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Abstract

Multipotent mesenchymal stromal cells [also referred to as mesenchymal stem cells 
(MSCs)] as was previously described, are a heterogeneous subset of stromal cells with 
regenerative potential. Their present tropism for inflamed sites including tumors lesion 
may be adverse or therapeutic effects arising from MSC administration; in this context, 
their potential for producing trophic and immunomodulatory factors raises the question 
as to whether MSCs promote or interact with a tumor microenvironment. Previous stud-
ies show a paradoxical effect regarding MSCs, which seems to depend on isolation and 
expansion, cells source, dose and both route and timing of administration. The occur-
rence of neoplastic transformation in ex vivo expanded MSCs after a long-term culture 
has been reported, however, this event has been subsequently described as uncommon, 
with an estimated frequency of <10−9. Furthermore, neither ectopic tissue formation nor 
MSC-originating tumors have ever been reported so far in hundreds of patients treated 
with MSC therapy. The biosafety of these cells, both in precancerous and cancerous 
environments, has been little investigated to date. We found in an animal model of oral 
cancer that locally or systemically administered allogeneic MSCs do not aggravate the 
progression of precancerous lesions. Moreover, they preclude cancer progression and 
tumor growth, particularly at papilloma stage.

Keywords: mesenchymal stem cells, multipotent mesenchymal stromal cells, tumoral 
microenvironment, cancer

1. Introduction: Properties of the MSC

Mesenchymal stem cells (MSCs) are a promising source for cell therapy in regenerative medi-

cine. The therapeutic properties of MSCs are related to their potentials for transdifferentiation, 
immunomodulation, and trophic factor secretion. Investigators have isolated MSCs from many 
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different tissues, including bone marrow, adipose tissue, umbilical cord blood, peripheral 
blood, dermis, liver, skin, and skeletal muscle [1–4]. Previously it has been reported that MSCs 

from different sources (adipose tissue, bone marrow, kidney, muscle, etc.) share characteristics 
properties (i.e., expression of cell surface antigens, immunomodulatory capability, and tropism 

toward tumor) [5–8]. On the other hand, it has been reported that MSCs isolated from different 
sources can be found into tumor microenvironments, and depending on the level of commit-

ment to a certain lineage by MSCs, they can be transdifferentiated faster to certain cell types 
depending on the source [9]. The MSCs from different source express a distinct set of genes, 
which is a reflection of its commitment related to their potential of differentiation (including 
adipocytes, osteocytes, chondrocytes, hepatocytes, fibroblasts, and pericytes) [10, 11]. MSCs 

can be expanded until five passages preserving their therapeutic potential for use in clinical 
applications [12, 13]. Additionally, the transdifferentiation of MSCs has rarely been observed 
in animal models [14]. Regarding the immunomodulator potential, it has been reported that 

MSCs can secrete various immunomodulators, such as nitric oxide (NO), prostaglandin (PGE2), 

indoleamine 2,3-dioxygenase (IDO), interleukin (IL)-6, IL-10, and HLA-G [12, 13]. Regarding 

the immunomodulatory potential of MSCs, there are molecules that can moderate the immune 

response such as nitric oxide (NO), prostaglandin (PGE2), indoleamine 2,3-dioxygenase (IDO), 

interleukin (IL)-6, IL-10, and histocompatibility antigen class I, G (HLA-G). These soluble factors 

modify the function of immune cells and induce T regulatory cells activation ([14]). In addition, 

MSCs can suppress immune cell activation via cell-to-cell contact. MSCs can also inhibit the pro-

liferation of effector T cells by activating programmed cell death pathways such as apoptosis by 
the interaction of programmed death signal molecules type 1 (PD-1) with their related ligands 

PD-L1 and PD-L2. On the other hand, it has been reported that MSCs can induce T cell anergy by 

inhibiting the expression of CD80 and CD86 in antigen-presenting cells [15–17]. Among the wide 

range of factors that MSCs secrete, are modulators that can regulate inflammation, apoptosis, 
angiogenesis, fibrosis, and tissue regeneration [18]. In addition, previous studies reported that 

MSCs produce trophic factors that promote cell survival (SDF-1, HGF, IGF-1), cell proliferation 

(EGF, HGF, NGF, TGF-α), and angiogenesis (VEGF) [19, 20]. Faced with the signal of damaged 

tissue, MSCs can migrate to the site of injury (homing) by sensing chemoattractant gradients of 
cytokines secreted by the extracellular stromal matrix (MEC) and spreading through the periph-

eral blood to all the organisms [21–24]. At the site of injury, MSCs are stimulated and activated 

by local damage and repair factors, such as hypoxia, the cytokine environment, and Toll-like 

receptor ligands. This cascade of stimuli as a whole promotes the production and the release 

of abundant growth factors that converge to increase tissue regeneration [28, 29]. In contrast to 

the use of MSCs in regenerative medicine, recent data suggest that MSCs may increase tumori-

genesis or inhibit tumorigenesis [25, 26]. In the tumor microenvironment, the tumor tries to 

avoid recognition by the immune system while secreting inflammatory mediators to establish 
and maintain a constant state of inflammation [27]. In addition, the correlation between normal 

cells, cancer cells, and the matrix within the tumor microenvironments has gained increasing 

attention, especially because these interactions contribute to certain hallmarks of cancer, such as 
immunomodulation, angiogenesis, invasion and metastasis, and apoptotic resistance [28–30]. 

Regarding, if the MSCs promote or suppress tumor development, in several studies shown 

that MSCs perform homing the tumor microenvironment and then promote the formation of 
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tumor blood vessels, improving the fibrovascular network and suppressing immune responses, 
modulating thus the tumor response to antitumor therapy [31–35]. Unlike its tumor-promoting 

abilities, MSCs can also suppress tumor growth by inhibiting proliferation-related signaling 

pathways, such as AKT, PI3K, and Wnt, by the secretion of proapoptotic molecules such as 

Dikkopf type 1 (Dkk1) inhibiting the progression of the cell cycle; in turn, they can negatively 

regulate the X-linked inhibitor of the apoptosis protein (XIAP) and suppression of angiogenesis 

[31, 36, 37] (Figure 1). In this chapter, we will analyze how MSCs can contribute to tumori-

genesis, including (i) transition to tumor-associated fibroblasts; (ii) suppression of the immune 
response; (iii) promotion of angiogenesis; (iv) stimulation of epithelial-mesenchymal transition 

(EMT); (v) through contribution to the tumor microenvironment; (vi) inhibition of tumor cell 

apoptosis; through contribution to the tumor microenvironment; (vi) inhibition of tumor cell 

apoptosis, and (vii) promotion of tumor metastasis.

Figure 1. MSC effects in clinical use. The therapeutic potential of MSCs relies on several unique properties as: (i) 
the capacity to differentiate into various cell lineage, (ii) the ability to secrete paracrine factors initiating healing and 
regeneration in the surrounding cells, (iii) the ability to reduce inflammation and regulate immune response and to 
migrate to the exact site of injury.
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2. MSC and cancer: how they relate?

2.1. MSCs can induce epithelial-mesenchymal transition

The epithelial-mesenchymal transition (EMT) is a process characterized by downregula-

tion of proteins associated with cell adhesion present in epithelial cells such as E-cadherin, 

γ-catenin/plakoglobin, and zonula occludens-1. In turn, it triggers an upregulation of pro-

teins related to the mesenchymal phenotype, such as N-cadherin, vimentin, fibronectin, and 
alpha smooth muscle actin [38, 39]. The EMT is present during organogenesis and wound 

healing. EMT has also been described during the development of epithelial tumors, which 

is associated with a more undifferentiated and metastatic phenotype (poor prognosis) [40]. 

There are accumulated evidence that suggests that a defective EMT promotes tumor inva-

sion, metastasis, and chemoresistance to medications [41]. In many tumors, the presence 

of cytokines such as HGF, EGF, PDGF, and TGF-β produced and released by the stroma 
associated with the tumor, act by inducing EMT and favoring processes such as metastasis 

[42, 43]. Interestingly, it has been reported that these factors are secreted by MSCs [44] and 

that they can activate a number of transcription factors of genes that promote EMT, such 

as Snail, Slug, zinc finger E-box binding homeobox 1 (ZEB1), and Twist related protein-1 
(TWIST) to transmit EMT promotion signals [45–47]. A recent study demonstrated the acti-

vation of specific genes to induce EMT in breast cancer cell lines when they were co-cultured 
with MSCs and a decrease in expression of genes related to epithelial differentiation [48]. 

MSCs also improve the ability to trigger the metastatic cascade in colon cancer cell lines 

through high expression of EMT-associated genes (ZEB1, ZEB2, Slug, Snail, and Twist-1), 
in a cell-cell-dependent manner. It should be noted that the decrease in the expression of 

the E-cadherin gene is related to EMT [48]. In breast cancer cell lines, it has been described 

that MSCs produce leptin which results in an increase in the expression of EMT genes and 

associated with metastasis (SERPINE1, MMP-2, and IL-6). On the other hand, in SCID/beige 
mice co-injected with MCF-7 breast cancer cells and with MSCs containing leptin shRNA, a 

decrease in the leptin levels produced by the MSCs was observed and consequently a reduc-

tion in the tumor volume MCF7 and less metastatic lesions in liver and lung [49]. Other 

authors have reported that MSCs can fuse with different cancer cells and unleash the classic 
characteristics of EMT [50–52].

2.2. MSCs can induce transition to tumor-associated fibroblast

MSC to fibroblasts associated with tumors: The tumors consist of cancer cells and different stro-

mal cells that form the tumor cell medium [53]. The tumor stroma consists of an extracellular 

matrix scaffold (MEC) populated by stromal cells that include fibroblasts, immune cells, and 
endothelial cells. Fibroblasts can be activated in the tumor stroma and activated fibroblasts 
(also called myofibroblasts) are called carcinoma-associated fibroblasts (CAF) or tumor-
associated fibroblasts (TAF). CAF/TAF are abundant in most invasive tumors and are mainly 
composed of cells expressing smooth muscle actin α (α-SMA) [54]. These cells can secrete 

SDF-1 with the consequent promotion of tumor growth and angiogenesis [55], which binds to 

CXCR4 expressed by tumor cells [55]. Recently, it was reported that MSCs could differentiate 
into CAFs/TAFs [24, 56, 57]. In fact, MSCs can differentiate into CAF/TAF and increase the 
production of α-SMA, tenascin-C and fibroblast surface protein (FSP), CCL5/RANTES, and 
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SDF-1 by stimulating tumor growth through contribution of angiogenesis and the production 

of tumor stimulating growth factors [37, 61–63] (Figure 2).

2.3. MSCs in tumor microenvironments can modulate the immune response

Immune response in tumor microenvironments: In addition to protecting the host from external 
invaders, the immune system recognizes tumor antigens and eliminates malignant tumors 

[58]. Therefore, tumor growth, invasion, and metastasis are important aspects of the tumor’s 

immune escape mechanism [59, 60]. During tumor initiation, TAMs and MSCs migrate to 

the tumor microenvironments. TAMs act as the main inflammatory component of the tumor 
microenvironment [61, 62]. In contrast, TAMs can show antitumor activities linked to the M1 

phenotype via IFN-γ, TNF-α, TGF-β, PGE2, and IL-10 [72, 77–82]. Also, M1 TAMs secrete 

free oxygen radicals, nitrogen radicals, and pro-inflammatory interleukins (e.g., IL-1β, IL-6, 
IL-12, IL-23, and TNF-β) facilitating the killing of tumoral cells. The MSCs can be activated 
by the pro-inflammatory cytokines IFN-γ, TNF-α, or IL-1βn in tumor microenvironments  
[30, 52, 69, 83, 84]; additionally, the tumor cells and M2 produce immunomodulatory mole-

cules, such as IDO, PGE2, IL-6, IL-10, HLA-G5, and NO [64, 65]. IDO is the critical rate-limiting 

enzyme of tryptophan catabolism through the kynurenine pathway, resulting in tryptophan 

depletion and halting the growth of various cells. In tumor microenvironments, MSCs can be 

activated by pro-inflammatory cytokines IFN-γ, TNF-α, or IL-1β [66, 67]. Within the immuno-

modulatory molecules secreted by MSCs, Prostaglandin E2 (PGE2) has a multifunctional role 

in pathological processes including the regulation of inflammation and cancer. The production 
of PGE2 by MSCs increases after stimulation with TNF-α or IFN-γ. In addition, PGE2 increases 
the level of expression of IL-10 and decreases the expression of TNF-α, IFN-γ, and IL-12 in cells 
of the developing immune system and of macrophages [68, 69]. PGE2 regulates the secretion 

of IFN-γ and IL-4 in Th1 and Th2 cells, respectively, and promotes proliferation of Treg cells 
[19]. It has been reported that IL-6 secreted by MSCs inhibits monocyte differentiation toward 
CD and decreases the activation capacity of CD to T cells [70, 71]. In addition, IL-6 secreted 

by MSCs resulted in a delay in apoptosis of lymphocytes and neutrophils [72, 73]. Another 

important molecule in the moderation of the immune response is nitric oxide (NO). NO is 

produced by inducible NO synthase (iNOS) through stimulation by inflammatory factors such 
as IL-1, IFN-γ, and TNF- α [72, 74] and also inhibits the functions of T cells [75]. In contrast to 

Figure 2. Figure illustrating the epithelial-mesenchymal transition.

Multipotent Stromal Cells in a Tumor Microenvironment
http://dx.doi.org/10.5772/intechopen.77345

67



the reported evidence that MSCs can suppress the immune response, Ohlsson et al. reported 

that administration of tumor cells and MSCs simultaneously caused an increase in the inflam-

matory component in the stroma, mainly composed of granulocytes and monocytes, whereas 

when administered separately, this was not observed [75]. In a rat-induced colon cancer model, 

it was observed that the colon tumor cells inoculated in a gelatin matrix, when implanted 

subcutaneously, developed larger tumors than animals that surgically received colon cancer 

cells combined with MSCs. MSCs inhibited rat colon carcinoma by increasing the leukocyte 

infiltrate [75]. It was observed that the increase in infiltrations of both granulocytes and macro-

phages was much higher in rats co-injected with tumor cell lines and MSCs than in rats injected 

with tumors without MSCs. These data suggested that MSCs had pro-inflammatory effects in 
this model. In this same work, a greater degree of infiltration of granulocytes and macrophages 
was observed, but to a lesser extent, when only MSCs were added to the gelatin. [75].

2.4. MSCs may promote tumor growth

The tumor microenvironment, is composed of cancer cells, noncancerous cells, and stromal 

cells, all this as a whole influences the growth of the tumor [28]. The tumor stroma hosts many 

types of cells, as well as MEC. These cells include different types of immune cells, fibroblasts, 
endothelial cells, and myofibroblasts [28]. MSCs perform homing at tumor sites and then inte-

grate into the tumor stroma [76, 77]. These cells interact with each other and with cancer cells, 

resulting in the promotion of tumor growth. The ability of MSCs to promote tumor growth 

and metastasis was demonstrated in murine models of breast cancer with similar results from 

cancer cells co-implanted with MSCs [24, 78, 79]. In turn, it was observed that allogenic mice 

transplanted with B16 melanoma cells did not in the development of tumors when B16 cells 
were co-injected with MSCs [80]. This finding indicates that MSCs exert essential immuno-

suppressive and antitumor effects at the onset of the tumor. Human bone marrow-derived 
MSCs have increased the growth of estrogen receptor-alpha (Erα) positive breast cancer cell 
lines: T47D, BT474, and ZR-75-1, in an in vitro three-dimensional tumor environment assay, 
in contrast, have had no effect on the ERα negative cell line MDA-MB-231 [81]. Nonetheless, 

the growth rate of (another ERα negative cell line) was high in the presence of human MSCs 
[81]. Another study showed both human fetal MSCs transplanted subcutaneously into 

BALB/c-nu/nu mice with human adipose-derived MSCs alone or together with cell lines F6 
(human mesenchymal stem cells F6) or SW480 (human colon adenocarcinoma cell line) in a 

ratio 1:1 or 1:10, favoring the growth of these tumor cell lines [79]. Other authors reported that 

tumor cells procured from primary breast cancer were grown in the presence of human bone 

marrow-derived MSCs (ratio 1:1). Additionally, this was tested on secondary mice, where a 
greater tumor-producing ability compared with the cells obtained from primary tumors and 

grown in the absence of MSCs was observed [82]. In addition, tumor incidence and/or size 
[83, 84] as well as tumor vascularization [30] increased when breast, lung, colon, or prostate 

tumor cells were co-injected with MSCs independent of the source of origin from the same. 

Similar results were observed with MSCs derived from adipose tissue or human bone mar-

row. The same was demonstrated with tumor cells of osteosarcoma, melanoma, and glioma 

[85]. Another interesting observation relates to adipose tissue adjacent to the tumor implant 

(e.g., lung cancer models or to Kaposi’s sarcoma xenografts), where a substantial increase in 
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tumor size was observed along with the appearance of stromal cells of the implant; MSCs 

derived from adipose tissue may promote tumor growth [86].

The innate tropism of MSCs to injured sites, including established tumors, has been widely 

reported, although the mechanism behind it has not yet been fully elucidated that the proinflam-

matory cytokines secreted by the reactive stroma are involved [24]. The most accepted explana-

tion to date is that the tumors behave as unresolved wounds since their stroma closely resemble 

the healing granulation tissue and produce cytokines, chemokines, and other chemotactic agents 

[27] and the chemotactic properties of MSC are similar to those of leukocytes [87, 88]. The tropism 

of MSCs for tumors has been widely studied and exploited with very good results for the supply 

of antitumor drugs in animal models of lung and breast cancer, melanoma, and glioma [88].

Like any other cell in culture, when long-term MSCs are manipulated in vitro, they can have 

chromosomal aberrations and produce tumors in healthy animals because they undergo cell 

crisis [89]; this has been observed mainly in mouse cells, which require extensive cultures to 

produce a significant number of MSCs free of hematopoiesis [90]. For example, it has been 

demonstrated that the intravenous administration of MSCs derived from bone marrow in 

NOC/SCID mice generates cellular aggregates that are retained in the pulmonary capillaries, 
forming emboli when they are injected in large quantities. Once lodged in the capillaries, they 

expand and invade the lung parenchyma and form tumor nodules [90]. These lesions rarely 

contain lung epithelial cells, but have the characteristics of cartilage and immature bone that 

resembles a well differentiated osteosarcoma. However, until now, no type of transformation 
has been demonstrated by human MSCs adequately expanded ex vivo for cell therapy (no 

more than five passages) [90]. The Canadian Trial Critical Care Trials Group recently reported 

a meta-analysis of randomized, nonrandomized, controlled, and uncontrolled clinical trials, 

phase I and phase II, where they found no reports associating the administration of autolo-

gous or allogeneic MSCs and tumor formation in 36 clinical studies [91]. However, a longer 

follow-up is necessary to evaluate the tumorigenic potential of human MSCs.

2.5. MSCs might promote metastasis

Along with the increasing number of cancer metastasis mechanisms being discovered, it has 

been reported that MSCs can induce metastasis in vitro and in vivo [78, 83, 92, 93]. Previous 

studies showed when human breast cancer cells were co-incubated with MSCs, the gene 

expression of onco and proto-oncogenes in breast cancer cells was upregulated [48]. These 

molecular and morphological alterations were accompanied by a metastatic phenotype. 

Breast cancer cells induce the motility of tumor cells through the secretion of CCL5, increasing 
invasiveness and metastatic potentials [83]. The invasion mediated by CCL5/RANTES is also 
closely related to the increased activity of matrix metalloproteinase 9 (MMP-9) [94].

On the contrary, it has been shown that the increase in metastatic capacity when MSCs are co-

injected with tumor cells is reversed when the MSCs are injected in a different site from the 
tumor and this anti-metastatic effect by the MSCs remains independent of tumor distance [83]. 

Other mechanisms, such as the induction of EMT, the regulation of CSC, and the displacement 

of mesenchymal niches are also implicated in tumor metastasis [95]. Breast cancer cells co-
cultured with MSCs derived from human bone marrow (ratio 1:1) upregulate the expression of 
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oncogenes and proto-oncogenes associated with tissue invasion, angiogenesis, and apoptosis 

(i.e., N-cadherin, vimentin, Twist, Snail, and E-cadherin) [48]. These molecular changes have 

been accompanied by morphological and growth alterations, which are characteristics of a more 

metastatic phenotype. It has been seen that 0.5 × 105 breast cancer cells co-injected subcutane-

ously with 1.3 × 106 MSCs derived from human bone marrow have significantly increased the 
rate of lung metastases in NOD/SCID mice. This effect was lost when the MSCs derived from 
bone marrow were injected separately from the tumor cells [83]. On the other hand, it has been 

shown that MSCs derived from bone marrow facilitate cancer cells [MCF-7, T47D low invasive 

cell lines, and factor 1 derived from stromal cells (SDF-1) null MDA-MB-231 highly aggressive] 
target to the bone marrow and modify the metastatic niche through the secretion of trophic 

factor (SDF-1 and CXCR4) and improved neovascularization in a xenogeneic mouse model 

(Figure 3) [96].

2.6. MSCs might inhibit tumor growth

MSCs can not only secrete cell regenerative factors continuously but also secrete factors in 

response to other various stimuli [97]. Tumor progression is accompanied by hypoxia, starva-

tion, and inflammation. Although many studies have shown that MSCs have tumor promot-
ing properties, many other studies have shown that MSCs have tumor suppressor properties 

Figure 3. Interaction of tumor cells with MSCs during cancer progression. MSCs can interact with tumor cells at the 

primary site of the tumor and during metastasis by promoting cancer progression and invasion. One of the mechanisms 

involved in these processes is that MSCs induce EMT in tumor cells through close cell-cell contact, which could be 

due in part to the secretion of TGF-β [38, 82]. Studies have shown that secretion of osteopontin (OPN) by tumor cells, 

induces MSCs to secrete chemokine (motif CC) ligand 5 (CCL5) by stimulating the metastasis of the cancer cell through 

interaction with its specific chemokine receptor CC type 5 (CCR5) [84]. The migration of tumor cells to and from the 

metastatic site is mediated by SDF-1, a factor secreted by bone marrow MSCs, which interacts with the CXC receptor 

chemokine receptor type 4 (CXCR4) expressed in human tumor cell lines of the breast and prostate [33, 101, 102] (adapted 

from Sarah M. Ridge, Francis J. Sullivan and Sharon A. Glynn. Mesenchymal Stem Cells key players in cancer. Molecular 

Cancer, Feb. 2017 13:31 1-10. https://doi.org/10.1186/s12943-017-0597-8).
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(Figure 1) (reviewed in [30]). In this regard, it is believed that MSCs suppress tumor growth 

by increasing the infiltration of inflammatory cells [97], inhibit angiogenesis [34], suppress 

Wnt and AKT signaling, and induce cell cycle arrest and apoptosis [32, 35, 36]. Recently, Ryu 

et al. reported that when the MSCs derived from adipose tissue were cultured at a high cell 

density, they synthesized IFN-beta, which then suppressed the growth of MCF-7 cells [98]. 

In addition, MSCs prepared with IFN-gamma or cultured with three-dimensional systems 

can express TRAIL, which induces specific apoptosis of tumor cells [97, 99]. In particular, 

it was demonstrated that in vitro culture of MSCs under hypoxic conditions increased cell 

proliferation. In addition, the expression of Rex-1 and Oct-4 was increased, leading to the con-

clusion that MSC scion was increased during hypoxia [100]. In addition, under hypoxic and 

starvation conditions, MSCs can survive through autophagy and release many antiapoptotic 

or pro-survival factors such as VEGF, FGF-2, PDGF, HGF, brain-derived neurotropic factor 

Figure 4. Mesenchymal stem cells can perform homing to the tumor environment. Studies in murine models of gliomas 

have reported that they can be directed to the tumor site through TGF-beta signaling and, once there, they can suppress 

angiogenesis within the tumor microenvironment. The proposed mechanisms are the following in sequential order: 
(1) the glioma microenvironment contains high levels of the proangiogenic cytokine, IL-1 beta. (2) Signaling through 

the NF-kappa B axis increases the expression of Cathepsin B and activates extracellular matrix remodeling programs 
that promote angiogenesis. (3) The increase in beta IL-1 potentiates the signaling of PDGF-BB, which promotes the 
migration of endothelial progenitor cells. (4) Glioma stem cells within a tumor secrete TGF-beta and recruit MSCs 

through TGF-beta RII and the endoglin/CD105 co-receptor. (5) Within the glioma microenvironment, the presence of 
MSCs reduces the levels of beta IL-1, negatively regulating Cathepsin B and decreasing PDGF R-beta signaling. It is 
believed that the downregulation of these signaling cascades in the presence of MSCs inhibits angiogenesis, reduces 

the density of microvessels and suppresses glioma growth. (Adapted from: https://www.rndsystems.com/resources/
articles/mesenchymal-stem-cells-exhibit-tgf-beta-dependent-tropism-gliomas-and-inhibit-angiogenesis).
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(BDNF), SDF-1, IGF-1 and IGF-2, transforming growth factor-beta (TGF-b), and IGF-2 binding 
protein (IGFBP-2) [101, 102]. These factors inhibit the apoptosis of tumor cells and promote 

tumor proliferation, whereas normal MSCs do not acquire these properties. In addition to 

the mitogenic properties of growth factors secreted by MSCs, VEGF and FGF-2 can medi-
ate Bcl-2 expression, delaying apoptosis [103], while indirect angiogenic factors can induce 

VEGF expression and FGF-2 [104]. In addition, SDF-1 was reported to prevent drug-induced 

apoptosis of chronic lymphocytic leukemia (CLL) cells [105]. In addition, VEGF, FGF-2, HGF, 
and IGF-1 expressed by MSCs have been reported to stimulate angiogenic and antiapoptotic 

effects after hypoxic conditioning [101, 106]. Although little is known about how MSCs under 
hypoxic conditions exert support effects on tumor cells directly, growth factors stimulated by 
MSCs, stimulated by hypoxia, can provide tumor support effects in the tumor microenviron-

ment through angiogenic and antiapoptotic effects (Figure 4).

2.7. MSCs can induce apoptosis of cancer cells and endothelial cells

Depending on the microenvironment, MSCs can exert an antiproliferative effect. Lu et al. dem-

onstrated that MSCs had an inhibitory effect on mouse tumor hepatoma cells in a cell-dependent 
manner through the activation of intrinsic caspase 3 pathway [107]. Lu et al. reported that MSCs 

increased p21 gene expression, involved in the arrest of the cell cycle. These data demonstrate 

that MSCs exerted tumor inhibitory effects in the absence of host immunosuppression, inducing 
arrest of the G0/G1 phase and apoptosis of cancer cells [107]. The same tumor suppressor activity 

by MSCs was observed in xenografted SCID mice with disseminated non-Hodgkin lymphoma 

[108]. A single injection of MSCs which increased the survival of the animals included those who 

presented more aggressive lymphomas. In turn, significant induction of endothelial cell apop-

tosis was observed when co-cultured with MSCs, suggesting that MSCs exert anti-angiogenic 

activity through endothelial cell apoptosis [108]. These findings were consistent with the results 
reported by Karnoub et al. where they demonstrated that MSCs exhibited potent anti-angio-

genic activity in Kaposi’s sarcomas with high vascularity and endothelial cell cultures in vitro by 

inducing apoptosis of tumor epithelial and endothelial cells through the Dkk-1 protein [32, 34]. 

Additionally, Dasari et al. reported that downregulation of the antiapoptotic inhibitor, inhibitor 

of the apoptosis protein linked to X (XIAP), in the presence of human umbilical cord blood-

derived mesenchymal stem cell (hUCBSC) induced apoptosis of glioma cells and xenograft by 
the activation of caspase-3 and caspase-9 [109]. Recently, MSCs cultured at high density express 

IFN type I, which leads to cell death of breast cancer cells, MCF-7 and MDR-MB-231 cells [98]. 

In addition, MSCs prepared with IFN-gamma or cultured with three-dimensional systems can 

express TRAIL, which induces specific apoptosis of tumor cells. [97, 98].

2.8. Regulation of cell cycle by MSC

MSCs secrete a variety of cytokines that induce cell cycle arrest of tumor cells, albeit tran-

siently, at the G1 phase through expression of Cyclin A, Cyclin E, Cyclin D2, and p27KIP1 [31, 

107, 110]. Human stromal cells of adipose tissue (ADSC) and its conditioned culture medium 

can suppress tumor growth [107]. In addition, the cell culture medium conditioned by ADSC 

stimulated the necrosis of the cancer cells after the arrest of the G1 phase in the absence of 
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apoptosis. Finally, when ADSC was introduced in pancreatic adenocarcinoma, the tumor did 

not grow [107]. Similarly, tumor cells that were cultured with MSC in vitro were also stopped 

in the G1 phase [111]. However, when the nonobese diabetic-severe combined immunodefi-

cient mice were injected with MSCs and tumor cells, their growth was more increased com-

pared to the injection of tumor cells alone. Although it has been reported that MSCs can induce 

arrest of the cell cycle of tumor cells in vitro, little is known about the exact mechanisms. In 
our experiment, the delay or arrest of the cell cycle can be induced in certain types of tumor 

cells and under certain co-culture conditions (type of medium, cell concentration, or co-culture 

time). While we cannot explain the exact mechanism (s), several studies performed by differ-

ent groups, including hours, have shown that the arrest of the tumor cell cycle occurs. It has 

been shown that MSCs derived from human bone marrow interfere in vitro with small cell 

lung cancer (A549), esophageal cancer (Eca-109), Kaposi’s sarcoma, and proliferative kinetics 
of the leukemic cell line [112]. The above was not only observed when 0.5 × 105 tumor cells 

were cultured together with 0.5 × 105 MSCs derived from human bone marrow but also when 

exposed to medium conditioned by MSC; the cells were stopped during the G1 phase of the 

cell cycle in both cases by the negative regulation of Cyclin D2 and the induction of apoptosis 

[111]. MSCs from other sources, including MSCs derived from human fetal skin and MSCs 

derived from adipose tissue, have also inhibited the growth of human liver cancer cell lines 

[32], breast cancer (MCF-7) [111], and primary leukemic cells by reducing their proliferation, 

colony formation, and oncogene expression [30, 32]. Intravenous injection of 4 × 106 MSCs 

derived from human bone marrow in nude mice carrying Kaposi’s sarcoma has inhibited the 

growth of tumor cells [32]. A similar effect has been observed in an animal model of hepatocel-
lular carcinoma and pancreatic tumors, since the alteration of cell cycle progression has led 

to the decrease of cell proliferation [30, 31]; the same has happened with melanoma due to 

increased apoptosis of capillaries [34], and the growth of colon carcinoma in rats has been 

inhibited when rat EMFs (cell line MPC1cE) were co-mapped with tumor cells in a relation-

ship 1:1 or 1:10 [33]. MSCs derived from human fetal skin (Z3 cell line) also delayed liver tumor 
growth and decreased tumor size when injected with the same number of cells from the H7402 

cell line in SCID mice [36]. Injection of MSCs derived from human adipose tissue (1 × 103 cells/
mm3) into established pancreatic cancer xenografts has led to apoptosis and the abrogation of 

tumor growth in nude (nude) Swiss mice [31]. The role of MSCs in cancer remains paradoxical. 

Evidence to date has suggested that they are pro as well as antitumorigenic [113–115] and such 

discrepancy seems to depend on the isolation and expansion conditions, the source and dose 

of the cell, the route of administration, and the model tumor used.

2.9. MSCs and regulation of cellular signaling

The main signaling pathway involved in the control of cell survival is the pathway of phos-

phoinositide 3-kinase (PI3K)/AKT and WNT/beta-catenin. The activation of this pathway 
induces proliferation, growth, and migration, and increases cellular metabolism [116–118]. In 

the biology of a tumor cell, numerous studies have reported the requirement for the activa-

tion of the AKT-signaling cascade for the migration, invasion, and survival of tumor cells. 

Additionally, the WNT pathway has also been associated with the development of various 

types of carcinomas, including breast, liver, colon, skin, stomach, and ovary [119]. In a murine 
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model of Kaposi’s sarcoma, Kakhoo et al. reported that MSCs injected intravenously were 

able to migrate to the tumor and inhibit tumor cell proliferation by inhibiting AKT [32]. On 

the other hand, they observed in glioma cells that PTEN was upregulated in the presence of 

HUCBSCs, with the consequent downregulation of AKT [109]. In addition to inhibiting the 

PI3K/AKT pathway, MSCs can also suppress the WNT/beta-catenin pathway through the 
induced expression of the pro-apoptotic protein DKK-1 [31, 36, 37]. These recent findings 
demonstrated that beta-catenin can be negatively regulated in different human carcinoma 
cell lines (hepatocellular, H7402 and HepG2, breast, MCF-7, hematopoietic, K562 and HL60) 

by the secretion of DKK-1 by the MSCs. On the other hand, when the activity of DKK-1 was 

inhibited by the use of anti-DKK-1 neutralizing antibodies or interfering RNA, the inhibitory 

effects of MSCs on tumor progression disappeared [31, 36, 37].

3. Conclusions

Although therapy with MSC in regenerative medicine is considered feasible and safe, the litera-

ture reported to date reveals dicrepancies respect to the MSCs impact in the tumor microenviron-

ment. This paradoxical effect could be attributed to the differences in the experimental conditions 
of isolation and expansion, the source and dose of cells used, the route of administration and its 

timing, and the host characteristics. This chapter highlights the mechanisms of the effects of tumor 
support or suppression mediated by the MSCs and analyzes the possible mechanisms involved. 

MSCs demonstrate a tropism for tumors and once they interact with each other and with cancer 

cells, they promote tumor growth by: inmunosuppression; promotion of angiogenesis; epithelial-
mesenchymal transition; inhibition of apoptosis; and promotion of metastasis. In contrast, many 

studies have reported that MSCs can prevent tumor growth by increasing leukocyte infiltration, 
inhibiting angiogenesis, suppressing Wnt and AKT signaling. Further investigations are neces-

sary to establish the biosecurity of cell therapy in the presence of precancerous lesions.
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NO nitric oxide

PGE2 prostaglandin
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IDO indoleamine 2,3-dioxygenase

IL-6 interleukin-6

IL-10 interleukin-6

HLA-G histocompatibility antigen, class I, G

PD-1/2 programmed death-1/2

PD-L1/2 programmed death-1/2 ligand

CD80 T-lymphocyte activation antigen CD80

CD86 T-lymphocyte activation antigen CD86

SDF-1 stromal derived factor-1

HGF Hepatocyte Growth Factor

IGF-1 insulin dependent growth factor-1

EGF epithelial growth factor

NGF neurotrophic growth factor

TGF-α transforming growth factor-alpha

VEGF vascular endothelial growth factor

ECM stromal extracellular matrix

MSCs multipotent stromal mesenchymal stem cells

AKT Serine-threonine kinase

PI3K Phosphoinositide 3-kinase

Wnt Wingless-Type MMTV Integration Site Family, Member 1

XIAP X-linked inhibitor of apoptosis protein

EMT epithelial–mesenchymal transition

PDGF platelet derived growth factor

TGF-β transforming growth factor-beta

ZEB1/2 zinc finger E-box binding homeobox 1/2

TWIST twist related protein-1

SERPINE1 serpin family E member 1

MMP-2 metalloproteinase-2

SCID severe combined immunodeficiency

CAFs carcinoma-associated fibroblasts
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TAFs tumor-associated fibroblasts

α-SMA α-smooth muscle actin

FSP fibroblast surface protein

CCL5/RANTES chemokine (C-C motif) ligand 5

DCs dendritic cells

IgG immunoglobulin G

NK natural killer cells

TNF-α tumor necrosis factor-alpha

IFN-γ interferon-gamma

MHC-class I/II major histocompatibility complex

Erα estrogen receptor-alpha
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