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1. Introduction 

Near infrared (NIR) diffuse optical imaging and spectroscopy methods provide quantitative 
functional information that cannot be obtained by the conventional radiological methods 
(Yodh & Chance, 1995; Intes & Chance, 2005; Boas et al., 2001a). NIR techniques can provide 
in vivo measurements of the oxygenation and vascularization states, uptake and release of 
optical contrast agents, and chromophore concentrations with high sensitivity. In particular, 
NIR diffuse optical techniques in conjunction with optical contrast agents have the potential 
to characterize angiogenesis, and to differentiate between malignant and benign tumors 
(Hawrys & Sevick-Muraca, 2000; Furukawa et al., 1995; Chen et al., 2003; Becker et al., 1997). 
Among many commercially available optical contrast agents, only indocyanine green (ICG) 
is approved for human use by the Food and Drug Administration (El Deosky et al., 1999; 
Hansen et al, 1993; Shinohara et al., 1996). ICG is a blood pooling agent that has different 
delivery behaviour between normal and cancer vasculature. In normal tissue, ICG acts as a 
blood flow indicator in tight capillaries of normal vessel. However in tumor, ICG may act as 
a diffusible (extravascular) flow in leaky capillary of vessels (Alacam et al., 2006; Cuccia et 
al., 2003; Ntziachristos et al., 2000; Vaupel et al., 1991). Therefore, pharmacokinetics of ICG 
has the potential to provide new tools for tumor detection, diagnosis, and staging.  
A number of research groups reported compartmental modeling of ICG time-kinetic 
measurements using NIR methods for tumor diagnosis in animal and human subjects 
(Gurfinkel et al., 2000; Cuccia et al., 2003; Intes et al., 2003; Milstein et al., 2005). A 
compartmental model is a mathematical description of the concentrations of contrast agents 
in which each compartment represents a kinetically distinct tissue type (Tornoe, 2002; 
Anderson, 1983; Cobelli et al., 2000). It consists of a set of coupled ordinary differential 
equations (ODE) and a measurement model. Coefficients of the ODE's are the physiological 
parameters of interest that represent rates of exchange between different compartments. 
These parameters are non-linearly related to the total concentration of ICG measured by 
NIR methods. Furthermore, concentration of ICG in each compartment cannot be directly 
measured non-invasively by NIR techniques, making the pharmacokinetic parameter 
estimation a highly non-linear problem. 
Current methods of ICG compartmental modeling involve curve fitting methods and 
various techniques for solving differential equations. Gurfinkel et al. presented a two-O
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compartment model for ICG kinetics, and estimated model parameters (Gurfinkel et al., 
2000). The measurements were obtained using a frequency domain photon migration 
system coupled with a charge-coupled device. The pharmacokinetic parameters were 
estimated for each pixel based on a curve fitting method. This study indicated that model 
parameters show no difference in the ICG uptake rates between normal and diseased tissue. 
Cuccia et al. presented a study of the dynamics of ICG in an adenocarcinoma rat tumor 
model (Cuccia et al., 2003). A two-compartment model describing the ICG dynamics was 
used to quantify physiologic parameters related to capillary permeability. The ICG 
concentration curves were fitted to the compartmental model using a non-linear least 
squares Levenberg-Marquart algorithm. It was shown that different tumor types have 
different capillary permeability rates. Intes et al. presented the uptake of ICG by breast 
tumors using a continuous wave diffuse optical tomography apparatus (Intes et al., 2003). A 
two-compartment model was used to analyze the pharmacokinetics of ICG. A curve fitting 
algorithm, namely the non-linear Nelder-Mead simplex search, was used to estimate the 
pharmacokinetic parameters. This study showed that the malignant cases exhibit slower rate 
constants (uptake and outflow) as compared to healthy tissue. Milstein et al. presented a 
Bayesian tomographic image reconstruction method to form pharmacokinetic-rate images of 
optical fluorophores based on fluorescence diffuse optical tomography (Milstein et al., 2005). 
Numerical simulations show that the method provides good contrast. However, no real data 
experiments were presented to study the diagnostic value of spatially resolved 
pharmacokinetic-rates. 
While the studies described above demonstrate the feasibility of the ICG pharmacokinetics 
in tumor characterization; due to the highly non-linear nature of the pharmacokinetic 
parameter estimation, variation in parameter values from one subject to another, and sparse 
data available in clinical and laboratory settings, a systematic and robust approach is needed 
to model, estimate and analyze ICG pharmacokinetics. 
In this chapter, we first present a two-compartmental model for the ICG pharmacokinetics 
in cancerous tumors. The model captures the transportation of ICG between the vascular 
and extravascular compartments. We next introduce an extended Kalman filtering (EKF) 
framework for the estimation of pharmacokinetic-rate parameters and the ICG 
concentrations in different compartments. The EKF offers a recursive estimation framework 
with numerous advantages for ICG pharmacokinetic modeling. These include: i) effective 
modeling of multiple compartments, and multiple measurement systems governed by 
coupled ordinary differential equations, in the presence of measurement noise and 
uncertainties in the compartmental model dynamics; ii) simultaneous estimation of 
pharmacokinetic model parameters and ICG concentrations in each compartment, which are 
not accessible in vivo by means of NIR techniques; iii) recursive estimation of time-varying 
pharmacokinetic model parameters; iv) statistical validation of estimated concentrations and 
error bounds on the pharmacokinetic parameter estimates; v) incorporation of available a 
priori information about the initial conditions of the permeability rates into the estimation 
procedure; vi) potential real-time monitoring of ICG pharmacokinetic parameters and ICG 
concentrations in different compartments due to the recursive nature of the EKF estimation 
method.  
We tested our approach using the ICG concentration data acquired from four Fisher rats 
carrying adenocarcinoma tumor cells. The two-compartment model, composed of plasma 
and extracellular-extravascular space (EES), was fitted to the data, and pharmacokinetic 
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model parameters and concentrations in different compartments were estimated using the 
EKF framework. We then used the model parameters to differentiate between two types of 
cancerous tumors. Our study suggests that the permeability rates out of the vasculature are 
higher in edematous tumors as compared to necrotic tumors. Additionally, we observe that 
in the two-compartment model, the ICG concentration curve is higher in the EES 
compartment in edematous tumors.  
Next, we describe a method of forming pharmacokinetic-rate images, and present spatially 

resolved pharmacokinetic-rates of ICG using in vivo NIR data acquired from three patients 

with breast tumors. We first reconstructed a set of spatio-temporally resolved ICG 

concentration images based on differential diffuse optical tomography (Ntziachristos et al., 

1999). We modeled the ICG pharmacokinetics by the two-compartment model. Next, we 

estimated the ICG pharmacokinetic-rates and the concentrations in different compartments 

based on the EKF framework. The pharmacokinetic-rate images show that the rates from the 

tumor region and outside the tumor region are statistically different.  

The chapter is organized as follows: In Section 2, we present the two-compartment model 

for the ICG pharmacokinetics in tissue, and the state-space representation of the 

compartmental model. In Section 3, we introduce the EKF framework for the estimation of 

ICG pharmacokinetics. In Section 4, we present the estimation of ICG pharmacokinetics in 

Fischer rat data. In Section 5, we present the reconstruction of ICG pharmacokinetic-rate 

images using the EKF framework; and the spatially resolved ICG pharmacokinetic-rate 

images from in vivo breast data. Finally, we summarize the Chapter in Section 6. 

2. Pharmacokinetic modeling of ICG  

2.1 Indocyanine green 
ICG is an optical dye commonly used in retinopathy and hepatic diagnostics. Given its low 
toxicity and FDA approval, it has recently been utilized as a blood pooling agent for the 
detection and diagnosis of cancerous tumors by means of NIR optical methods. The 
absorption peak of ICG is 805 nm and the fluorescence peak is at 830 nm. ICG has strong 
affinity for blood proteins. In plasma, ICG is near-completely bound, primarily to albumin. 
As a result, its in vivo kinetics is similar to those of a 70 kD molecule, although it has a 
molecular weight of about 700 D (Hansen et al., 1993; Shinohara et al,. 1996; ElDeosky et al., 
1999; Li et al., 1995, Yates et al., 1983). 
ICG is eliminated from the body primarily through the bile. Outside of the circulatory 

system, it is not available for removal until it returns to the system. The kinetics of this 

transition offers a potential means of non-invasively assessing the leakiness of large 

molecules from the microvasculature; this permeability is a characteristic of the poorly 

developed vasculature observed in angiogenesis. The increase in local microvasculature 

density is also expected to induce increased perturbation in the optical signal from 

intercapillary ICG. 

There are some differences in the delivery of ICG between normal and cancerous 
vasculature. In normal tissue, ICG acts as a blood flow indicator in tight capillaries of 
normal vessels. However in tumors, ICG may act as a diffusible (extravascular) flow in the 
leaky capillary of cancer vessels. To investigate the validity of this hypothesis, one has to 
employ at least a two-compartment model composed of plasma and EES. Additionally, the 
permeability rate is expected to increase as the malignancy advances (Alacam et al., 2006; 
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Cuccia et al., 2003; Intes et al., 2003). Fig. 1 (a) and (b) illustrates the ICG flow for healthy 
and malignant tissue, respectively. 
 

 

Fig. 1. An illustration of the ICG flow (a) in tight capillary of normal vessel, (b) in permeable 
capillary of tumor tissue. 

2.2 Two-compartment model for the ICG pharmacokinetics 
Compartmental modeling allows relatively simple and effective mathematical 
representation of complex biological responses due to contrast agents and drugs. A region 
of interest is assumed to consist of a number of compartments, generally representing a 
volume or a group of similar tissues into which the contrast agent is distributed. The 
concentration change in a specific compartment is modeled as a result of the exchange of 
contrast agent between connected compartments. These changes are modeled by a collection 
of coupled ODEs; each equation describing the time change dictated by the biological laws 
that govern the concentration exchanges between the interacting compartments (Tornoe, 
2002; Anderson, 1983; Jacquez, 1972; Cobelli et al., 2000).  
In Alacam et al 2006, we presented 3 different compartment models for the ICG 
pharmacokinetics and determined that the optimal model is the two-compartment model 
using the Bayesian information criteria (BIC) (Schwarz, 1978; Box et al., 1994; Akaike, 1980). 
In order to calculate the BIC for different compartmental models, we first derived a 
likelihood function for the EKF. The derivation is based on maximum likelihood estimation 
of the parameters in the Kalman filtering framework given as in (Harvey, 1993; Sallas & 
Harville, 1988). In the two-compartment model, the tumor region is assumed to be 
composed of plasma and the EES compartments (Alacam et al., 2006; Tofts et al., 1999; Tofts, 
1997; Cuccia et al., 2003). The EES is defined as the region that lies outside of both the 
vascular region and the tumor cells. We consider transcapillary leakage to occur only at the 
tumor site. We also assume that a small perturbation of the global plasma concentration 
does not affect the bulk removal. Fig. 2 shows the block diagram of the two-compartment 
model for the ICG pharmacokinetics.  
Let Cp and Ce denote the ICG concentrations in plasma and the EES, respectively. Then the 
two-compartment ICG chemical transport equations are given as follows: 
The leakage into and the drainage out of plasma: 

 = − −
( )

( ) ( ) ( )
p

b e a p out p

dC t
k C t k C t k C t

dt
  (1) 
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Fig. 2. Block diagram of the two-compartment model for ICG pharmacokinetics. 

The leakage into and the drainage out of the EES: 

    = −
( )

( ) ( )e
a p b e

dC t
k C t k C t

dt
  (2) 

The parameters ka and kb govern the leakage into and the drainage out of the EES, 
respectively. The parameter kout describes the ICG elimination from the body through 
kidneys and liver. 
Actual bulk ICG concentration in the tissue measured by NIR is a linear combination of 
plasma and EES ICG concentrations given by: 

       = +( ) ( ) ( )p p e em t v C t v C t   (3) 

where the parameters vp and ve denote plasma and the EES volume fractions, respectively. 

3. Extended Kalman filtering for the ICG pharmacokinetics 

For the rest of the chapter, all matrices and vectors are denoted in boldface and scalar 
quantities are denoted in non-boldface notation. 

3.1 State-space representation of the ICG pharmacokinetics 
Coupled differential equations resulting from the two-compartment modeling of the ICG 
pharmacokinetics can be expressed in state-space representation as follows: 

 

η

⎡ ⎤ ⎡ ⎤⎡ ⎤−
= +⎢ ⎥ ⎢ ⎥⎢ ⎥

− +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤

⎡ ⎤= +⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

( ) ( )
( )

( ) ( )( )

( )
( ) ( )

( )

e eb a

p pb a out

e

e p
p

dC t C tk k
d t

dC t C tk k k

C t
m t v v t

C t

B

  (4)  

where dB(t) is the Weiner process increment, ( ) ( )d t t dtω=B . Here, ( )tω and ( )tη can be 

thought of as uncorrelated zero mean Gaussian process with covariance matrix Q, and 

variance 2σ , respectively. 

In vector-matrix notation, the continuous time state-space representation for the n-

compartment model is given by: 
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η

= +
= +

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d t t dt d t

m t t t

C κ α C B

V α C
  (5) 

In Equation (5), C(t) denotes the concentration vector; α is the parameter vector whose 

elements are the pharmacokinetic rates and the volume fractions; ( )κ α is the system matrix; 

and ( )V α is the measurement matrix. For example the parameter vector α for the two-

compartment model is given by 

 ⎡ ⎤= ⎣ ⎦a b out e pk k k v vα   (6) 

The ICG measurements in Equation (5) are collected at discrete time instances, t=kT, k=0,1, 

..., where T is the sampling period. Therefore, the continuous model described in Equation 

(14) has to be discretized. To simplify our notation, we shall use ( ) ( )k kT=C C  and 

( ) ( )m k m kT= . The discrete state space system and the measurement models are given as 

follows: 

 
η

+ = +
= +

( 1) ( ) ( ) ( )

( ) ( ) ( ) ( )
d

d

k k k

m k k k

C κ α C ω
V α C

  (7) 

where  = ( )( ) T

d eκ ακ α is the discrete-time system matrix and =( ) ( )dV α V α is the discrete-time 

measurement matrix. ( )kω and ( )kη are zero mean Gaussian white noise processes with 

covariance matrix Qd and variance 2
dσ , respectively. Discretization of state-space models can 

be found in various system theory books, see for example (Chen, 1999) 
An explicit form of the discrete state space model for the two-compartment case is given as 
follows:  

   

τ τ
τ τ

η

+⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎡ ⎤= +⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

11 12

21 22

( 1) ( )
( )

( 1) ( )

( )
( ) ( )

( )

e e

p p

e

e p
p

C k C k
k

C k C k

C k
m k v v k

C k

ω
  (8) 

where ijτ is the ith row and jth column entry of the system matrix ( )dκ α . Note that the matrix 

entry is an exponential function of the parameters ka and kb and kout.. To simplify the 

estimation process, we shall first estimate the matrix entries, ijτ , and then compute the 

pharmacokinetic rates for each compartmental model. 

3.2 Modeling of ICG pharmacokinetic rates and concentrations as unknown states 
The Kalman filter provides a recursive method to estimate the states in state-space models, 
in which the states are driven by noise, and the measurements are collected in the presence 
of measurement noise (Zarchan, 2000; Chui & Chen, 1999; Catlin, 1989). In the case of non-
linear state-space models, the EKF linearizes the model around the current state estimate, 
and then applies the KF to the resulting linear model. The EKF framework is also utilized 
for the joint estimation of the unknown system and/or measurement parameters and states. 
In a linear state-space model when both states and system parameters are unknown, the 
linear state-space model can be regarded as a non-linear model in which the linear system 
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parameters and states are combined to form the new states of the non-linear model. This 
system is then linearized and solved for the unknown states using the KF estimator. We 
consider a linear Taylor approximation of the non-linear model. The details of the 
linearization procedure and a general discussion on EKF can be found in (Chui & Chen, 
1999; Lyung, 1979; Togneri & Deng, 2003; Nelson & Stear, 1976). 
In our problem, the objective is to simultaneously estimate the states, i.e., the ICG 
concentrations in each compartment, and the system and measurement parameters, i.e., the 
pharmacokinetic parameters and the volume fractions. Let θ denote the discrete-time 
parameter vector of the pharmacokinetic rates and volume fractions. For example, in the 
two-compartment model, θ is given by 

 τ τ τ τ⎡ ⎤= ⎣ ⎦11 12 21 22 e pv vθ   (9) 

In order to estimate θ within the EKF framework, the following dynamic model is introduced: 

 + = +( 1) ( ) ( )k k kθ θ ζ   (10) 

where ( )kζ is a zero mean white noise process with covariance matrix Sd (Chui and Chen, 

1999). Here, ( )kθ can be thought of as the kth update of the parameter rather than its value at 

time k. 

We append the parameter vector +( 1)kθ to the ICG concentration vector ( 1)k +C  to form 

the new non-linear state-space model given by 

 

η

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
= +⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦

( 1) ( ) ( ) ( )

( 1) ( ) ( )

( )
( ) ( ) 0 ( )

( )d

k k k

k k k

k
m k V k

k

C K θ C ω
θ θ ζ

C
θ

θ

  (11)     

where =( ) ( )dK θ κ α . 

3.3 Joint estimation of ICG concentrations, pharmacokinetic parameters, and volume 
fractions within EKF framework 
In this section we will summarize the major steps of the EKF estimator for the joint 
estimation of ICG concentrations and compartmental model parameters. Let the subscript 
k|t denote the estimate at time k given all the measurements up to time t. Then the 1-step 
ahead prediction of the ICG concentrations and the compartmental model parameters are 
given as follows: 

 

− − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

^ ^ ^

^ ^

| 1 1| 1

( )

k k k k

C K θ C

θ θ
  (12) 

For the two-compartment model, Equation (12) becomes 

                                                            
τ τ

τ τ
− −

⎡ ⎤
⎢ ⎥ ⎡ ⎤+⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ +⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

^

^ ^ ^ ^

^
11 12

^ ^ ^ ^

^
21 22

1| 1

e

e p

p

e p
k k

C
C C

C

C C
θ

                                                     (13) 

www.intechopen.com



 Kalman Filter: Recent Advances and Applications 

 

188 

The error covariance matrix, | 1k k−P , of the 1-step ahead predictions is given as follows: 

 | 1 1 1| 1 1

0

0
dT

k k k k k k

d

− = − − − −

⎡ ⎤
+ ⎢ ⎥
⎣ ⎦

Q
P J P J

S
  (14) 

where Jk is the Jacobian of the non-linear EKF system function at time k. Explicitly, it is 
given by: 

 

∂⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= ∂ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

^ ^ ^

|

( ) ( )n

k

k k

K θ K θ C
J θ

0 I

  (15) 

where 0 and I denote zero and identity matrices, respectively. The Jacobian matrix for the 
two-compartment model becomes 

 

^ ^^ ^

11 12

^ ^^ ^

21 22

6 2 6 6 |

0 0 0 0

0 0 0 0

e p

k
e p

k k

C C

C C

τ τ

τ τ

× ×

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥
⎢ ⎥⎣ ⎦

J

0 I

  (16) 

The 1-step ahead predictions are updated to the kth-step estimates by means of the Kalman 
gain matrix which are given by 

 2 1
| 1 | 1[ ]T T

k k k k k kσ
−

− −= +G P Λ ΛP Λ   (17) 

where Λ is the following vector: 

 
−

⎡ ⎤∂ ⎡ ⎤= ⎢ ⎥⎢ ⎥∂ ⎣ ⎦⎣ ⎦

^ ^ ^

| 1

( ) ( )d d

n k k

Λ V θ V θ C
θ

  (18) 

For the two-compartment model the Λ  vector becomes  

 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

^ ^ ^ ^

0 0 0 0e p e pv v C CΛ   (19) 

The kth-step estimate of the concentrations and the parameters are obtained using 

 
−

−

⎡ ⎤ ⎡ ⎤ ⎛ ⎞⎡ ⎤⎢ ⎥ ⎢ ⎥= + −⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

^ ^

^ ^

^ ^
| 1

| | 1

( ) ( )k d

k k

k k k k

G m k
C C

V θ C
θ θ

  (20) 

The initialization and the convergence properties of the EKF can be found in (Alacam et al., 
2006; Chui and Chen, 1999; Ljung, 1979; La Scala et al., 1996; Boutayeb et al., 1997). 

4. Estimation of ICG pharmacokinetics in Fischer rat data 

We applied the proposed EKF framework to the pharmacokinetic analysis of ICG data 

obtained from four Fischer rats with adenocarcinoma. R3230ac adenocarcinoma cells were 
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injected below the skin into four Fischer rats 3 weeks prior to measurements. The tumor size 

for the rats varies in diameter from 5 to 30 mm. Measurements were conducted with a 

combined frequency-domain and steady-state optical technique that facilitates rapid 

measurement of tissue absorption. Frequency domain measurements were obtained at 674, 

800, 849, 898, and 915 nm, modulated at frequencies from 50 to 601 MHz, sweeping a total of 

233 frequencies. Tumors were also imaged by use of contrast-enhanced magnetic resonance 

imaging and coregistered with the location of the optical probe. In addition, a broadband 

continuous wave reflectance measurement spanning the range 650-1000 nm was performed 

with a spectrometer. With the reduced-scattering coefficient spectrum and diffusion theory, 

the broadband reflectance spectra were converted to absorption coefficient spectra. The 

absolute concentration of ICG, together with oxy-hemoglobin, deoxy-hemoglobin, and 

water were calculated by using multiple linear regressions of ICG extinction coefficient 

spectra to the calculated absorption spectrum at approximately every second for ten 

minutes. A detailed discussion of the measurement process and apparatus can be found in 

(Bevilacqua et al., 1988; Jacubowski, 2002). 

Fig. 3 presents the ICG concentrations from four different rats. Tumors in Rat 1 and 2 are 

classified as necrotic because of their low tissue oxy-hemoglobin, low total hemoglobin, and 

low gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) enhancement levels. 

Tumors in Rat 3 and 4 are classified as edematous due to their high water content (Merritt et 

al., 2003). It can be observed from Fig. 3 that the necrotic cases display low peak ICG 

concentration values and slowly rising slopes unlike the edematous cases with high peak 

values and sharp rising slopes. 

We estimated the pharmacokinetic rates for the two-compartment model (Alacam et al., 

2006).  

 
 

Fig. 3. ICG concentrations measured in tissue for four different rat tumors. 
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Table 1. Estimated pharmacokinetic rates and volume fractions for the two-compartment 
model. 

Table 1 presents the estimated pharmacokinetic rates and volume fractions using the EKF 
algorithm. The rate of leakage into the EES from the capillary, ka, range from 0.0247 to 0.0840 
1/sec and the rate of drainage out of the EES and into the capillary, kb, range from 0.0106 to 
0.0777 1/sec. Note that the permeability rates for the necrotic cases are lower than the ones 
observed for the edematous cases. Additionally, the estimated values for the 
pharmacokinetic rates are much higher than the normal tissue values due to the increased 
leakiness of the blood vessels around the tumor region (Alacam et al., 2006; Cuccia et al., 
2003; Su et al., 1998). The estimated plasma volume fractions agrees with the values reported 
earlier (Cuccia et al., 2003), and the values presented in the literature (Fishkin et al., 1997; 
Buckley, 2002). These results confirm that vp can be large in tumors and that its magnitude 
varies with respect to the stage of the tumor (Tofts, 1997). The estimated values of the EES 
volume fraction, ve, range from 0.218 to 0.53, in agreement with the 0.2 to 0.5 range reported 
earlier (Tofts et al., 1999). Note that these results are valid only for the ICG pharmacokinetics 
in tumor cells R3230ac, adenocarcinoma and may not be generalized for other types of 
contrast agents or tumor types. 
Figure 4 shows the estimated ICG concentrations in plasma and the EES compartments for 

the two-compartment model for Rats 1 to 4. Note that initial estimates of concentrations are 

noisy due to the limited data used in the recursive EKF estimation. This can be improved by 

Kalman backward smoothing (Gelb, 1989). The peak values of the plasma concentration, 

pC , range from 2.72 Mμ  to 4.28 Mμ . The absolute value of the concentrations may not be 

very useful. However, concentration of ICG in a compartment relative to the one in another 

compartment may provide useful information. We consider the ratio of the peak 

concentrations in plasma and the EES as a potential parameter to discriminate different 

tumors. The peak p eC C  ratio for Rats 1 to 4 is 0.551, 0.593, 0.787, and 1.151, respectively. 

This ratio is higher in edematous cases consistent with the fact that ICG-albumin leaks more 

into the EES in edematous tumors. Additionally, the ICG concentration in plasma decays 

faster than the ICG concentration in the EES due to its elimination through the liver and 

kidneys. 

5. Pharmacokinetic-rate images of indocyanine green from in vivo breast 
data 

In this section, we present a method of forming pharmacokinetic-rate images, and spatially 
resolved pharmacokinetic-rates of ICG using in vivo NIR data acquired from three patients 
with breast tumors. 
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Fig. 4.  ICG concentrations in plasma, ( )pC t  and EES, ( )eC t , for four different rats. (a) Rat1, 

(b) Rat2, (c) Rat3, and (d) Rat4. 

5.1 NIR apparatus and patient information 
We used the data collected with a continuous wave (CW) NIR imaging apparatus. The 
apparatus had 16 light sources, which are tungsten bulbs with less than 1 watt of output 
power. They were located on a circular holder at an equal distance from each other with 22.5 
degrees apart. Sixteen detectors, namely, silicon photodiodes, are situated in the same plane. 
The breast was arranged in a pendular geometry with the source-detector probes gently 
touching its surface. The detectors used the same positions as the sources to collect the light 
originating from one source at a time. Only the signals from the farthest 11 detectors were 
used in the analysis. A band pass filter at 805 nm, the absorption peak of ICG, was placed in 
front of the sources to select the desired wavelength. A set of data for one source was 
collected every 500 ms. Total time for a whole scan of the breast including 16 sources and 16 
detectors was about 8.8 seconds. A more detailed explanation of the apparatus and the data 
collection procedure can be found in (Nioka et al., 1997).  
Three different patients with different tumor types were included in the study. 
Measurements were made before the biopsy to avoid modification of the blood volume and 
flow in the tumor region. First case, (Case 1), was fibroadenoma, which corresponds to a 
mass estimated to be 1-2 cm in diameter within a breast of 9 cm diameter located at 6-7 
o'clock. Second case, (Case 2), was adenocarcinoma corresponding to a tumor estimated to 
be 2-3 cm in diameter within a breast of 7.7 cm diameter located at 4-5 o'clock. The third 
case, (Case 3), was invasive ductal carcinoma, which corresponds to a mass estimated to be 4 
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by 3 cm located at 6 o'clock. Table 2 describes the tumor information for each patient. A 
priori information on the location and size of the tumor was obtained by palpation and the 
diagnostic information was derived a posteriori from biopsy and surgery. ICG was injected 
intravenously by bolus with a concentration of 0.25 mg per 1/kg of body weight. Data 
acquisition started before the injection of ICG and continued for 10 minutes. 
 

 

Table 2. Tumor Information for each patient. 

5.2 Reconstruction of bulk ICG concentration images 
In our data collection process, a sequence of boundary measurements was collected over a 
period of time. Each set of measurements was used to form a frame of the ICG concentration 
images. The resulting sequence of ICG concentration images were then used to form 
pharmacokinetic-rate images. To reconstruct each frame of the ICG concentration images, 
we used the differential diffuse optical tomography (DDOT) technique (Alacam et al., 2008, 
Intes et al., 2003; Ntziachristos et al., 1999).  
In DDOT, two sets of excitation measurements are collected corresponding to before and 
after the ICG injection, and the ICG concentration is determined by the perturbation method 
(Intes et al., 2003; Ntziachristos et al., 1999).  The photon propagation before and after the 
injection is modeled by the following diffusion equations: 

 . ( ) ( , ) ( ( ) / ) ( , ) 0x x ax xD r r r j c rω μ ω ω± ± ±∇ ∇Φ − + Φ =    3r R∈Ω ⊂   (21) 

with Robin-type boundary conditions (Arridge, 1999). 

Here x stands for the excitation, c is the speed of light inside the mediumΩ ; Ω denotes the 

modulation frequency of the source, ( )ax rμ − and ( )ax rμ +  are the absorption coefficients before 

and after the ICG injection, ( )xD r  is the diffusion coefficient which is assumed independent 

of ( )ax rμ ± , known but not necessarily constant, ( , )x r ω±Φ denotes optical field at location r 

before and after the ICG injection.   

The absorption coefficient after the injection ( )ax rμ +  is modeled as a sum of the absorption 

coefficient of the medium before the ICG injection  ( )ax rμ −  and the perturbation caused by 

the ICG ( )ax rμΔ : 

 ( ) ( ) ( )ax ax axr r rμ μ μ+ −Δ = −          3r R∈Ω ⊂   (22) 

The forward model, given in Equation (21) is based on the first order Rytov approximation 
(Intes et al., 2003). We discretize the forward model and relate the relative absorption 
coefficients of voxels in the imaging volume to Rytov-type measurements by a system of 
linear equations.  Let ( , , )x d sr rωΨ  denote the Rytov-type measurements at location rd due to 

source at rs. The linearized relationship between the differential absorption coefficient and 
measurements is given by (O'Leary, 1996)  

 31 ( )
( , , ) ( , ; ) ( , ; )

( , , )
ax

x d s x d x s

x d s x

c r
r r G r r r r d r

r r D

μω ω ω
ω

− −
−

Ω

Δ
Ψ = − Φ

Φ ∫   (23) 
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where ( , ; )x sr rω−Φ is the photon density obtained at the excitation wavelength before ICG 

injection. 

( , ; )x dG r rω−

Ω
∫ is the Green's function of Equation (21) for a source at sr before the injection 

describing the propagation of light from the heterogeneity r to the detector at dr . 

We approximated the shape of the breast as a cylinder and used the Kirchhoff 
approximation (Ripoll et al., 2001a; Ripoll et al., 2001b) for diffuse waves to model the 
interaction of light with boundaries. In order to account for the biological noise, we 
implemented the forward model with coupling coefficient technique (Boas et al., 2001b). 

We addressed the inverse problem of recovering ( )ax rμΔ  from Rytov-measurements using 

the singular value decomposition of the Moore-Penrose generalized system. We used a 

zeroth-order Tikhonov regularization to stabilize the inversion procedure. We applied the L-

curve method to an experimental model reconstruction and determined the best 

regularization parameter using a curvature function as described in (Hansen & O'Leary, 

1993). A detailed discussion of the forward and inverse models used for the reconstruction 

of differential absorption coefficients ( )ax rμΔ  can be found in (Intes et al., 2003). 
To construct a set of ICG concentration images, we used the linear relationship between the 
differential absorption coefficients and ICG concentrations (Landsman et al., 1976): 

 ( ) ln 10 ( )a r m rλμ εΔ =   (24) 

where λε is the extinction coefficient of ICG at the wavelength 805nm, m(r) is the bulk ICG 

concentration in the tissue. 
Using the method outlined above, we reconstructed a sequence of ICG concentration 
images. Fig., 5-7 show a set of images reconstructed from in vivo breast data for Case 1, 2, 
 

 

Fig. 5. ICG concentration images for a set of time instants for Case 1. 
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and 3, respectively. Although only 9 images are displayed, there are approximately 50 images 
for each case, each corresponding to a different time instant. Each image is composed of 649 
voxels. Note that the ICG concentration images in Fig.5-7 represent the bulk ICG 
concentrations in the tissue, not the ICG concentrations in plasma or the EES compartments. 
 

 

Fig. 6. ICG concentration images for a set of time instants for Case 2. 

 

Fig. 7. ICG concentration images for a set of time instants for Case 3. 
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5.3 Reconstruction of ICG pharmacokinetics from in vivo breast data 
Our objective is to model the pharmacokinetics of ICG at each voxel of ICG concentration 
images using the two-compartment model described in Section 2. To do so, we first 
extracted the time varying ICG concentration curves for each voxel from the sequence of 
ICG concentration images. 
We then fit the two-compartment model to each time course data using the EKF framework; 
and estimated ka, kb, kout, and the ICG concentrations in plasma and the EES. We chose the 
initial values within the biological limits that lead to minimum norm error covariance 
matrix for the EKF estimation. The images of ka, and kb for each case are shown in Fig. 8(a)-
(b), 9(a)-(b), and 10(a)-(b), respectively.  

 

Fig. 8. Pharmacokinetic-rate images, (a) ka, and (b) kb for Case 1. The ka images are shown 
with approximate tumor location and size. 

 

Fig. 9. Pharmacokinetic-rate images, (a) ka, and (b) kb for Case 2. The ka images are shown 
with approximate tumor location and size. 

Using the a priori and a posteriori information on the location, and the size of the tumors, we 
plotted an ellipse (or a circle) to identify the approximate location and size of the tumor in 
the pharmacokinetic-rate images. We note that the radii of the ellipses were chosen large 
enough to include the tumor boundaries. Fig. 8(a), 9(a), and 10(a) present the ka images with 
approximate tumor location and size for Case 1, 2, and 3, respectively. The consistency of  
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Fig. 10. Pharmacokinetic-rate images, (a) ka, and (b) kb for Case 2. The ka images are shown 
with approximate tumor location and size. 

the bright regions in the ka images, and circular/elliptical regions drawn based on the a 

priori and a posteriori information shows that the pharmacokinetic-rate images may provide 

good localization of tumors. Table 3 shows the mean values ( ±  spatial standard deviation) 

of the pharmacokinetic-rates for the tumor region and outside the tumor region for all three 

cases. The pharmacokinetic rates are higher for Case 3 (invasive ductal carcinoma), for both 

the tumor region and outside the tumor region as compared to Case 2 (adenocarcinoma). 

Similarly, the kinetic rates are higher for Case 2 (adenocarcinoma), as compared to Case 1 

(fibroadenoma) for both the tumor region and outside the tumor region. This observation 

shows that high mean values of ka and kb may be indicative of tumor aggressiveness. 

Additionally, we constructed the ICG concentration images for plasma and the EES 

compartments. Figures 11-16 show the ICG concentration in plasma and the EES for 3 

different time instants for Case 1, 2, and 3, respectively. 

 

 
 

Table 3. Mean and standard deviation of pharmacokinetic-rates for the tumor region and 
outside the tumor region 

Our results show that the pharmacokinetic-rates are higher around the tumor region 

agreeing with the fact that permeability increases around the tumor region due to 

compromised capillaries of tumor vessels. We also observed that ICG concentrations in 

plasma and the EES compartments are higher around the tumors agreeing with the 

hypothesis that around the tumor region ICG may act as a diffusible extravascular flow in 

leaky capillary of tumor vessels. 
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6. Conclusion  

We presented a two- compartmental model, and an EKF framework for (i) the estimation of 

bulk ICG pharmacokinetics and (ii) the reconstruction of ICG pharmacokinetic-rate images 

and concentration images in different compartments. We tested our approach in data 

obtained from Fischer rats with adenocarcinoma cells and estimated pharmacokinetic rates 

and volume fractions. The estimated parameters indicate that the permeability rates are 

higher for edematous cases as compared to the necrotic tumors. 

We also presented pharmacokinetic-rate images of ICG using the in vivo data acquired from 

three patients with breast tumors. To form pharmacokinetic-rate images, we used the 

differential diffuse optical tomography technique. Along with the pharmacokinetic-rates, we 

also reconstructed the ICG concentration images in plasma and EES compartments. The ICG 

concentration images in plasma and the EES compartments show that the concentration of 

ICG is higher in the tumor region agreeing with the hypothesis that around the tumor 

region ICG may act as a diffusible extravascular flow in leaky capillary of tumor vessels.  

While the two-compartment model is sufficient to model the ICG pharmacokinetics, higher-

order compartmental models may be advantageous for modeling the pharmacokinetics of 

functionalized optical contrast agents that actively accumulate or activate in diseased tissue. 

In the future, we plan to apply higher order compartmental models and the EFK framework 

to estimate the pharmacokinetics of newly developed optical fluorophores approved for 

human and/or animal use. 

 

Fig. 11. ICG concentration images in plasma for Case 1 for (a) 246.4th, (b) 334.4th, and (c) 
422.4th seconds. 
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Fig. 12. ICG concentration images in the EES for Case 1 for (a) 246.4th, (b) 334.4th, and (c) 
422.4th seconds. 

 
Fig. 13. ICG concentration images in plasma for Case 2 for (a) 228.8th, (b) 316.8th, and (c) 
404.8th seconds. 
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Fig. 14. ICG concentration images in the EES for Case 2 for (a) 228.8th, (b) 316.8th, and (c) 
404.8th seconds. 

 

Fig. 15. ICG concentration images in plasma for Case 3 for (a) 246.4th, (b) 378.4th, and (c) 
510.4th seconds. 
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Fig. 16. ICG concentration images in plasma for Case 3 for (a) 246.4th, (b) 378.4th, and (c) 
510.4th seconds. 
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