display relatively large errors at the 
edges of the boundaries. This may be due to the fact that the Kalman filters iteratively close 
in on the localized position. At the boundaries, where the object's motion takes a sudden 
turn, the Kalman filter's estimates require a few iterations before it can “catch up" with the 
object. This may be due to the process noise of the simulated motion of the object not 
adhering to Gaussian characteristics, which is assumed in Kalman filter.  
In the case of the P model, the assumption that velocity and acceleration are just random 
noise allow it to take these turns with less error. The PV and PVA models are forced to 
maintain rigidly to the Kinematic equations. 
Figures 7B, 7D, and 7F depict the percentage of varying magnitudes of error for the P, PV, 
and PVA models respectively. It is observed that the P model has a greater percentage of 
errors of low magnitude, whereas the PV and PVA models have lower percentages, but of 
greater magnitude. The P model seems to make many small errors at each step, whereas the 
PV and PVA make large errors, typically at the edge of the boundary. 
Table 3 summerizes the maximum error values and their locations in our experiments. Note  
that the PV and PVA models have their maximum error values close to the same locations. 
 

Method Max Error (cm) Coordinate of Max Error 

P 38.0901 (285, 50) 

PV 31.7478 (20, 254) 

PVA 32.6776 (45, 255) 

Table 3. Maximum error and location of maximum error 

The process noise is an independent variable of the system, and it attempts to predict the 
motion and future estimates of the position of the object. For this reason, it is impossible to 
exactly ascertain this paramter. Even when points on the path of the object are given, this is not 
sufficient since they are just samples of a coarse simulation of the movement of an object.  
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A. P model estimation 
 

B. P model error distribution 

 

C. PV model estimation 

 
D. PV model error distribution 

 

E. PVA model estimation F. PVA model error distribution 

Fig. 7A, 7C, 7E. Comparison between actual 
and estimated tracked paths as given by P, PV, 
and PVA models 

Fig. 7B, 7D, 7F. Distribution of the 
magnitude of error for localized positions 
for P, PV, and PVA models. 
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The process noise parameter matrix Q was obtained by using varying values of the X and Y 
process noise parameters, and computing the average distance error for the entire path for 
that set. Figure 8 depicts a surface plot of X and Y process noise parameters versus the 
resulting average distance error. It is interesting how the use of inaccurate process noise 
parameters effects the perfomance; for low value of the X component of the process noise, 
the resulting error is very high. The minimum average distance error as given in Table 2, 
was found for process noise paramters, (300,100), which interestingly implies that the 
process noise parameters don’t seem to matter a great deal for the P model. In this model, 
the velocity is considered as the process noise, and hence the units can be considered as cm. 
The minimum error that was listed in Table 2 was obtained for the process noise parameters 
listed in Table 4. 
The same steps were taken to obtain the process noise parameters for the PV model. 
However, here the acceleration is considered as the process noise, and the unit are cm/sec.  
 

Method 
Avg Distance Error 
Per Estimate (cm) 

Process 
Noise 

Units 

P 8.1626 (300,100) cm 

PV 8.5811 (300,62) cm/sec 

PVA 9.4023 (37,18) cm/sec2 

Table 4. Process noise parameters corresponding to the minimum distance error  

The PVA model presents an interesting relationship between the process noise and its 
performance unlike the P and PV models. The process noise parameters for the PVA model 
corroborate well with the movement of the object, since the object moves almost 30 cm along 
the X-axis and almost 20 cm along the Y-axis at each step as depicted in Figures 7A, 7C, and 
7E.  
The process noise values listed in Table 4 are input to the Kalman filter by setting ݍ௫ of the 
process noise matrix ܳ in equation 4 to the x component, and ݍ௬ to the y component. 

In the analysis presented above, the average distance error in localization was used as a 

metric in determining the process noise paramters. However, it is also possible to use the 

RMSE value to do the same. Suprisingly, there is a strong correlation between the process 

noise obtained using the average distance error and RMSE metrics indicating the suitability 

of this procedure. Table 5 lists the appropriate process noise values corresponding to the 

minimum RMSE value. In the interest of space and brevity, the surface graphs that were 

used to obtain these values will not be displayed. 

 

Method RMSE (cm) Process Noise Units 

P 9.9587 (300,100) cm 

PV 10.1572 (300,71) cm/sec 

PVA 11.0584 (34,13) cm/sec2 

 Table 5. Process noise parameters corresponding to the minimum RMSE 
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Fig. 8. Process noise versus average distance error of localization for P model. 

 

 

Fig. 9. Process noise versus average distance error of localization for PV model 
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Fig. 10. Process noise versus average distance error of localization for PVA model 

5.2 Robustness comparison 
Armed with the analysis procedure given above , the robustness of these methods will now 

be evaluated. A new path traced out by a moving node was generated as shown in Figure 11 

that  contains nearly 271 points with an average step size of 10.48 cm whereas the path in 

Figure 6 contains 222 points with an average step size of 14.13 cm.  

The robustness of each of these Kalman filter models was examined by comparing the 

performance of each of these models for various magnitudes of erroroneous distance 

measurements. This is unlike the first path generated, where the error in distance 

measurements exceeding 30 cm was discarded. The distance measurements to the path 

traced out by the moving object as shown in Figure 11 were collected and categorized into 

six data sets. In the first data set, no distance measurements were removed. All spurious 

distance measurements of any magnitude were kept. The maximum threshold for the error 

was set to 10,000 cm to include all distance measurements regardless of the size of the error. 

(No distance measure error exceeded 10,000 cm.) In the second set of data, distance 

measurements with errors of only 300 cm or less were kept. In the third, distance 

measurements with errors of only 200 cm or less were kept. In the fourth, distance 

measurements with errors of 100 cm or less were kept. In the fifth, distance measurements 

with errors of 50 cm or less were kept, and in the last data set, only measurements with 

errors that did not exceed 30 cm were kept. In this way, the method most capable of 

localizing under these demanding conditions can be identified.  
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Fig. 11. New path generated for testing robustness 

 

Error 
Method 

Maximum 
Error 

Threshold 
(cm) 

P Model PV Model PVA Model 

Avg Error
(cm) 

Process 
Noise 
(cm) 

Avg  
Error 
(cm) 

Process 
Noise 
(cm/s) 

Avg 
Error 
(cm) 

Process 
Noise 

(cm/s2) 

Dist. Error 10000 278.6226 (6,11) 328.0187 (8,7) 479.274 (5,5) 

RMSE 10000 376.3137 (6,5) 480.9813 (7,6) 645.7573 (5,6) 

Dist. Error 300 22.149 (16,26) 28.039 (72,50) 35.0343 (6,38) 

RMSE 300 29.6411 (5,10) 46.7252 (34,5) 59.0939 (6,26) 

Dist. Error 200 15.4266 (35,100) 17.5227 (10,5) 19.2767 (8,9) 

RMSE 200 20.5447 (8,20) 24.5717 (5,5) 27.8166 (8,9) 

Dist. Error 100 11.8554 (69,100) 12.6885 (150,67) 13.3489 (38,5) 

RMSE 100 14.5468 (33,100) 15.7661 (10,71) 16.2669 (8,5) 

Dist. Error 50 10.9748 (82,100) 11.4858 (300,100) 11.9595 (107,52) 

RMSE 50 12.7345 (63,100) 13.6644 (300,100) 14.2215 (121,5) 

Dist. Error 30 10.5008 (125,100) 10.9549 (300,100) 11.2604 (174,50) 

RMSE 30 11.8822 (100,100) 12.6447 (300,100) 13.0828 (300,10) 

Table 6. Six different data sets and the minimum averge distance error and the RMSE error 
and the corresponding process noise parameters for the P, PV, and PVA models. 

Figure 12, 13, and 14 depict the surface plots of the process noise versus the average distance 
error measurement of localization for the P, PV, and PVA models. In Figure 12, the average 
distance error increases at a nearly smooth and steady rate. This is in contrast to Figure 8, 
where the error decreased for increasing process noise. In Figure 13 and 14, the average 
distance error flutuates wildly with changing process noise, while the general trend seems 
to indicate that the error increases with increasing process noise. 
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Surface plots examining the behaviour of the RMSE instead of the average distance error 

were also generated, however, for the sake of brevity they will not be presented here. The 

first rows in Table 6 lists the minimum average distance error, 278.6226 cm, for process noise 

at (6,11) cm for the set of data containing up to 10,000 cm error in distance measurements. 

The minimum average distance errors and the corresponding process noise values  for the 

PV and PVA models are listed next. The next row in Table 6 lists the minimum RMSE values 

and corresponding process noise parameters for the P, PV, and PVA models respectively. 

The next two rows deal with the minimum average distance error and RMSE for a 

maximum of 300 cm error in the distance measurements for the P, PV, and PVA. The results 

for maximum thresholds of 200, 100, 50, and 30 cm follow.  

It is clear from the graph that the P model consistently has lower error than the other 

models, and the PV model performs better than the PVA. It is also interesting to note that at 

a high error threshold, the process noise for the P, PV and PVA models is low. As the error 

threshold decreases, the process noise increases. 

It is a testament to the Kalman filters that the error rates between error threshold 100 cm and 

30 cm for the P, PV, and PVA does not change much. For example, the average distance 

error for P changes only 1.3546 cm (11.8554 – 10.5008) and the error rates for PV and PVA 

change by only 1.7336 and 2.0885 cm. That is at most a 16 percent drop in error for nearly a 

70 percent decrease in the magnitude of erroneous distance measurements. In other words, 

even with errors of up to 100 cm in distance measurments, the Kalman filter models were 

still capable of localizing fairly accurately. Figures 15A, 15C, and 15E reveal the performance 

of the P, PV, and PVA models for error threshold of 100 cm. Figures 15B, 15D, and 15F 

reveal the performance of the P, PV, and PVA models for error threshold of 30 cm. It is 

apparent between Figures 15A and 15C that the P model is better adept at tracking the 

irratic motion of the object. The PV and PVA models overshoot sudden turns and require 

several iterations before they close in on the object‘s position again. 

Table 6 show that pre-filtering of the distance measurements can result in a significant 

decrease of errors in localization, especially between error thresholds of 10,000 and 100 cm. 

The level of pre-filtering does not need to be very rigorous since the Kalman filter is very  

robust. Extremely large errors in distance measurements can be easily spotted and 

eliminated. One such method is utilizing the past distance measurements and the maximum 

rate at which the object is expected to move. This projection can be used as a threshold 

against which the current distance measurements can be compared and if necessary 

discarded.  Assuming that the last distance measuments for three becons are stored in ݀ଵ, ݀ଶ, and ݀ଷ. Maximum velocity and acceleration attainable by the object are ݒ௠௔௫ and ܽ௠௔௫ . 

Using the distance from beacon ͳ, the mobile node can either be moving away from the 

beacon or approaching it. In case that the object is moving away from the beacon, the 

distance from the beacon will increase as given by equation (19) for  ݀ଵ௠௔௫ା  where ܶ is the 

time step. However, if the object is approaching the beacon, then the distance will decrease 

as given by equation (20) for  ݀ଵ௠௔௫ି  .   
    ݀ଵ௠௔௫ା ൌ  ݀ଵ ൅ ܶ · ௠௔௫ݒ ൅ ଵଶ ܶଶ · ܽ௠௔௫  (19) 

    ݀ଵ௠௔௫ି ൌ  ݀ଵ െ ܶ · ௠௔௫ݒ ൅ ଵଶ ܶଶ · ܽ௠௔௫    (20) 
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Fig. 12. Process noise versus localization error for P model using a maximum error threshold 
of 10,000 cm 

 

Fig. 13. Process noise versus localization error for PV model using a maximum error 
threshold of 10,000 cm 
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Fig. 14. Process noise versus localization error for PVA model using a maximum error 
threshold of 10,000 cm 

Subtracting equation (20) from (19) results in: 
 

                       ∆݀ଵ  ൌ ݀ଵ௠௔௫ା െ  ݀ଵ௠௔௫ି  
                                   ൌ ቀ݀ଵ ൅ ܶ · ௠௔௫ݒ ൅ ଵଶ ܶଶ · ܽ௠௔௫ቁ െ ቀ݀ଵ െ ܶ · ௠௔௫ݒ ൅ ଵଶ ܶଶ · ܽ௠௔௫ቁ                                    ൌ ʹ · ܶ · ௠௔௫ݒ ൅ ܶଶ · ܽ௠௔௫                                    ሺʹͳሻ 
 
Equation (21) results in a threshold against which we can compare future distance 
measurements from beacon ܤͳ. Thresholds for the other beacons ʹ and ͵ can be obtained 
similarly. If the absolute value of the current distance measurement minus the previous 
measurement is greater than than the predefined threshold ∆ܦ, then this current distance 
measurement can be discarded. 

5.3 Computation requirement comparison 
Thus far, only the accuracy of the localization methods has been examined without any 
discussion of the computation requirements associated with them. As mentioned before, 
these localization methods will be implemented on an embedded system with limited 
capabilities. Based on the application, an appropriate localization method must be used that 
balances accuracy with the capabilities of the system. 
The following analysis utilizes the number of floating point operations as a metric to 
compare the different methods. For simplicity of presentation, this analysis assumes that the 
embedded system has native floating point capabilities and does not rely on integer 
computations to mimic floating point operations. Further, this analysis only accounts for 
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A. P model, Error threshold = 100  cm B. P model, Error threshold = 30 cm 

C. PV model, Error threshold = 100  cm D. PV model, Error threshold = 30 cm 

E. PVA model, Error threshold = 100  cm F. F. PVA model Error threshold = 30 cm 
 

Fig. 15A, C, and E. Performance of P, PV, and 
PVA models with error threshold of 100 cm. 

 

Fig. 15B, 15D, and 15F. Performance of P, PV, 
and PVA models with error threshold of 30 cm. 
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steady-state computation, meaning the initialization and setup computations are not 
considered. All the addition, subtraction, multiplication, and division steps  that must be 
evaluated for each matrix operation for the equations given in Table 1 were considered. 
 

Method Number of Floating Point Operations per Iteration 

P 268 

PV 884 

PVA 2220 

Table 7. Comparison of Floating Point Operations between methods 

As Table 7 reveals, the P model is the least computationally intensive. It is followed by the 

PV and PVA Kalman filters. This is intuitive since the P model has only two element in its 

state, and the dimensions of the state space model ܣ, process noise ܳ, covariance ௞ܲ, and 

Kalman gain ܭ௞matrices will be much smaller. Whereas the larger number of elements in 

the PV and PVA state result in greater dimensional matrices used during the evaulation of 

the Kalman filter equations, and hence a greater number of computations. 

The Kalman filter equations involve many matrix multiplications and an inverse operation 

for computing the Kalman gain K. These two operations have complexity O(n3) and as a 

result the Kalman filter is also of complexity O(n3) where n is the number of parameters in 

the state. 

 

Method Order of Magnitude Comment 

P O(n3) n is the number of elements in the state variable. 

PV O(n3) n is the number of elements in the state variable. 

PVA O(n3) n is the number of elements in the state variable. 

Table 8. Computational complexity between methods 

5.4 Memory requirement comparison 
This section takes a cursory glance at the memory needs of the three Kalman filter models. It 
should be noted that the memory usage described here is the steady state memory, this does 
not take into account any initializations that may be required for different applications. It is 
also assumed that floats are four bytes long and that all variables in the Kalman filter 
equations require the float type. 
In the expressions for the three Kalman filters, n is the number of elements in the state 
variable and m is the number of distance readings. The expressions for the memory 
requirements of the Kalman filters include an additional (n2 + n + 2nm + m + m2) bytes of 
memory for temporary variables. 
Since the measurement noises for each of the sensors in the experiment was assumed to be 
independent,  R (measurement noise matrix)  in Equation (12) of the Kalman filter contains 
values only along the diagonal. Instead of a matrix, a vector (mx1) can be used to represent 
each of the values along the diagonal and saving some space. 
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Name of Variable Kalman Filter 
Variable 

Matrix  
Dimension 

Total Size 

State model A n×n n2 

State estimate ܺ௞ି n×1 n 

Last state estimate ܺ௞ିଵ n×1 n 

Estimated covariance ௞ܲି  n×n n2 

Last estimated 
covariance 

௞ܲିଵ n×n n2 

Process noise ܳ n×n n2 

Output measurement 
matrix 

H n×m nm 

Measurement noise R m×1 m 

Kalman gain ܭ௞ n×m nm 

Next state ܺ௞ n×1 n 

Distance vector ܦ௞ m×1 m 

Next covariance  ௞ܲ n×n n2 

Position of sensors Sensor location m×2 2m 

Total 5 n2 + 3n + 2nm + 4m 
 

Table 9. Computation of memory usage of Kalman filter variables. 

The temporary variables listed in Table 10 are used during the Kalman filter operation to 
hold intermediate values during matrix multiplication and other operations. It should be 

noted that during the computation of the error covariance matrix ௞ܲ, it requires a temporary 
variable of size(nൈn). However, while projecting the error covariance matrix ௞ܲି , a 
temporary variable of size (nൈn) is utilized. This same temporary variable can be used 
during the computation of ௞ܲ as well. 
 

Total Memory = [Kalman Filter Variables + Temporary Variables] ൈ 4 Bytes 
           = [(5n2 + 3n + 2nm + 4m) + (n2 + n + 2nm + m +  m2)] ൈ 4 Bytes 
           = [6n2 + 4n + 4nm + 5m + m2] ൈ 4 Bytes                                              (22) 
 

Equation (22), describes the total memory required for the computation of the Kalman filter 

equations. The number of distance measurements m is assumed to be 3, since this is the  

smallest number of distance measurements required to localize. The value for n for each of 

the P, PV, and PVA models depends upon the number of elements in each of their states 

which is outlined in Table 11. 
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Kalman Filter Equations Terms Requiring 
Temporary Variables 

Variable 
Size 

Total 
Size ܺ௞ି ൌ ܣ · ܺ௞ିଵ ൅ ܤ · ܷ௞ (10)    

௞ܲି ൌ ܣ · ௞ܲିଵ · ்ܣ ൅ ܣ} (11) ܳ · ௞ܲିଵሽ n×n n2 ܭ௞ ൌ ௞ܲି · ்ܪ · ሺܪ · ௞ܲି · ்ܪ ൅ ܴሻିଵ (12) { ௞ܲି ·  {்ܪ

{ ܪ · ௞ܲି } 

{ ܪ · ௞ܲି ·  {்ܪ

n×m 
m×n 
m×m 

nm 
nm 
m2 ܺ௞ ൌ ܺ௞ି ൅ ௞ܭ · ሺܦ௞ െ ܪ · ܺ௞ି ሻ (13) { ܪ · ܺ௞ି } 

௞ܭ} · ሺܦ௞ െ ܪ · ܺ௞ି ሻሽ     

m×1 
n×1 

m 
n 

௞ܲ ൌ ሺܫ െ ௞ܭ · ሻܪ · ௞ܲି ௞ܭ} (14)  ·   n×n { ܪ

 Total Size n2 + n + 2nm + m +  m2 

 

Table 10. Computation of memory usage of temporary variables for Kalman filter. 

 

Method Number of elements (n) 

P 2 

PV 4 

PVA 6 

 

Table 11. Number of elements in the state variable for each of the methods 

 

Method 
Total Memory 

 Usage 
Number of Bytes 

P 6n2 + 4n + 4nm + 5m + m2 320 

PV 6n2 + 4n + 4nm + 5m + m2 736 

PVA 6n2 + 4n + 4nm + 5m + m2 1344 

 

Table 12. Comparison between memory requirments between localization methods 

6. Summary 

The Kalman filter is very capable of localizing using noisy distance measurements in a 

wireless sensor network. The P model of the Kalman filter was found to have the best 

performance in these examples, however, depending on the motion of the tracked object the 
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PV or PVA model could be better. In the examples studied in this chapter, the P model is 

more adept at tracking the movement of an object with sporadic motion with sharp turns. 

Since the P model treats velocity and acceleration as random noise, it is less bound by these 

parameters. The PV and PVA models are bound by the Kinematics equations which do not 

allow for motion that is discontinuos in velocity and acceleration. 

Two metrics were introduced that can be used to measure the accuracy of localiztion: the 

average distance error in localization and the Root Mean Square Error (RMSE). The average 

distance error in localization and the RMSE are very consistent metrics, although the RMSE 

method will return a higher error rate due to the squaring of the error.   

The process noise parameters allow the Kalman filter to project the position of the object 

in the next time instant. If the proper process noise parameters are not used, the 

performance of the Kalman filters will be severly affected. In oder to obtain process noise 

parameters, the error rates can be computed for a variety of process noise paramters and 

the process noise parameters that result in minimum localization error can be used. This 

needs to be done each time a new path is expected to be taken by a mobile node because 

by comparing Table 4 and the section of Table 6 with error threshold of 30 cm, we can see 

that the process noise that results in the minimum localization error does indeed change 

between the two paths. 

The Kalman filters are robust, and as the results indicated, there was very little difference in 

performance when the magnitude of errors in distance measurements was 100 cm and when 

the magnitude of error was 30 cm. However, despite the Kalman filters robustness, 

significant performance gains can be attained if the distance measurements used for 

localization are pre-filtered to ensure that they are not too erroneous. A method that was 

suggested was using the past distance measurements and the maximum velocity and 

acceleration attainable by the mobile node to project the next distance measurement. If the 

next distance measurement exceeds this threshold, it can be discarded. 

Since localization methods well suited for wireless sensor networks using embedded 

systems with limited resources was desired, there is a need to analyze the computation and 

memory requirements. The P model Kalman filter was found to have the best computation 

and memory requirements due to the small number of elements in its state variable. This is 

followed by the PV model, and then the PVA model. 

Although, in the experiments outlined in this chapter the process noise corresponding to 

reasonable low localization error was obtained, the task of obtaining process noise values in 

a real world scenario with a real moving object may be challenging. Especially if the path of 

the object is not known beforehand. 

An assumtion that was made during these experiments was that the measurement noise ܴ 

of each beacon is independent of the other which resulted in values only along the diagonal. 

However, in actuality, this is not the case especially when dealing with ultrasound pulses; 

the ultrasound pulses from each of the beacons may interfere with each other. This means 

that the measurement noise matrix, ܴ, has values in all positions. Future work is needed to 

study the effects of interferances between beacons.  

The experiments in this chapter focused only on the use of three beacons. Further study is 

needed to determine the effects of having more than three beacons and determine a policy 

for selecting the beacons to use the distance measurements from.  
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