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Abstract

Gene therapy returns to the center stage of medicine to treat patients with diseases that are
unable to be cured with the conventional therapeutic strategies. This development is due
to various reasons, including vector development and significant achievement in next-
generation sequencing. Among the various methodologies of gene therapy, nucleic acid-
based therapy has been considered to be promising in various diseases. The development
of delivery methods to target cells in vivo, however, remains critical. These include viral
vector-based and nonviral vector-based gene delivery methods as well as physical
approaches such as hydrodynamic gene delivery (HGD). HGD is a simple and effective
in vivo gene transfer method for the functional analysis of therapeutic genes and regula-
tory elements in small animals. Moreover, this chapter outlines the principle of HGD, gene
expression studies in rodents, and recent advances in clinical application of HGD and
provides future perspectives in developing a safe and efficient method for nucleic acid-
based therapy.

Keywords: nucleic acid-based therapy, nonviral delivery, hydrodynamic gene delivery,
site-specificity, computer-controlled injection, human gene therapy

1. Introduction

In 1990, first human gene therapy was conducted, targeting adenosine deaminase deficiency

via retrovirus-mediated delivery system [1]. Since then, the number of clinical trials has grad-

ually increased, and approximately 2600 trials have been globally undertaken or approved

until November 2017 [2]. Most trials (75%) utilized a viral vector as a delivery tool of gene.

Viral vector-based delivery resulted in a high level of gene expression for a long period;

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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however, carcinogenesis and lethal immune reaction were reported [3–5]. Numerous

researchers have been attempting to overcome these serious obstacles to enable safe and

efficient therapy. For this purpose, the improvement of viral vector has been extensively

studied in the last decade, and in addition, nonviral vector-based gene delivery method has

developed with great promise. As expected, it resulted in less antigenicity and less chance of

integration into the human genome than viral vector; therefore, it can be regarded as a

biologically safer method than viral vector-based gene delivery method. However, the period

of transgene expression tends to be limited.

This chapter focuses on nonviral vector-based delivery method, which could be used for the

nucleic acid-based therapy. In these methods, a transgene is not integrated into the host

genome; hence, gene expression is transient. Because temporal transgene expression is applied

to promising technologies, such as generation of iPS cells and gene editing by CRISPR/Cas9,

nonviral vector-based gene delivery may play a big role in future medicine.

The last section of this chapter outlines the recent progress in the HGD, which enables the

highest level of delivery efficiency among nonviral vector-based approaches and the clinical

application utilizing the well-established method of catheter insertion into the vessels in the

multiple organs.

2. Nonviral approaches for nucleic acid transfer

This section focuses on gene delivery methods using nonviral vector-based approach. Nucleic

acids loaded in artificial or natural cargos or in naked condition are transferred to target cells.

The characteristics of various gene deliveries are briefly described in Table 1.

2.1. Liposome-based approach

Lipofection, a cationic lipid-mediated approach, is widely used in numerous in vitro and in vivo

studies. The first study reporting lipofection was published in 1987 [6]. Molecules comprising

hydrophilic head, linker, and hydrophobic anchor form a spherical structure. The positively

charged hydrophilic head plays a role in condensing the negatively charged DNAs. It also

helps in establishing an electrostatic interaction with the negatively charged cell membrane. As

a result, it promotes the cellular uptake of DNA-loaded liposome (lipoplex), endosomal

escape, and subsequent release of the condensed DNAs into the cytoplasm. On the contrary,

the hydrophobic anchor protects DNAs from degradation by nucleases. Liposome is a popular

carrier to deliver even large-sized transgene; it is easy to prepare and modify and is utilized in

numerous laboratories worldwide. Nevertheless, there are several drawbacks for its use in

gene therapy. It has difficulty in achieving therapeutic level of transgene expression, shows no

tropism to desired cells, and exhibits a short life span. Furthermore, the positively charged

head has cell toxicity. An inflammatory response occurs when unmethylated CpG DNA is

transported, which is one of the obstacles that need to be addressed. Various strategies to achieve

high level of safety and efficiency, such as introduction and improvement of polyethylene
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glycol [7] and cell-specific targeting ligand on the surface of the liposome, have been extensively

studied. Development of a promising linker also improves stability, biodegradability, and trans-

fection efficiency and reduces cytotoxicity [8]. Lipofection has been utilized in 4.4% of clinical

trials worldwide [2]. The results of human gene therapy for cystic fibrosis in clinical trials of

phase I/IIa and IIb have been reported in the UK [9, 10]. Patients had cystic fibrosis transmem-

brane conductance regulator (CFTR) genemutations and suffered from hypofunction of CFTR in

multiple organs. Because secretory fluid becomes viscous, the patient may experience repeated

respiratory infection and, finally, respiratory failure. CFTR gene was nebulized as lipoplex every

28 days for 1 year for significant stabilization of lung function [9, 10]. In 2016, other clinical trials

for genitourinary cancers and solid tumors reportedly used the truncated forms of the RB gene

and p53 gene with docetaxel, respectively [11, 12].

2.2. Polymer-based approach

Cationic polymer is an artificially synthesized vehicle, and various types of polymer have been

studied. DNA condensed in cationic polymer (polyplex) acquires tolerance to enzymatic deg-

radation, which results in stability in the blood. Cellular uptake is via receptor-mediated

endocytosis, which leads to a high level of transfection activity. Clinical trials using this

approach for cystic fibrosis and ocular degenerative disease have been reported [13, 14].

Nevertheless, the stability of polyplex and persistent positive charge leads to high cytotoxicity.

Method Functional component Advantages Disadvantages

Lipids Cationic lipids High efficiency in vitro

Ease to prepare

Low efficiency in vivo

Acute immune response

Polymers Cationic polymers Highly effective in vitro

Ease to prepare

Toxic to cells

Acute immune response

Exosomes Natural or modified

exosomes

Less toxic (Insufficient

data)

Low efficiency? (Insufficient data)

Needle injection Mechanic force Simple Low efficiency

Expression limited to needle track

Gene gun Pressure Good efficiency Limited to target area

Need surgical procedure for internal organ

Electroporation Electric pulse High efficiency Tissue damage

Limited target area

Need surgical procedure for internal organ

Sonoporation Ultrasound Site specific Low efficiency

Tissue damage

Magnetofection Magnetic field Site specific Low efficiency

Limited target area

Need surgical procedure for internal organ

Hydrodynamic

delivery

Hydrodynamic pressure Simple

High efficiency

Site specific

Need catheter insertion technique in large

animals

Table 1. Characteristics of nonviral gene delivery method.
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Because cationic polymer is easy to prepare and improve, various constructs, such as polyethy-

lenimine, polyamidoamine, polyallylamine, chitosan, dendrimers, cationic proteins, and pep-

tides, have been studied to overcome the obstacles.

2.3. Lipopolyplex-based approach

Lipopolyplex comprises polycation (cationic polymer or peptide) and condensed DNA with

lipid shell and is divided into diverse categories according to the combination and ternary

structure. Its advantages are of both lipoplex and polyplex, that is, more efficient transfection

and less cytotoxicity. Previous study [15] and reviews [16, 17] have described the strategy,

variety, and preparation of lipopolyplex.

2.4. Exosome-based approach

Exosome is a kind of extracellular vesicle secreted by various cells. It comprises a lipid

bilayer with several surface antigens derived from the parent cell. DNA, mRNA, miRNA,

and protein can be included in the lipid bilayer. Moreover, exosome is known to have organ

and cell tropism; however, the mechanism is not completely clarified. This indicates that

exosome plays a role in intercellular communication. Cancer cells as well as healthy cells

secrete exosome. Integrin included in exosome reportedly determines organ tropism for

metastasis. Exosome from metastatic lung tumor of breast cancer induced lung metastasis

of breast cancer, which originally had metastatic ability only to the bone [18]. An attempt to

utilize cancer-derived exosome for cancer therapy was also reported, wherein the cancer-

derived exosome was used as a natural carrier of CRISPR/Cas9 plasmids. Compared to

epithelial cell-derived exosome, cancer-derived exosome with CRISPR/Cas9 plasmids selec-

tively accumulated in cancer cells, suppressed PARP-1 gene expression, and achieved induc-

tion of apoptosis [19]. Recently, many researchers have been studying exosome as delivery

system for cancer therapy. Surface antigens of exosomes are known to be modified directly

and genetically. The exosomes from leukemia cells, marrow stromal cells, adipose-derived

mesenchymal stem cells, breast cancer cells, and kidney cells including siRNA and miRNA

were reported to be used for colorectal tumor, glioma, hepatocellular carcinoma, breast

cancer, and chronic myelogenous leukemia [20–24]. Although the exosome-based approach

has been seen as a new and promising method of gene delivery, it is rather obvious that

further understandings of the mechanisms and structures as well as improvement in

exosomes’ preparation are necessary to achieve the high level of efficiency and safety needed

for clinical application.

2.5. Needle injection

Direct injection to the tissue is the simplest approach for the physical delivery of nucleic

acid. The first report for delivery to muscle was published in 1990 [25]. Needle injection was

expanded to the skin [26], heart muscle [27], liver [28], and tumor [29]. Currently, microneedle

is studied as a minimally invasive delivery for skin disease and vaccination [30, 31].

Microneedles are arrays of 25–2000-μm long needles [32]; on the basis of the deliverymechanism,
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they are divided into solid, coated, and dissolving types [31]. In a mouse study, siRNA

delivery is reported to be effective for skin conditions with aberrant gene expression, such as

alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, and congenital

pachyonychia [33].

2.6. Gene gun

Gene gun is known as microprojectile bombardment, and the first study reporting its use was

published in 1987 [34]. At first, this method was developed for gene delivery into plant cells. A

bullet with the microparticles containing DNA is shot to a target cell, and gene delivery is

achieved. On the basis of the principle of obtaining a driving force, a gene gun is divided into

three major groups: powder gene gun [34], high-voltage electric gene gun [35], and gas gene

gun [36]. The driving force moves the microparticles containing DNA toward a target tissue

and penetrates the cell membrane. Because delivery efficiency and cell damage are two sides of

the same coin, appropriate operating pressure is required. A phase I clinical study was

performed to treat melanoma using IL-12 gene [37]. Although an attempt of combining deliv-

ery with microneedles reportedly enhanced the penetration depths of microparticles [38], gene

gun may be more appropriate for delivery to the skin, such as for vaccination.

2.7. Sonoporation, electroporation, and magnetofection

Sonoporation, using ultrasound [39, 40], and electroporation, using electric pulse [41], increase

the permeability of cell membrane for cellular uptake of nucleic acid. Magnetofection utilizes

magnetic field to enable microparticles with nucleic acid to pass through the cell membrane

[42]. These methods are used in combination with other methods, such as lipofection, to

protect nucleic acid against degradation by nucleases. To increase gene delivery efficiency of

sonoporation, microbubbles were shown to be effective [43] and applied for delivery to cancer

cells [44, 45] and the central nervous system [46, 47]. Clinical trials in phases I and II have been

reported for the treatment of melanoma [48–50] and solid tumors [51].

2.8. Hydrodynamic gene delivery (HGD)

HGD is one of the simplest methods for gene transfer. The efficiency of HGD is the highest

among nonviral vector-based delivery methods, and its physical force to deliver the gene into

the cells relies on a high level of flow rate and volume of the injected solution. Since the first

published reports in 1999 [52, 53], many researchers have utilized this methodology for gene

transfer in animal experiments, particularly in rodent studies. For its application in human,

safety and efficacy of this approach have been extensively studied and improved. To date,

various types of nucleic acid have been delivered by this approach in rodents as well as pigs

[54–57], dogs [58, 59], and rhesus monkeys [60, 61]. Functional analyses of therapeutic gene

were reported in nonalcoholic steatohepatitis [62], hepatitis B and C [63], fulminant hepatitis

[64, 65], liver fibrosis [66, 67], liver regeneration [68], Fabry’s disease [64], and colon cancer

[69]. The next section describes its principle and progress in human gene therapy.

Nucleic Acid-Based Therapy: Development of a Nonviral-Based Delivery Approach
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3. Principle and progress of hydrodynamic gene delivery toward human

gene therapy

3.1. Principle, efficiency, and safety of hydrodynamic gene delivery

HGD is achieved by the quick injection of a large amount of naked nucleic acid solution into

the vein. In case of a rodent, the solution is injected from the tail vein. The most important step

of successful gene delivery is a precise insertion of an injection needle into the tail vein. The

details of technical tips are described in Figure 1. The quick injection can transiently increase

an intravenous pressure. Mechanical force by rapid increase in venous pressure allows nucleic

acid to pass through the cell membrane into the cytoplasm and nucleus.

Among various organs, the liver can achieve the highest level of gene expression because of the

presence of the specific structure fenestra. Fenestra is a small window in the sinusoidal vessel,

and hepatocytes are partly exposed to the blood stream. In other words, hepatocytes can be

directly affected by intravascular pressure. A rapid stream of hydrodynamic injection can

wash out the blood in the sinusoid vessel transiently and thoroughly, and nucleic acid can

reach the hepatocytes without degeneration by nucleases. A high intravascular pressure

Figure 1. Technical details of the tail vein injection in a mouse. (a) When inserting a needle tip, the tail vein and needle

shaft should be at the same angle. The puncture can be performed from the top of the tail curve. (b) If a needle tip

successfully enters the tail vein, backflow of the blood is visible on the needle tip. Once the backflow is confirmed, a

needle tip can be further inserted to the proximal side of the tail vein.
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creates dimples on the surface of the hepatocyte and finally generates transient small pores.

The nucleic acid is pushed into the hepatocyte through the transient pores (Figure 2). More-

over, it was clarified that the pores naturally reduce and disappear in 24–48 h [70]. Although

serum transaminase shows transient increase after a hydrodynamic injection, these values

return to the background level within a short period. Considering the short life time of

transaminase, an increase in serum transaminase is speculated to be caused by leakage from

the transient pores. If the intravascular pressure is kept within an adequate range, this change

in hepatocyte is reversible and does not result in apoptosis and necrosis; therefore, acute liver

failure is not a concern.

To apply this method into the clinic, the modification of the original procedure is essential as in

mouse studies, hydrodynamic injection is performed via the tail vein. Looking back to the

original method, in detail, naked DNA solution equivalent to 10% of the body weight (BW) is

injected for 5–7 s via the tail vein. The details of hydrodynamics during the injection have been

reported using contrast medium under fluoroscopic imaging and cone-beam computed

tomography (CT) [71]. Briefly, the injected solution is led to the inferior vena cava (IVC) and

then flowed back to the hepatic veins. The retrograde flow passes through the sinusoid vessel

into the portal vein. Given that contrast medium transiently stayed in the liver after the

injection, the flow generated transient pores on the surface of the hepatocyte while passing

through the sinusoid vessel. Because of the filling of sinusoidal and interstitial space by the

Figure 2. Scheme of hydrodynamic gene delivery. The hepatocyte partly faces to the blood stream via the fenestra in the

sinusoidal structure. A rapid stream of hydrodynamic injection has the blood in the sinusoid washed out transiently, and

the nucleic acid can be delivered into hepatocytes without being degraded by nucleases. A high intravascular pressure

makes dimples on the surface of hepatocyte, and finally generates transient pores. Nucleic acid is pushed into the

hepatocyte through the transient pores.
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solution and transfer of nucleic acid into the hepatocyte, the volume of the liver reportedly

increased by 165% compared to the preinjected condition.

The efficiency of transfer was indicated by microscopic images. Transgene expression was

observed in approximately 20–40% of hepatocytes. Wide distribution of transgene expression

in the liver can achieve therapeutic level of transgene expression [72]. In a rat model with bile

duct ligation, hydrodynamic delivery of MMP13 gene indicated prophylactic effect on liver

fibrosis [67]. Given its simplicity, safety, and efficiency, HGD has been utilized in numerous

rodent studies [63, 65, 66, 73, 74]. HGD can be also applied to various organs other than the

liver, such as the kidneys [75], muscle [61], and pancreas [76].

3.2. Improvement of a hydrodynamic injection for larger animals

Based on efficiency and safety in rodents, HGD has been improved extensively and can be

potentially applied in humans (Figure 3). Two major obstacles that should be overcome are

poor site specificity and very large injection volume. HGD with adequate range of intravascu-

lar pressure, a key factor for efficient and safe delivery, is facile to achieve by a manual injection

in mice. On the contrary, in larger animals, such as rabbits, pigs, dogs, and nonhuman pri-

mates, controlling intravascular pressure is difficult because of a large amount of injection

Figure 3. Improvements of hydrodynamic gene delivery toward human gene therapy.
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volume per second. Several studies have tried to resolve these problems using catheter tech-

nique. A balloon catheter is inserted from the jugular vein into the hepatic vein under X-ray

guidance, which is often performed in clinic [56]. When the catheter is placed in the hepatic

vein, the balloon on its tip is inflated, which causes venous occlusion to prevent leakage of

DNA solution from the hepatic vein to the IVC. This technique targeting each lobe of the liver

can reduce injection volume per one procedure to <1% BW, maintaining efficiency of gene

delivery.

During the establishment of catheter technique, another important problem arises, that is,

distinct response of injection pressure in a targeted area. Precise control of intravascular

pressure is essential to achieve efficient and safe gene delivery (Figure 4). Inconsistent

intravascular pressure caused by leakage of DNA solution to the adjacent area, which results

from physiological connections of intrahepatic vessels and tissue elasticity, is highly possi-

ble, and the leakage volume can be also associated with intravascular pressure during

injection. To achieve precise control of intravascular pressure, a computer-controlled injector

with feedback mechanism has been developed [54]. Although the initial version of the

injector utilized CO2 as its driving force, the current version adopts electric motor for pursuit

of more accurate control [58, 77] (Figure 5). This injection system leads to reproducible

results of efficiency. Not only efficiency but also safety is confirmed in various aspects, such

as blood test, electrocardiogram, hemodynamic CT study, laparoscopic observation, and

histologic assessment [56, 78, 79] (Figure 6).

Figure 4. Relationship between time-pressure curve and transgene expression on site-specific delivery to a large animal.

(a and b) HGDwas performed to right and left lateral lobes of the pig liver. (c and d) Both injections achieved 75 mmHg of

a peak intravascular pressure. (e and f) Gene expressions after the injections of (c) and (d) are shown in (e) and (f),

respectively. This figure is partly reused and modified with updated information from Figures 3, 5, and 6 in [56]

with their permission. RLL, right lateral lobe; RML, right medial lobe; LML, left medial lobe; LLL, left lateral lobe; CL,

caudate lobe.
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Figure 5. Scheme of the computer-controlled hydrodynamic injection system. Prior to an injection, a user selects appro-

priate time-pressure pattern for delivery and preload the data to the command unit. The command unit transmits the data

to the control unit, which modulates electric power based on the feedback information of an intravascular pressure during

the injection from the pressure sensor placed at the peripheral vein of a target area.

Figure 6. Image-guided, computer-controlled HGD to the dog liver. The balloon catheter was placed at the appropriate

position in the hepatic veins of right lateral lobe and the occlusion of the blood flow by the balloon was confirmed by

injecting a small amount of contrast medium into the hepatic vein. Then the hydrodynamic injection of naked DNA

solution was performed under the real time monitoring of liver structure by the laparoscope using the computer-

controlled injection system (A). (B) Time-pressure curve and the volume of injected solution recorded in the injection

system. Solid and dotted lines represent actual and preloaded time-pressure curves. The gray area shows cumulative

volume of injected saline (ml). (C) Laparoscopic findings of the hydrodynamically injected right lateral lobe of the dog.

The injected lobe was swollen, and the injected DNA solution transiently made the liver pale. Neither destruction nor

bleeding was seen on the surface of the liver (arrowheads). (D) The effect of lobe-specific hydrodynamic gene delivery of

luciferase expressing plasmid. (i) Liver samples were collected by needle biopsy under the ultrasound sonography 4 days

after the injection. (ii) The immunohistochemical analyses showed positively stained cells in the injected right lateral lobe.

No stained cells were found in noninjected left lateral lobe. This figure is partly reused and modified with updated

information from Figure 1 in [58] with their permission.
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4. Conclusion

Currently, various approaches including both viral and nonviral vector-based delivery

methods are studied for safe and efficient human gene therapy. They have their own proper-

ties, such as duration of gene expression, size of transgene to load, possible organs and their

expected volumes in single procedure, and repeatability. Conditions to treat are also diverse.

Congenital disease such as hemophilia possibly requires long-term transgene expression for

decades. For in vivo gene editing based on CRISPR/Cas9, short-term transgene expression may

be preferred, to prevent off-target effect. Therefore, the transient gene expression mediated by

the nonviral vector-based delivery may have great advantages when it comes to gene editing.

Among the methods, as described above, HGD may be a promising delivery approach as it is

simpler and more efficient. Currently, we are modifying the original HGD method used in

small animals in order to apply it into large animals to test its efficacy and safety. Metabolic

and genetic diseases, which show lower level of normal functional protein, are so far good

candidates for this type of procedure. Although there is evidence showing transgene expres-

sion and that the procedure was safely performed in pigs [54–57], dogs [58, 59], and baboons

[60, 61], further preclinical studies are necessary prior to human therapy application.
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