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Chapter

Supervised Sparse Components
Analysis with Application to Brain
Imaging Data†

Atsushi Kawaguchi

Abstract

We propose a dimension-reduction method using supervised (multi-block)
sparse (principal) component analysis. The method is first implemented through
basis expansion of spatial brain images, and the scores are then reduced through
regularized matrix decomposition to produce simultaneous data-driven selections
of related brain regions, supervised by univariate composite scores representing
linear combinations of covariates. Two advantages of the proposed method are that
it identifies the associations between brain regions at the voxel level and that
supervision is helpful for interpretation. The proposed method was applied to a
study on Alzheimer’s disease (AD) that involved using multimodal whole-brain
magnetic resonance imaging (MRI) and positron emission tomography (PET). For
illustrative purposes, we demonstrate cases of both single- and multimodal brain
imaging and longitudinal measurements.

Keywords: data-driven approach, dimension reduction, principal component
analysis, multimodal, multi-measurement

1. Introduction

Recently, multiple neuroimaging data sets per subject have become obtainable
due to the remarkable development of imaging techniques such as magnetic reso-
nance imaging (MRI) and positron emission tomography (PET), as well as com-
puter resources and technologies. Vandenberghe and Marsden [1] provide a review
on the use of PET and MRI integration technology, such as integrated scanning
devices, rather than data analysis. Other modalities such as diffusion MRIs (dMRIs)
and functional MRIs (fMRIs) are also useful in collecting brain-related information.
These multimodal imaging data sets have the potential to provide rich information
about human health and behavior, such as brain function and structure, from
different perspectives. From multiple measurements of a single-modal (or multi-
modal) technique, longitudinal changes in the status and combination of neuro

†Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed

to the design and implementation of ADNI and/or provided data but did not participate in analysis or

writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/

wp-content/uploads/how_to_apply/ ADNI_Acknowledgement_List.pdf
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biomarkers can be observed to support the prediction and early diagnosis of disease
and the classification of disease subtypes.

Multimodal brain imaging analysis is important in brain-related disease studies.
Arbabshirani et al. [2] provide many reviews on the subject. Imaging data analysis
makes a substantial contribution to the study of mental disorders. Most single-
modal or multimodal imaging studies concern dementia leading to Alzheimer’s
disease (AD) [3] (around 300 of the AD imaging studies searched in Ref. [2]).
Modalities considered in there are structural MRIs (sMRIs), fMRIs, dMRIs,
fluorodeoxyglucose PETs, and Amyloid/Tau PETs. In a recent study, Ref. [4]
examined sMRI and cerebrospinal fluid (CSF) markers. Magnetoencephalography
(MEG) is also useful as AD biomarker, and its localization using sMRI has high
accuracy [5]. Schizophrenia is the second most studied disorder after dementia.
Shah et al. [6] provide an example of multimodal meta-analysis. For Huntington’s
disease, white matter is evaluated using dMRI [7]. For mood disorders (depressive
disorder and bipolar disorder), Refs. [8, 9] provide a review of the machine learning
method. Moeller and Paulus [10] studied the longitudinal prediction of relapse for
substance-related disorders using MRI, fMRI, EEG, and PET. Moser et al. [11]
studied schizophrenia and bipolar disorder using multimodal imaging data analysis.
dMRI is also effective for analyzing these conditions [12]. For developmental dis-
abilities, Ref. [13] investigated volume reductions in attention-deficit hyperactivity
disorder (ADHD) with 1713 participants. Aoki et al. [14] reviewed dMRI studies
and conducted meta-analysis for ADHD. Li et al. [15] provide a review of imaging
studies in autism spectrum disorder. For anxiety disorder, Ref. [16] applied support
vector machine (SVM) to multimodal data. They used clinical questionnaires and
measured cortisol release, and gray and white matter volumes in subjects with
generalized anxiety disorder and major depression and in healthy subjects. Steiger
et al. [17] investigated cortical volume, diffusion tensor imaging, and network-
based statistics using multimodal analysis for social anxiety disorder. For borderline
personality disorder, Ref. [18] conducted an imaging-based meta-analysis of 10
studies. In cancer research, especially that on glioblastoma multiforme, multimodal
imaging analysis is useful for identifying some types of tumors and evaluating
patient prognosis (for more details, see [19]). Genome-related data can be regarded
as a modality and called imaging genetics when analyzed in combination with
imaging data [20].

One important technique for single- and multimodal imaging analysis is predic-
tion, which is useful for the support of disease diagnosis and the selection of
treatments [21]. SVM is the most used method not only in neuroimaging but also in
the life sciences in high-dimensional data analysis. The random forest method is also
useful due to their capability for complex interactions based on the tree model
[22, 23]. For multimodal analysis, multiple kernel learning [24] and (multimodal)
deep learning [25, 26] have been developed. Janssen et al. [27] reviewed machine
learning methods for psychiatric prognosis. Related statistical methodology
appeared as multi-omics in bioinformatics, and Ref. [28] reviewed these methods
while introducing an R package, mixOmics.

Analysis for such discovery and evaluation is based on the detection of the
buried signal in the noise (irrelevant information). Statistical analysis is useful for
this purpose; however, it suffers from the ultrahigh dimensional and complex
structure of this data, and appropriate dimension reduction is therefore required.
Even if a machine learning method is used, appropriate input (feature) should be
specified to obtain interpretable results because the method is feasible for high-
dimensional procedures but not ultrahigh dimensional ones. A region-of-interest-
based analysis was the leading approach. In contrast, whole-brain analysis is more
informative, and if it is combined with a data-driven approach, it can potentially
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obtain undiscovered knowledge. In [29], by using ReliefF [30], features such as the
fractional amplitude of low-frequency fluctuations from resting-state fMRIs, seg-
mented gray matter from sMRIs, and fractional anisotropy from dMRIs were
extracted. Component analysis based on low-rank approximation is a successful
data-driven approach in the fields of not only neuroimaging but also other biologi-
cal and medical big data analyses, including principal component analysis, partial
lease squares, canonical correlation analysis (CCA), independent component anal-
ysis (ICA), and nonnegative matrix factorization. These methods are organized into
a matrix decomposition framework consisting of score and loading (weight) matri-
ces. The score matrix, with same row length as the number of subjects, is regarded
as dimension-reduced data and is suitable for application to statistical models. The
weight matrix, with the same column length as the number of features in the
imaging data, is regarded as the basis images. All these methods, except for ICA,
have a derivation sparse approach with a regularized matrix decomposition to pose
small weights to zeros, which helps estimation by avoiding irrelevant information.
In addition, the resulting weights can be interpreted to mean that the corresponding
features with nonzero weights contribute to the basis image, specifically to produce
data-driven selections of brain regions related to that component.

These methods also consider another direction in which the application of mul-
timodal imaging data can be extended. Supplementary information from another
data set can also be useful for the interpretation of the output. For this purpose,
appropriate data fusion or integration techniques are required and are useful for
multisite studies. In neuroimaging data analysis, multimodal CCA (mCCA) [31] and
mCCA + joint ICA [32] have been developed on the schizophrenia study. Multivar-
iate data fusion approaches were categorized by [33] into asymmetric or symmetric
data and blind or semi-blind data in symmetric approach. The asymmetric approach
is a regression-type approach and includes specific modalities such as dMRI and
electroencephalography. The symmetric approach is a correlation-type approach
and allows relationships in both directions. Kawaguchi [19] constructed a risk score
for glioblastomas based on MRI data and proposed a two-step dimension-reduction
method using a radial basis function-supervised multi-block sparse principal com-
ponent analysis (SMS-PCA) method. Kawaguchi and Yamashita [34] proposed a
more general case including a PLS or CCA framework and applied it to MRI, PET,
and SNP data sets. Yoshida et al. [4] analyze imaging and non-imaging data with
network structure by using the PLS.

In this chapter, we applied SMS-PCA to MRI and PET data sets and a longitudi-
nal MRI data set. One of the key features in the analysis is a multi-block technique
which can achieve structural dimension reduction with interpretable parameters
(weights for each data set and the possibility of combining them). Although it is not
the focus of this chapter, the dimension reduction prior to SMS-PCA is conducted
using 3D basis functions. Specifically, our dimension reduction takes place in two
steps, and, as described in [35] which applied these techniques to longitudinal
study, this two-step approach yields a composite basis function expression with a
flexible shape. The organization of this chapter is as follows. Section 2 describes the
methodology of the SMS-PCA, which is applied to real data in Section 3. The
characteristics of the method, found through its application, are discussed in
Section 4.

2. Methods

We describe the proposed method in this section. The contents are similar to
Ref. [19].
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2.1 Priory dimension reduction

S ¼ sαf gα¼1,…,n is the n�N matrix whose column corresponds to the vectorized

original image data. As the dimensions for each mth image are the same, we use the
same basis function to reduce the dimension from N to q. X ¼ SB is the n� q
matrix, where B is theN � qmatrix whose jth column corresponds to the vectorized
basis function with the jth knot being the center. Note that knots are pre-specified
to span the space equally, as shown in Figure 1. In this example, four-pixel equal
spanning knots are applied.

2.2 Objective function

Dimension reduction using the basis function is then followed by the SMS-PCA
method, considering (sample) correlations based on data values. We consider
score t for n� q matrices Xm, where m ¼ 1, 2,…,M with the following multi-block
structure:

t ¼ ∑
M

m¼1
bmXmwm ¼ ∑

M

m¼1
bmtm, (1)

wherewm is the weight vector for themth sub-blockXm and bm is the weight for
the superblock. Here, it should be noted that the scores in Eq. (1) are referred to as
the super scores, whereas tm ¼ Xmwm is referred to as the block score. Figure 2
schematically describes the score structure for the case of M ¼ 2.

Thus, the super score has a hierarchical structure for each individual and can be
used in an application such as the construction of a diagnosis score.

When matrix Xm is normalized by its columns, the weights

w ¼ w1;w2;…;wMð Þ⊤ and b ¼ b1; b2;…; bMð Þ⊤ are estimated by maximizing the
function

L b;wð Þ ¼ 1� μð Þ t⊤t þ μ t⊤Z �∑M
m¼1Pλm wmð Þ (2)

Figure 1.
Dimension reduction via basis function.
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subject to wmk k22 ¼ 1 and bk k22 ¼ 1 with �k k2 as the L2 norm, where 0≤μ≤1 is the
proportion of the supervision, Pλ xð Þ is the penalty function, [Pλ xð Þ ¼ 2λ xj j is used in
this study], and λ>0 is the regularized parameter that is used to control the sparsity.
The larger value of the regularization parameter λm has many nonzero elements in
wm.

2.3 Optimization

The algorithm given in Table 1 is used to estimate the weights in Eq. (1) by
maximizing L in Eq. (2). The rationality behind this approach is provided in [19].

Note that the deflation step yields multiple components and has several alterna-
tives; that is, through K time iteration for step. 1 to 3 of the algorithm, we can obtain

K component super scores t 1ð Þ; …; t Kð Þ with t kð Þ¼ t
kð Þ
1 ;…; t

kð Þ
M

� �⊤
.

2.4 Parameter selection

The optimal value for λ ¼ λ1;…; λMð Þ⊤ is selected by minimizing the Bayesian
information criterion (BIC):

Figure 2.
Score structure.

1. Initialize t with tk k2 ¼ 1.

2. Repeat until convergence:

2.1. Set ewm ¼ hλm bmX
⊤
m 1� μð Þt þ μZf g

� �
, where hλ yð Þ ¼ sign yð Þ yj j>λð Þþ, and normalize as

ŵm ¼ ewm= ewmk k2 m ¼ 1; 2;…;Mð Þ.
2.2. Set tm ¼ Xmŵm and ebm ¼ t⊤m 1� μð Þt þ μZf g; then set eb ¼ eb1;eb2;…;ebMÞ

⊤
�

and

normalize as b̂ ¼ eb=kebk2.
2.3. Set t ¼ ∑M

m¼1b̂mXmŵm.

3. (Deflation step) Set pm ¼ X⊤
mtm=t

⊤
mtm and X̂m ¼ tmp

⊤
m, and Xm  Xm � X̂m.

Table 1.
Algorithm for SMS-PCA method.
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BIC λð Þ ¼ log
∑M

m¼1 X̂
rð Þ
m �Xm

���
���
2

nMq

0
B@

1
CAþ log nMqð Þ

nMq
# nonzero elements in wmð Þ,

where X̂ rð Þ
m ¼ T rð Þ

m P rð Þ⊤
m with T rð Þ

m ¼ t
1ð Þ
m ;…; t

rð Þ
m

h i
and P rð Þ

m ¼ p 1ð Þ
m ;…;p rð Þ

m

� �
is obtained

from r deflation steps (the projection of Xm onto the r-dimensional subspace).
There are several search strategies for optimization, and these are introduced in the
software options below.

2.5 Software

The statistical software R package msma is provided to implement the method
described in Ref. [34] where the SMS-PCA method is a part of the package and the
PLS type can also be implemented. The package is available from the Comprehen-
sive R Archive Network (CRAN) at http://CRAN.R-project.org/package=msma.
Four-parameter search methods are available. Here, the parameters are λm and the
number of components. The “simultaneous” method identifies the number of com-
ponents by searching the regularized parameters in each component. The
“regpara1st” method identifies the regularized parameters by fixing the number of
components and then searching for the number of components with the selected
regularized parameters. The “ncomp1st” method identifies the number of compo-
nents with a regularized parameter of 0 and then searches for the regularized
parameters with the selected number of components. The “regparaonly” method
searches for the regularized parameters with a fixed number of components.

In this chapter, the “ncomp1st”method was applied with nonzero sparsity when
the number of components was selected because, in our experience, the BIC value
suffered from the high dimensionality of the data. The basic R code for this method
is as follows:

tuneparams = optparasearch(X=X, Z=Z, search.method=“ncomp1st”,
maxpct4ncomp=0.5, muX=0.5)

where the argument maxpct4ncomp = 0.5 means that 0:5 λmax is used as the
regularized parameter when the number of components is searched and where λmax

is the maximum of the regularized parameters among the possible candidates. In
order to obtain the final fit result with optimized parameters, the following code
should be implemented:

fit1 = msma(X=X, Z=Z, comp=tuneparams$optncomp, lambdaX=tuneparams
$optlambdaX, lambdaY=tuneparams$optlambdaY, muX = 0.5)

For more details, please see the package manual.

3. Application

In this section, we apply the SMS-PCA described in the previous section to real
data. The data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment (MCI) and
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early Alzheimer’s disease (AD). We use two types of data set: baseline measurement
with multimodal MRI and PET images and repeated measuring MRI images.

3.1 Multimodality

3.1.1 Data

Baseline imaging data were collected from 106 subjects with mean ages of
75.2 years for the 54 normal cognitive subjects and 72.9 years for the 27 patients with
dementia. This data set was somewhat larger than that of [34] because in this study
single-nucleotide polymorphism (SNP) was not considered and subjects withmissing
SNP data were included. Table 2 summarizes the characteristics of these patients.

We consider imaging data from two modalities, MRI X1 and PET X2, namely,
M ¼ 2. The preprocessing method is the same as that used in [34]. For the basis

function, we used four-voxel (therefore, h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 42
p

¼ 6:93) equal spacing knots
because of the results of our simulation study. The clinical outcome to supervise is
given by Z ¼ 3:17 � CDRþ 0:11� ADAS13� 0:57 �MMSE where CDR is the
clinical dementia rating score, ADAS13 is the Alzheimer’s disease assessment scale-
cognitive subscale, and MMSE is the mini-mental state examination score. These
coefficients were the same as in [34]. The SMSMA method was applied to the data
X1;X2;Zð Þ with parameters μ ¼ 0,0:25,0:5, and 0:75.

3.1.2 Results

The original data with dimensions of 2,122,945 (= 121 � 145 � 121) was reduced
to 7,162 using the basis functions for each imaging data set. The number of compo-
nents were selected as 8 for all μ = 0, 0.25, 0.5, 0.75, 1. Figure 3 shows the correla-
tion matrix from the dataset with the binary outcome, AD or Normal, and the
resulting super scores for each μ.

The correlations between the super scores were small except for μ ¼ 1, and for
μ ¼ 0, the second component had a high correlation with the outcome. In contrast,
for μ>0, the first component had the highest correlation with the outcome.

Table 3 shows the results for the multiple logistic regression model with AD or
normal as the outcomes and the super scores as predictors for each μ. The numbers

Dementia Normal p

n 52 54

Age (mean [sd]) 75.41 (7.18) 74.93 (4.89) 0.684

PTGENDER = Male (%) 31 (59.6) 36 (66.7) 0.582

APOE4 (%) <0.001

0 17 (32.7) 39 (72.2)

1 29 (55.8) 13 (24.1)

2 6 (11.5) 2 (3.7)

PTEDUCAT (mean [sd]) 14.19 (3.04) 15.89 (2.99) 0.005

CDRSB (mean [sd]) 4.54 (1.73) 0.03 (0.12) <0.001

ADAS11 (mean [sd]) 18.70 (5.63) 6.56 (3.28) <0.001

ADAS13 (mean [sd]) 28.94 (6.30) 10.08 (4.30) <0.001

MMSE (mean [sd]) 23.38 (2.07) 28.87 (1.24) <0.001

Table 2.
Characteristic for data set 1.

7

Supervised Sparse Components Analysis with Application to Brain Imaging Data
DOI: http://dx.doi.org/10.5772/intechopen.80531



of 5% statistically significant components were 3, 4, 3, 3, and 0 for μ = 0, 0.25, 0.5,
0.75, and 1, respectively. The minimum numbers of nonzero subweights were 552,
581, 574, 523, and 1075, respectively.

Figure 4 shows the reconstructed subweights Bw1 and Bw2 for the MRI and PET
data, respectively, overlying a structural brain image shown for the most correlated
components with the binary outcome from each of μ ¼ 0,0:5,0:75, and 1. The
images for μ ¼ 0:25 were similar to those of μ ¼ 0:5,0:75 and are not shown here.

Figure 5 shows the reconstructed subweights Bw1 and Bw2 overlying a struc-
tural brain image and bar plots for the super-weights (right bottom) in the case of
μ ¼ 0:5 for all components.

In each component, the negative and positive sides are represented. These can
be interpreted by looking at the sign of the super-weight. Most cases remain on one
side of 0 (positive or negative), except for components 5 to 8. The super-weights
are similar between MRI and PET.

A 10-fold cross validated ROC analysis (Figure 6A) was conducted to evaluate
the diagnostic probabilities estimated from the multivariable logistic regression
mode whose coefficients and p-values are shown in Table 3. For comparison, the
single modalities, MRI (Figure 6B) and PET (Figure 6C), were also analyzed.

In the case of the multimodal MRI and PET (Figure 6A), μ ¼ 1 had the highest
AUC value (0.984) following by μ ¼ 0:75 (AUC = 0.880). In the case of the single-
modal MRI (Figure 6B), all values were below the AUC values of the multimodal
case. In the case of the single-modal PET (Figure 6C), μ ¼ 1 and 0:75 outperformed
the multimodal case, and the other values (μ ¼ 0,0:25, and 0:5) did not.

3.2 Multi-measurements

3.2.1 Data

The second data set was a collection of repeated measured imaging data from 68
patients with mild cognitive impairment (MCI). There were two groups, the conver-
sion to dementia MCI (cMCI) group and the stable MCI (not converted to dementia,
sMCI) group. MRI data measured at four time points were used. For the cMCI group,
the four time points were just before diagnosis of conversion. For the sMCI group, the

Figure 3.
Correlations between super scores.
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μ = 0.00 μ = 0.25 μ = 0.50 μ = 0.75 μ = 1

Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|)

comp1 �0.0210 0.0615 0.0827 <0.0001 0.0832 <0.0001 0.0857 <0.0001 4.287 0.9982

comp2 0.0882 <0.0001 0.0460 0.0030 0.0458 0.0031 0.0451 0.0039 2.555 0.9989

comp3 �0.0621 0.0001 0.0180 0.0923 0.0180 0.0920 0.0181 0.0952 4.633 0.9995

comp4 �0.0072 0.6126 0.0037 0.7953 0.0044 0.7583 0.0064 0.6574 1.827 0.9987

comp5 �0.0424 0.0228 0.0452 0.0432 0.0430 0.0203 0.0431 0.0206 3.905 0.9988

comp6 �0.0364 0.0900 0.0396 0.0320 0.0403 0.0715 0.0425 0.0658 4.994 0.9984

comp7 0.0446 0.0891 0.0505 0.0636 0.0510 0.0619 0.0535 0.0549

comp8 0.0336 0.2517 �0.0228 0.3804 �0.0226 0.3816 �0.0218 0.3904

Table 3.
Results for multivariable logistic regression analysis.
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four time points were from the baseline for the entire period of the study. Groups
were matched for age, gender, and intracranial volume. Table 4 summarizes the
characteristics of these patients at baseline (at the first image observation).

For imaging data processing, we used the VBM8 toolbox. For the basis function,
we used four-voxel equal spacing knots, as in the first study in the previous section.
The clinical outcome is given by
Z ¼ 0:44� CDRþ 0:12� ADAS13� 0:11�MMSE: The coefficients were differ-
ent from those in the first study because the target population was different.

3.2.2 Results

The original data with dimensions of 2,122,945 (=121 � 145 � 121) was reduced
to 7162 using basis functions for each imaging data set. The number of components

Figure 4.
Subweights.

Figure 5.
Sub- and super-weights for all components of μ ¼ 0:5.
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selected was 6 for μ ¼ 0,0:25,0:5,0:75 and 4 for μ ¼ 1. Table 5 shows the results for
the multiple logistic regression model with cMCI or sMCI as the outcomes and the
super scores as the predictors for each μ. The numbers of 5% statistically significant
components were 2, 3, 3, 3, and 2 for μ ¼ 0,0:25,0:5,0:75; 1, respectively. The
minimum numbers of nonzero subweights were 724, 736, 749, 753, and 852,
respectively.

A tenfold cross validated ROC analysis (Figure 7) was conducted to evaluate the
diagnostic probabilities estimated from the multivariable logistic regression mode
whose coefficients and p-values are shown in Table 5.

For comparison, the single-modal analysis for each time point was conducted.
The fourth time point (MRI4), which is closest to the MCI conversion diagnosis
time, had the highest AUC values, and these were higher than the multimodal
values (Figure 8).

Figure 9 shows the first component subweights, Bwm (m ¼ 1, 2, 3, 4), for the
four time points for μ ¼ 0 and 0.5. In the case of μ ¼ 0:5, the hippocampus area was
related to the components, and in the case of μ ¼ 0, the parietal lobe was.

Figure 6.
Results for cross-validated ROC analysis for (A) MRI and PET, (B) MRI, and (C) PET.

cMCI sMCI p

n 34 34

Age (mean [sd]) 76.06 (5.94) 75.91 (5.90) 0.922

PTGENDER = 2 (%) 10 (29.4) 10 (29.4) 1.000

APOE4 (%) 0.040

0 12 (35.3) 22 (64.7)

1 18 (52.9) 11 (32.4)

2 4 (11.8) 1 (2.9)

PTEDUCAT (mean [sd]) 16.15 (3.06) 15.50 (2.86) 0.371

CDRSB (mean [sd]) 1.76 (1.07) 1.32 (0.73) 0.051

ADAS11 (mean [sd]) 12.09 (3.49) 9.40 (4.08) 0.005

ADAS13 (mean [sd]) 19.65 (4.31) 15.93 (6.10) 0.005

MMSE (mean [sd]) 26.71 (1.71) 27.88 (1.70) 0.006

Table 4.
Characteristic for data set 2.
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μ = 0.00 μ = 0.25 μ = 0.50 μ = 0.75 μ = 1

Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|)

comp1 �0.0132 0.0139 0.0142 0.0215 0.0142 0.0212 0.0143 0.0204 0.0331 0.0018

comp2 0.0083 0.1714 0.0198 0.0199 0.0095 0.1298 0.0097 0.1240 0.0359 0.0049

comp3 �0.0125 0.1481 �0.0093 0.1410 0.0195 0.0215 0.0196 0.0214 0.0172 0.2833

comp4 �0.0333 0.0042 �0.0073 0.4505 �0.0073 0.4490 �0.0070 0.4709 �0.0157 0.5288

comp5 0.0001 0.9963 0.0458 0.0022 0.0460 0.0021 0.0469 0.0019

comp6 �0.0203 0.1617 0.0077 0.6205 0.0074 0.6313 0.0078 0.6139

Table 5.
Results for multivariable logistic regression analysis.
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Figure 7.
Results for cross validated ROC analysis.

Figure 8.
Subweights for times 1 and 4.

Figure 9.
Subweights for all time points for μ ¼ 0 and 0.5.
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Figure 10 shows the corresponding super-weights. This result should be care-
fully interpreted. For time 4, the sparsest block weights were obtained, and thus the
weight values were larger than those of times 1 to 3, which were balanced by the
small super-weight. As a result, the super score for this component has the mean
value of the block scores.

4. Discussion

In this chapter, the SMS-PCA method was introduced and applied to multiple
measured neuroimaging data sets. The first data set consisted of two different types
of images, MRI and PET. The second data set consisted of repeated MRI measure-
ments (the same type of image). These imaging data have many voxels per person
which were reduced using the basis function prior to conducting the SMS-PCA. The
multi-block feature of the SMS-PCA also caused further reduction in each block,
and their summary was obtained in the super level where the weights were the
relationship and the scores were used in the prediction model.

One of the key features in the SMS-PCA is that it is supervised and its proportion
to (self) variance is parametrized by μ. In each study, the impact of μ was studied.
The case of μ ¼ 1 resulted in only supervision, that is, only the correlation between
the score and the outcome, without the variance of the score. As in an original PCA,
maximizing the variance of the score corresponds to μ ¼ 0, and the correlated vari-
ables (voxels) have relatively high weights for each component. Thus, the messy
maps for the block weights overlaying the brain in the case of μ ¼ 1 were reason-
able. In both applications, because μ ¼ 0:25,0:5, and 0:75 had similar results, a
possible large value in μ<1, or the median value μ ¼ 0:5 with a trade-off, can be
selected as optimal.

Repeated measured imaging data analysis was studied in [35] which reduced the
imaging dimensions using basis functions but did this independent for each image.
In contrast, in this study, the correlation between measurements at different time
points is considered. That is, simultaneous temporal and spatial correlation was
considered. This approach was limited by the need that the number of images for
each individual be the same, and this will be improved in future work. In addition,
the method introduced in this chapter can incorporate modalities such as network
models which would need to summarize the information into the component. This
research is in progress.

Figure 10.
Super-weights.
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5. Conclusion

Although there is room for improvement in this method, this study showed
reasonable results when the method was applied to the dementia study. In conclu-
sion, this data-driven approach would be helpful for exploratory neuroimaging data
analysis.
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