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Abstract

This chapter introduces a spatiotemporal statistical shape model (stSSM) using brain MR 
image which will represent not only the statistical variability of shape but also a temporal 
change of the statistical variance with time. The proposed method applies expectation-
maximization (EM)-based weighted principal component analysis (WPCA) using a tem-
poral weight function, where E-step estimates Eigenvalues of every data using temporal 
Eigenvectors, and M-step updates Eigenvectors to maximize the variance. The method 
constructs stSSM whose Eigenvectors change with time. By assigning a predefined 
weight parameter for each subject according to subjects’ age, it calculates the weighted 
variance for time-specific stSSM. To validate the method, this study employed 105 adult 
subjects (age: 30–84 years old with mean ± SD = 60.61 ± 16.97) from OASIS database. 
stSSM constructed for time point 40–80 with a step of 2. The proposed method allows 
the characterization of typical deformation patterns and subject-specific shape changes 
in repeated time-series observations of several subjects where the modeling performance 
was observed by optimizing variance.

Keywords: stSSM, brain, MRI, shape analysis, age, prediction

1. Introduction

Quantifying cortical morphological dynamics of brain deformation will help neuroscien-

tists identifying and characterizing brain deformation disorders. To be precise, if physicians 

could learn to predict the normal cortical shape evolution for healthy adults, they can predict 
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abnormal or early deformation of brain with time as well. The shape variability from sta-

tistical shape models has been successfully utilized to perform various deformation-based 

researches in the field of image analysis in both two-dimensional (2D) and three-dimensional 
(3D) images. In specific cases, their application for image segmentation in the context of sta-

tistical shape models has been well acknowledged. To constract those statistical models, a set 

of segmentations of the shape of interest is required. At the same time, a set of feature vectors 

are also needed which can be decidedly defined in each sample shape. There are a number 
of researchers who have used statistical models containing shape information as initials for 

segmentation via deformable models [1–3], deformable registration [4], or shape analysis 

[5]. Meanwhile, the fundamental problem faced at the time of constructing these models is 

the reality that they need the determination of point correspondences between the different 
shapes as the manual identification of such correspondences is a time-consuming and tire-

some work. It is specially applicable in 3D where the number of feature vectors required to 
describe the shape accurately rises dramatically compared to 2D applications. An easy but 
efficient way of handling this issue for the construction of statistical shape models is the use 
of distance transformations which has been proposed by a number of authors [2, 6, 7]. For 

example, in [2], the authors proposed an approach in which the statistical analysis is carried 

out directly on the signed distance maps of a set of aligned shapes.

However, learning predictive models to trace forth the evolution trajectories of adult corti-

cal shapes remains challenging. There are some studies to analyze the brain deformation 

in adults. For example, they are studying nonrigid brain shape registration with respect to 

baseline distribution, brain region segmentation based on fuzzy object model, sulcal curves 

extraction on the outer cortex, etc. In [8], authors described an automated way in which 

correspondences between the surfaces of different shapes are established via a nonrigid 
registration algorithm [9]. A similar approach has been proposed by [10]: there, a modified 
iterative closest point algorithm [11] is used to calculate correspondences between geometric 

surface features of the shapes such as crest lines. The difficulty of analyzing the adult brain 
shape points to the critical selection of parameter optimization.

Recently, Durrleman et al. [12] have proposed the construction method of spatiotemporal 

statistical shape model but the study is confined to longitudinal data. To fill this critical gap, 
we propose spatiotemporal statistical shape model (stSSM) for temporal 3D shape change 
analysis of the adult brain. We are performing a dimensionality reduction analysis directly on 

a parametric representation of the feature vector calculated from training sample. To match 

different anatomies, all subjects are aligned using anterior-commissure (AC), posterior- 
commissure (PC), and mid-plane for location and orientation alignment with a reference of 

AC as origin. This enables the construction of average models of the brain shape and their 

statistical variability across a population of subjects. Our approach is closely related to the 
statistical shape models first proposed by [13, 14], but differs in an important aspect. Rather 
than performing a classic principal component analysis (PCA) directly, we are creating an 

stSSM for temporal 3D shape change analysis of the adult brain with respect to cortical sur-

faces using an expectation-maximization (EM)-based weighted PCA (WPCA) learning frame-

work where the weight function is defined as a Gaussian function, whose center is time point, 
and variance is a predefined parameter.
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2. Preliminary

Basically, SSM construction is a method of extracting the average shape and a number of 

modes of variation from a collection of training samples. The methods are strongly dependent 

on the chosen shape of representation. A vital necessity for building shape models with sta-

tistical variability is that the features of all training samples need to be located at correspond-

ing positions and sharing same origin. With an assumption of a one-to-one correspondence 

of anatomical structures across subjects, the alignment of images between different subjects 
with chamfer distance calculation provides a dense set of correspondences. In this study, we 
performed an expectation-maximization algorithm-based wPCA on a compact parameteriza-

tion of the feature vector which is required to construct our proposed model. In the following 
subsections, we will describe the proposed approach in detail.

2.1. Distance mask calculation

For distance mask calculation, level sets were introduced by [15] and made popular for com-

puter vision and image analysis by [16]. They basically feature an implicit shape representa-

tion and can be utilized with regional or edge-based features. The authors of [17] presented a 

method of embedding the distance maps into the linear space, which could solve the model-

ing problems and Cremers et al. [18] have given an overview of statistical approaches to level 

set segmentation including prior shape knowledge.

In order to construct stSSM, firstly, brain region was segmented from MR images. The seg-

mentation is done automatically using FSL [19]. In the next step, chamfer distances were 
calculated to extract shape features through a level set algorithm where negative values are 

assigned inside the brain region and positive value outside the brain region.

2.2. Dimensionality reduction

After calculation of chamfer distance, the next step is to reduce the dimensionality of the 

training set, that is, to find a small set of modes that best describes the observed variation. 
This is usually accomplished using principal component analysis (PCA) [20]. PCA is a very 

powerful tool to analyze data by creating a custom set of “principal component” eigenvectors 

that are optimized to describe the most data variance with the fewest number of components. 

Theoretically, the steps are simple: the principal components {Φ
k
} of a dataset are simply the 

eigenvectors of the covariance of that dataset, sorted by their descending eigenvalues which 

results to a new observation, C = μ + ∑ᴪ
k
 Φ

k
 where μ is the mean of the initial dataset and ᴪ

i
 is 

the reconstruction coefficient for eigenvector Φ
i
 [21]. One of the limitation of classic PCA is 

that it does not distinguish between variance due to measurement noise vs. variance due to 

genuine underlying signal variations. Even when an estimation of the measurement variance 

is available, this information is not included while constructing the eigenvectors [22]. In order 
to overcome this problem, Bailey [22] introduces PCA based on EM-PCA.

In our method, we used weighted PCA with EM-PCA. EM is an iterative technique for solv-

ing parameters to maximize a likelihood function for models with unknown latent variables 
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which basically consists of E-step and M-step. E-step estimates eigenvalues of every data using 

temporal eigenvectors, and M-step updates eigenvectors so that it maximizes the variance. E- 

and M-steps are iterated until convergence of updating vectors. The detail is described below.

[E-step] Let the current eigenvector be   Φ 
→

   . Principal component (PC) score of data j is calcu-

lated by:

   c  
j
   =   →  x  

j
    ⋅  Φ 

→

    (1)

where    →  x  
j
     is the feature vector of data j.

[M-Step] Update the eigenvector by maximizing the weighted variance of PC score. It is cal-
culated by:

   Φ 
→

   =  ∑  
j
    w  
j
    c  
j
    →  x  
j
     (2)

The eigenvectors are normalized after each M-step. E- and M-steps are iterated till the updated 

value of eigenvector is converged.

3. Method

To construct stSSM, firstly, brain region was segmented from MR images, and chamfer dis-

tances were calculated to extract shape features as shown in Figure 1.

Figure 1. Preprocessing steps of brain MR image for feature extraction. (a) Raw MR image, (b) Segmented image, and 

(c) Signed distance.
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After that, weighted PCA is applied to the shape features. The proposed method assigns a weight 

parameter for each subject according to subjects’ age, and calculates the weighted variance. Let 

t
i
 be a time point, and the method can construct SSM at the time point. The weight function was 

defined as a Gaussian function, whose center is t
i
, and variance is a predefined parameter.

   w  
j
   = exp  (−   

  (t −  t  
j
  )    2 
 _____ 

 σ   2 
  )   (3)

The shape of temporal weight function is illustrated in Figure 2. That is, subjects near t
i
 are 

dominant to decide the Eigenvectors. By shifting the t
i
 at a short interval from the minimum to 

the maximum age, the method constructs the stSSM whose eigenvectors change with growing 

or aging. Preliminarily, the eigenvector at the first time point is initialized randomly. Then, 
the obtained eigenvectors are used at the stSSM construction.

4. Experimental results

For evaluation purpose, the proposed method has been applied on both artificial and image 
data.

4.1. Result of artificial data

In order to numerically evaluate the method, weighted PCA has been applied to point distri-
bution model. Assumed a point of an organ, and the statistical distribution changes tempo-

rally. Figure 3 shows the artificially generated 2D data where the points located one direction 
shown at the first time point (a), and rotates anticlockwise with 10-degree every time point. 
The time period was 20. Because, conventional SSM evaluates all data simultaneously without 
time, as shown in Figure 3(c). It cannot be statistical variation of shape.

Figure 4 shows the angle between x-axis and the first (second) principal axis obtained by the 
proposed method. The full-width-half-maximum (FWHM) of the weight Gaussian function 
was 3. The first principal axis rotates anticlockwise with 10-degree every time point. Results 
show that the proposed method can extract the statistical variability of point distribution in 

time. Note that the result around t = 1 has errors because the data existed only in the positive 
side of Gaussian function.

Figure 2. Temporal weight function.
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Figure 3. Temporal change point distribution. (a) t = 1, (b) t = 5, and (c) all data.

4.2. Image data

To train and test the proposed model with respect to weighted variance optimization, we 

used 105 adult subjects (age: 30–84 years old with mean ± SD = 60.61 ± 16.97) from publicly 
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available imaging database called OASIS [23]. These subjects were selected from a larger 

database of individuals who had participated in MRI studies at Washington University, were 
all right-handed, and older adults had a recent clinical evaluation. The representative MR 

imaging acquisition parameters were repetition time (TR) of 9.7 ms, echo time (TE) of 4.0 ms, 
image resolution (voxel) of 256 by 256, flip angle (FA) of 10°.

4.3. Results

The method was applied to the adult brain MR image. We first segmented the brain region 
from MR images, and calculated the signed distance map to extract shape features. The pro-

posed method assigns a weight parameter for each subject according to subjects’ age, and 

calculates the weighted variance. Let t
i
 be a time point, and the method can construct SSM at 

the time point. According to the weight function defined in Eq. (3), the center is t
i
, and vari-

ance is a predefined parameter.

From Figure 2, we can understand the shape of temporal weight function which implies that 

subjects near t
i
 are dominant to decide the Eigenvectors. By shifting the t

i
 at a short interval 

from the minimum to the maximum age, the method constructs the stSSM whose eigenvec-

tors change with aging. Preliminarily, the eigenvector at the first time point is initialized 
randomly (usual PCA can be applied to obtain the initial eigenvector). Then, the obtained 

eigenvectors are used at the following stSSM construction. Figure 5 shows the mean shape of 

constructed model between age range of 40–80 years old. Figure 6 illustrates stSSM of brain of 

adult subject at 60 years. The brain shape changes along with temporal domain with reference 
to variance (σ) can be seen.

Next, the stSSM of adult brain between 52 and 58 years and temporal difference with chang-

ing variance is shown in Figure 7. While generating stSSM for an age range of 40–80, Gaussian 
function’s weight parameter has been varied between a range of 5–35.

Figure 8 illustrates stSSM of adult subject brain shape at age of 60 years old, where the indi-
vidual brain shape variety is synthesized within a range of −1σ to +1σ at the first eigenvector 

Figure 4. Temporal change of principal axes.
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(horizontal) and −0.5σ to +0.5σ at the second eigenvector (vertical) with a step of 0.50. σ is 

the standard deviation (SD) in the training data along each eigenvector. Full-width-half-
maximum (FWHM) of the Gaussian weight function used in this case was 15.

5. Discussion

The 3D SSM and stSSM in the medical imaging field are almost exclusively based on imaging 
modalities such as CT, MRI, that is, the original data representation of the training shapes is 
not a mesh but rather a segmented volume. Therefore, each shape of the training set must be 

annotated by features, each designating the same anatomical locus along the set. The set is 

considered as a collection of shape vectors which after alignment raises a covariance matrix. 

Figures 1 and 2 show these phases of our model from which we created feature vector matrix 

from 105 training samples.

For dimensionality reduction phase, we introduced weighted EM-PCA where every aligned 

training shape is described by the feature vector matrix. The mean shape has been formed by 

simply averaging over all samples with corresponding weight parameter where weight has 

been assigned by subject’s age. From age range of 40–80 years with a step of 2, stSSM model in 
3D has been constructed. An eigen decomposition on covariance matrix gives principal modes 
of variation (eigenvectors) and their respective variances (eigen values). Figure 5 visualizes the 

mean shape of 40, 50, 60, 70, and 80 years. From the computational point of view, this method 
is used due to higher numerical stability. The resulting modes of variation are ordered by their 

variances. In a next step, the model approximated every valid shape by a linear combination of 
the chosen accumulated variance which presented the shape variation with FWHM Gaussian 
distribution function. The shape variation at a specific time point is visualized in Figure 6. The 

horizontal and vertical axes are the first and the second principal axes.

Difference between temporal deformations of all parameters has been shown in Figure 7. 

We calculated the temporal deformation change between two time points and evaluated the 

corresponding difference. Positive value has been assigned inside, while negative represents 
outside with a view that higher temporal deformation difference will show high contrast. Our 

Figure 5. stSSM mean shape (a) 40 years (b) 50 years (c) 60 years (d) 70 years, and (e) 80 years.
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study shows that when FWHM of Gaussian function is set to a value smaller than 15, it shows 
larger difference in comparison with FWHM higher than 15 where it is not represented. This 
observation leads to an optimum value of weight parameter between 10 and 15. Constructed 
stSSM for specific age is shown in Figure 8.

The proposed method was evaluated by generalization ability according to leave-one-out cross 

validation (LOOCV) procedure. Generalization ability evaluates the performance of representing 

Figure 6. Spatiotemporal statistical shape model of adult brain. The horizontal and vertical axes are the first and the 
second principal axes.

Figure 7. Temporal difference with changing variance.
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new acceptable models. First, data of the evaluation subject were projected into stSSM of the 

evaluation subject’s age. Next, brain shape of evaluation data was reconstructed, and compared 

with the original data. Evaluation criteria used in this study was Jaccard Index (J.I.). To restrict 
the allowed variation to plausible shapes, weight parameter is assigned to a certain interval. 

Mean ± standard deviation of generalization ability with different Gaussian distribution func-

tion has also calculated. Overall, FWHM value 15 achieves the best prediction result which 
closely follows observation-based optimum value of weight parameter between 10 and 15.

6. Conclusion

Nowadays, statistical shape models have become an exciting robust tool for shape represen-

tation of medical images. The use of both 2D and 3D models appeared into the scenario in 
recent years. In this chapter, we introduced a 3D stSSM for brain MRI data. The presented 
method allows the characterization of typical deformation patterns and subject-specific shape 
changes in repeated time-series observations of several subjects. The modeling performance 

was observed by optimizing variance. This study can be seen as an extension of the usual 

statistical shape model of scalar measurements to high-dimensional shape or image data. 

From the analysis of difference between all parameters of temporal deformation, we can draw 
a conclusion toward optimum value of FWHM.

We believe that the discussed method of this chapter enables the automatic construction 

of statistical models in 3D and is not limited to the brain but can be applied to other ana-

tomical structures such as the heart or liver. The spatiotemporal statistical shape model 

has a wide number of possible applications primarily in segmentation and morphometry. 

Another potential application of this method lies in the use of statistical modes of varia-

tion as a priori knowledge for image registration. We are currently working on this idea 

which uses the modes of variation from predefined weight parameter to provide a more 

Figure 8. Spatiotemporal statistical shape model of adult brain. The horizontal and vertical axes are the first and 
the second eigenvectors. The individual brain shape variety is synthesized within a range of −1σ to +1σ at the first 
eigenvector (horizontal) and −0.50σ to +0.50σ at the second eigenvector (vertical) with a step of 0.50. σ is the standard 

deviation in the training data along each eigenvector.
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compact parameterization of stSSMs. This may be specifically useful for intersubject analy-

sis tasks where these modes of variation can be learnt from a sample population of subjects 

as shown in this chapter.

Another potential scope is the morphometric comparison of differences between groups 
of subjects. Currently available morphometric methods can be classified into voxel-based 
[24, 25] or deformation-based methods [26, 27]. Mostly, voxel-based methods depend on a 

global registration between subjects followed by a statistical analysis of tissue differences 
to differentiate between groups of subjects. On the other hand, deformation-based meth-

ods use the information encoded in the deformation to describe the anatomical variability 

between groups. Future work will include investigation whether statistical shape models 

can be used as a deformation-based morphometric tool to characterize shape differences 
between groups of normal and AD subjects.
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