
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



2 

MMSE-Based Filtering for Linear and Nonlinear 
Systems in the Presence of Non-Gaussian 

System and Measurement Noise 

I. Bilik1 and J. Tabrikian2 
1Dept. of Electrical and Computer Engineering,  
University of Massachusetts, Dartmouth, MA, 

2Dept. of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 
1USA 
2Israel 

1. Introduction 

This1 chapter addresses the problems of minimum mean square error (MMSE) estimation in 

non-Gaussian linear and nonlinear systems. In many scientific and practical problems (such 

as control, astronomy, economic data analysis, communication and radar surveillance), 

estimation of time-varying system state using a sequence of noisy measurements is 

performed using the dynamic state-space (DSS) modeling approach. In the DSS approach, 

the time-varying dynamics of an unobserved state are characterized by the state vector. In 

most problems, the Bayesian approach can be efficiently used for system state estimation. 

The posterior probability density function (PDF), which contains the complete statistical 

information for the system state estimation, can be used for optimal (in any sense) state 

estimation [1]. Unfortunately, many practical applications, such as target tracking in radar 

systems are nonlinear and non-Gaussian. Thus, in maneuvering target tracking applications, 

a heavy-tailed distribution is usually used to model the abrupt changes of the system state 

due to target maneuver [2]. In addition, changes in the target aspect toward the radar may 

cause irregular electromagnetic wave reections, resulting significant variations of radar 

reections [3]. This phenomenon gives rise to outliers in angle tracking, and it is referred to as 

target glint [4]. It was found that glint has a long-tailed PDF [3], [5], and its distribution can 

be modeled by mixture of a zero-mean, small-variance Gaussian and a heavy-tailed 

Laplacian [6]. The Gaussian mixture model (GMM) with two mixture components is widely 

used in the literature for abrupt changes of the system state and glint noise modeling [3], [7]. 

This model consists of one small variance Gaussian with high probability and one large 

variance Gaussian with low probability of occurrence. The nonlinearity behavior in target 

tracking systems is due to the fact that the target dynamics are usually modeled in Cartesian 

                                                 
1Reprinted, with permission, from IEEE Trans. Aerospace and Electronic Systems, references 
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coordinates, while the observation model is in polar coordinates. There is no general 

analytic expression for the posterior PDF in nonlinear problems and only suboptimal 

estimation algorithms have been studied [1]. The extended Kalman filter (EKF) is the most 

popular approach for recursive nonlinear estimation [8], [9]. The main idea of the EKF is 

based on a first-order linearization of the model where the posterior PDF and the system 

and measurement noises are assumed to be Gaussian. The nonlinearity of the measurement 

model leads to non-Gaussian, multi-modal PDF of the system state, even when the system 

and the measurement noises are Gaussian. The Gaussian approximation of this multi-modal 

distribution leads to poor tracking performance. The unscented Kalman filter (UKF) 

approximates the PDF at the output of the nonlinear transformation using deterministic 

sampling [10]-[11]. The advantage of the UKF over the EKF stems from the fact that it does 

not involve approximation of the nonlinear model per se [12], [13]. The UKF provides an 

unbiased estimate, however its convergence is slow [13]. Many researchers addressed the 

problem of filtering in non-Gaussian models. One of the effective algorithms in the non-

Gaussian problems is the Masreliez filter [14], [15] that employs a nonlinear “score-

function”, calculated from known a-priori noise statistics. The score-function is customized 

for the noise statistics and has to be redesigned for each application. The main disadvantage 

of this approach is that it involves a computationally expensive score function calculation 

[6]. In [16], the Masreliez filter was used in the target tracking problem with glint noise. 

Recently, a few new filtering approaches have been proposed for the problem of target 

tracking. One of them is the multiple modeling (MM) approach, in which the time-varying 

motion of the maneuvering target is described by multiple models [17]. In this approach, the 

non-Gaussian system is represented by a mixture of parallel Gaussian-distributed modes 

[8]. Using the Bayesian framework, the posterior PDF of the system state is obtained as a 

mixture of conditional estimates with a-priori probabilities of each mode [18]. Various filters 

are used for mode-conditioned state estimation. For example, the Gaussian sum filter (GSF), 

was implemented in [8], [19] using a bank of KFs. The EKF and Masreliez filters were used 

as mode-conditioned filters for the nonlinear problems of target tracking in [6], [16], [20]. 

The main drawback of the MM approach is the exponential growth of the number of the 

modes, and exponentially increasing number of mode-conditioned filters [18], [21]. 

Therefore, optimal algorithms, such as the GSF, are impractical. The direct approximation 

methods for target tracking in the presence of clutter with GMM distribution approximation 

were proposed in [22]-[28]. The joint probabilistic data association (JPDA) [18] and global 

nearest neighbor (GNN) [25] approximate the entire GMM by a single Gaussian, loosing 

important information contained in other mixture components. The multiple hypothesis 

tracking (MHT) [26] and mixture reduction (MR) methods [22], employ ad-hoc joining and 

clustering preserving mean and covariance of the original distribution. The direct 

approximation algorithms are generally computationally efficient, however, they are 

suboptimal due to the ad-hoc mixture approximation methods and lead to degraded target 

tracking performance. A suboptimal, computationally-efficient interacting MM (IMM) 

algorithm was successfully applied to the maneuvering target tracking problem [18], [29], 

[30]. In [7], [16], [20] the IMM algorithm with EKFs and Masreliez filters were implemented 

for maneuvering target tracking in the presence of glint noise. The IMM algorithm with 

greater number of modes was proposed in [31] for non-Gaussian system and measurement 
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noise. In the recent decade, a new class of filtering methods has been proposed based on the 

sequential Monte Carlo (MC) approach. The sequential importance sampling technique 

forms the basis for most MC techniques [32]. In these techniques, the filtering is performed 

recursively generating MC samples of the state variables. These methods are often very 

exible in non-Gaussian problems due to the nature of the MC simulations [33]. One of the 

popular techniques of this approach is the PF, which is a suboptimal estimator that 

approximates the posterior distribution by a set of random samples with associated weights. 

The PF models the posterior distribution using discrete random samples rather than using 

an analytic model [34]. The Gaussian sum particle filter (GSPF) [35] implements the PF 

assuming Gaussian mixture distributions for the system and measurement noises. The GSPF 

generalizes the GSF introducing a new model order reduction method. Thus, the model 

order of the system state PDF remains constant over iterations, discarding mixands with 

small weights. The PF has been extensively used for maneuvering target tracking (e.g. [2]). 

In [36], the PF was applied to the problem of tracking in glint noise environment. As it was 

shown in [37] and [38], the PF outperforms the IMM algorithm when the likelihood function 

is multi-modal. Different application-driven PFs are presented in the literature, but there is 

no precise rule, which type of PF should be used in each application. This implies that no 

rigorous PF exists, which is one of the disadvantages of the PF approach. In this chapter, 

two recursive methods, based on the MMSE estimator of the GMM distributed state vector, 

are presented. The first is Gaussian mixture Kalman filter (GMKF), derived in [39], [40], for a 

linear model with non-Gaussian system and measurement noise. This algorithm relies on 

the fact that any PDF can be closely approximated by a mixture of finite number of 

Gaussians [41]. A greedy EM-based model order reduction method for the problem of 

exponential model order growth, discussed in [18], [21] and [19], is derived. The greedy 

learning algorithm controls the GMM order of the system state PDF, which might vary over 

the iterations, but remains finite. The EM-based model order reduction method is optimal 

with respect to the Kullback-Leibler divergence (KLD), that is, it minimizes the KLD of the 

reduced-order estimated PDF from the “true” PDF of the system state. The GMKF addresses 

a general estimation problem with non-Gaussian system and measurement noise, modeled 

by the GMM. This problem is of a great practical interest, for example, in maneuvering 

target tracking in the presence of glint noise [31]. The second recursive algorithm, named as 

nonlinear GMKF (NL-GMKF), extends the GMKF to nonlinear models [44]-[46]. The NL-

GMKF considers the case of non-Gaussian system and measurement noises as well as non-

Gaussian posterior PDF of the state vector. The expected significance of the NL-GMKF is in 

practical applications of low to moderate maneuvering target tracking, when maneuver 

detection is difficult. The advantage of the NL-GMKF over other tracking algorithms is 

significant especially in the presence of glint measurement noise with small probability of 

detection and high significance. The correlation between the statistics of glint noise and 

maneuver (that characterizes a maneuvering target consisting of multiple scattering centers) 

makes the problem of maneuvering target tracking in the presence of glint noise extremely 

challenging, due to the difficulty of maneuver and glint detection and filtering simultaneously. 

The NL-GMKF does not require prior knowledge of the target dynamics such as coordinated 

turn model, therefore, it might be useful when tracking targets with a complicated 

maneuvering profile that cannot be modeled by a finite set of simple dynamic models. 
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2. DSS model 

A. Linear model 
Consider a state sequence {s[n], n = 0, 1, 2, ...} and observations {x[n], n = 0, 1, 2, ...} whose 
time evolution and observation equations are described by the following linear non-
Gaussian model 

 (1)

 (2)

where the state transition matrices, A[n], and the observation matrices, H[n], are known. The 
initial state s[–1], the zero-mean driving noise u[n], and the zero-mean measurement noise 
w[n] are independent with the following distributions 

 (3)

 (4)

 (5)

where GMM(αj, μj, Γj, j = 1,..., J) denotes a Jth-order proper complex Gaussian mixture 

distribution with weights, {αj} , mean vectors, {μj} , and covariance matrices, {Γj} . 

The driving noise u[n] and the measurement noise w[n] are temporally independent, i.e. 
u[n] and u[n’], and w[n] and w[n’] are mutually independent for any time instances n = 0, 1, 

2,..., n’ = 0, 1, 2, ...; n ≠ n’ . The PDF of a GMM-distributed random vector y ~ GMM(αyj, μyj, 
Γyj; j = 1,..., J) is given by 

 

(6)

where Φ(y; θj) is a Gaussian PDF and θj contains the mean vector, μyj and the covariance 
matrix, Γyj. In the following, we will use the term Gaussian for proper Gaussian 
distributions. 

B. Non-linear model 
The nonlinear and non-Gaussian DSS model is: 

 (7)

 (8)

where the nonlinear transition function, a(·,·), and the observation function, h(·,·), are 
assumed to be known. The system and measurement noise are non-Gaussian with known 
PDFs. The driving noise, u[n], and the measurement noise, w[n], are temporally 
independent, i.e. u[n] and u[n’], and w[n] and w[n’] are mutually independent for any time 
instances n = 0, 1, 2,...; n’ = 0, 1, 2,... ; n ≠ n’. The initial state, s[–1], the driving noise, u[n], and 
the measurement noise, w[n], are independent. The initial state distribution is modeled in (3). 
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3. MMSE-based filters 

Let ŝ [n⏐p] denote the MMSE estimator of s[n] from X [p] where X [p]5(xT [0], xT [1],..., xT 

[p])T. The notation ŝ [n⏐n–1] stands for one-step prediction of the state vector s[n] from data 

X [n – 1]. The objective of this section is to derive recursive methods for estimation of s[n] 

from the observed data X [n] for the linear and nonlinear non-Gaussian models. To this end, 

the MMSE criterion resulting in the conditional mean estimator 

 (9)

is employed. 

A. GMKF 

For the linear DSS model, stated in Section IIA, the MMSE estimator of the state vector s[n] 

from the measurements X[n] can be implemented by the following recursive algorithm, 

named as GSF. 
GSF Theorem 
1. Initialization: 
Initialize the GMM parameters of the state vector at time instance n = –1 for l = 1,..., L. 

 (10)

 (11)

 (12)

where ηsl[n], l = 1,..., L is the random mixture indicator [47]-[48]. 
Set n = 0. 
2. Prediction 
2a. Predicted state PDF parameters: 

 

in which 

 (13)

 (14)

 (15)

The PDFs of the state and system noise are modeled by GMM of order L and K, respectively, 
and therefore in the prediction stage, the number of mixture components grows to LK. The 

random indicator for this mixture is denoted as η# lk[n], l = 1,..., L; k = 1,...,K. 

2b. Prediction of the state vector: 

 

(16)
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2c. Prediction of the measurements vector and innovation calculation: 

The MMSE prediction of x[n] from X [n – 1] is 

 (17)

Define the innovation process #x [n] as 

 

The mixture parameters of the conditional PDF #x [n]⏐X [n–1] are defined as follows: θlkm[n] 

= {μ [n⏐n – 1, η lkm[n]], Γ [n⏐n – 1, η lkm[n]]} and 

 (18)

 (19)

 (20)

3. Kalman gain: 

 

(21)

The measurement noise PDF is modeled by GMM of order M, and therefore at the 

estimation stage the number of mixture components grows to LKM. The random indicator 

for this mixture is denoted as η lkm[n], l = 1,..., L; k = 1,..., K; m = 1,..., M. 

4. Estimation 
4a. Estimated state mixture parameters: 

 
(22)

where 

 

(23)

 (24)

 
(25)

4b. Estimation of the state vector: 

 

(26)
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5. Set n →n + 1, go to step 2. 
Note that according to this theorem, the model order grows during the prediction (stage 2) 

due to the non-Gaussian system noise, and during the estimation (stage 4) due to the non-

Gaussian measurement noise. The GMKF algorithm consists of the GSF followed by a model 

order reduction algorithm implemented after the estimation stage: 

 

(27)

The operator EMLKM→L means that the parameters of an L-order GMM are estimated via 

synthetic data generation according to the GMM PDF with LKM components. Note that in 

general, the GMM order of the posterior state PDF can vary from iteration to iteration. The 

GMKF stages that are similar to the KF (see e.g. [49]) are schematically presented in Fig. 1. 

Proof: In the following, an algorithm for obtaining ŝ [n⏐n] is developed from ŝ [n – 1⏐n – 1]. 

Let the MMSE prediction of x[n] from X [n – 1] be defined as 

 (28)

and the innovation process be 

 (29)

If the transformation X [n]↔[XT[n – 1], #x T[n]]T is one-to-one, then the conditional 

distribution of s[n]⏐X [n] is identical to the conditional distribution of s[n]⏐X [n–1], #x [n]. 

The vector x̂ [n⏐n–1] is calculated using (2) and the statistical independence between  

X [n – 1] and the zero-mean measurement noise w[n], as follows: 

 
 

where ŝ [n⏐n – 1] is the prediction of the state vector at time instance n, from data X [n – 1], 

obtained by using (1): 

 (30)

where ŝ [n – 1⏐n – 1] is the conditional mean estimator of the state vector s[n – 1] from data 

X [n – 1]. The innovation process in (29) can be expressed using (1), (2) and (30), as 

 
(31)

Using (1), (30) and (31) it can be obtained that 

 

(32)
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Fig. 1. GMKF schematic diagram. 

The conditional distribution of 

 

given X [n–1] is GMM of order LKM, because 

s[n–1], u[n] and w[n] are independent, s[n – 1]⏐X [n – 1] is GMM distributed of order L, u[n] 

is GMM distributed of order K, and w[n] is GMM distributed of order M. According to (32), 

y[n] is a linear transformation of  and therefore, using Proposition 2 in the 

appendix, the conditional distribution of y[n] given X [n – 1] is also GMM of order LKM: 

 
(33)

where 

 
(34)

 
(35)
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and μs[n⏐n – 1, η lkm[n]] is the MMSE estimator of s[n] from X [n – 1] given the lkmth 

mixture indicator η lkm[n], defined as 

 (36)

As mentioned above, the distribution of s[n]⏐X [n] is identical to the distribution of 

s[n]⏐X [n – 1], #x [n]. Since s[n] and #x [n] given X [n – 1] are jointly GMM of order LKM, then 

the conditional distribution of s[n]⏐X [n] is GMM: 

 
(37)

where the parameters of this conditional distribution are given by 

 
(38)

In the following, expressions for the parameters in #θ [n⏐n] are derived. Using the Bayesian 

rule, the estimated mixture weights are given by 

 

(39)

The relation between the parameters of the lkmth mixture component in the conditional 

distribution of s[n], #x [n]⏐X [n – 1] and in the conditional distribution of s[n]⏐X [n – 1], #x  

[n] is obtained below. For any random mixture indicator η lkm[n], the vectors s[n] and #x [n] 

given X [n – 1], are jointly Gaussian. Therefore, the MMSE estimator of s[n] from X [n], 

given the lkmth mixture indicator ηlkm[n] is obtained using (36) as: 

 
(40)

where Γ [n⏐n – 1, η lkm[n]] and Γs [n⏐n – 1, η lkm[n]] are the lkmth covariance and cross-

covariance matrices of the conditional distribution of #x [n]⏐X [n – 1], respectively. The 

covariance matrix Γ s[n⏐n, η lkm[n]] can be obtained as 

 
(41)

Following the conventions of the KF, the lkmth Kalman gain notation corresponding to the 
lkmth mixture component, is defined as 

 
(42)

Using (42), expressions (40) and (41) can be rewritten as 
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 (43)

 (44)

The first terms in the RHS of (43) and (44) are the statistics of the predicted state vector. 
These terms are calculated using Lemma 1. 

Lemma 1: The conditional distribution of the state vector s[n] given X [n – 1] is 

 

where the predicted state mixture weights, mean vector and covariance matrix of the lkth 
mixture component are 

 (45)

 (46)

 (47)

Proof: According to (1), s[n] is the sum of two statistically independent GMM-distributed 

random variables A[n]s[n – 1] and u[n]. The system noise, u[n] is independent of X [n – 1], 

because it is an i.i.d. sequence independent of the state vector at the previous time instance. 
Therefore, (45)-(47) can be directly obtained from (1) and Proposition 2 in the appendix.      □ 

Lemma 1 proves the state mixture prediction in (13)-(15). Using Proposition 1 in the 

appendix and the parameters of the conditional state distribution of s[n] given X [n – 1] 

obtained in Lemma 1, the state prediction is 

 
which proves the state vector prediction in (16). In order to calculate the second terms in the 

RHS of (43) and (44), the conditional statistics of the innovation process #x [n]⏐X [n – 1] are 

required. 

Lemma 2: The conditional distribution of the innovation process #x [n], defined in (29), given 

X [n–1], is GMM of order LKM: 

 
(48)

where the mixture parameters are 

 

Proof: According to (31), the innovation process is a linear transformation of s[n–1], u[n] and 
w[n]. Using the statistical properties of the system state, and system and measurement 
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noises, the conditional distribution of the innovation process #x  [n] given X [n–1] is GMM of 

order LKM. The mixture weights, mean vectors and covariance matrices of the lkmth 
mixture component in the conditional PDF of the innovation process are calculated using 
(31) and Proposition 2 in the appendix, as follows: 

 (49)

 

(50)
 

(51)

 

(52)

where αs[n⏐n – 1, η# lk[n]], μs[n⏐n – 1, η# lk[n]] and M[n⏐n – 1, η# lk[n]] are obtained using 

Lemma 1.                                                                                                                                               □ 

In the definition of the Kalman gain in (42), the cross-covariance matrix Γs  [n⏐n – 1, 

η lkm[n]] is required. According to (32) and Proposition 2 in the appendix, the joint 

distribution of s[n] and #x [n] given X [n – 1] is GMM of order LKM whose lkmth cross-

covariance matrix Γs [n⏐n – 1, η lkm[n]], defined in (35), is 

 (53)

By substitution of (31) into (53) we obtain 

 
(54)

 (55)

where (54) is obtained under the assumption that w[n] is independent of s[n], and since  

ŝ [n⏐n–1] given X [n–1] is deterministic. Using (52) and (55), the Kalman gain defined in 

(42), can be rewritten as 

 

(56)

Equation (56) proves the Kalman gain equation in (21). Finally, using (44) and (55), Γs[n⏐n, 

η lkm[n]] can be expressed as 

 (57)

Equations (39), (43), and (44) prove the estimated mixture statistics in (23), (24) and (25). 

Using the estimated parameters of the distribution in (37), the MMSE state estimation is 
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which proves the state vector estimate in (26). This result is identical to the GSF presented in 
[19]. The GSF derived here suffers from exponential model order growth over the iterations. 
The system state PDF order grows twice: during prediction stage, derived in Lemma 1, and 
during the innovation process in Lemma 2. Section C.A presents a new model order 
reduction algorithm, which is optimal in the KLD sense.                                                              □ 
The proof for this theorem appears also in [42]-[43], for the  case of non-stationary Gaussian 
noise processes with Markov noise statistics and Gaussian initial conditions. The 
assumption of mutually-independent i.i.d. noises enables to provide a simpler closed-form 
solution. 
Model order reduction 
In [19] it was shown that the use of GMM distributions for the system state, measurement 
and system noises results in exponential growth of the number of the mixture components 
over iterations, and therefore, the GSF is impractical [18],[21]. Several suboptimal techniques 
for model order reduction have been presented in [21]. In this section, an optimal model 
order reduction algorithm based on the minimization of the KLD is proposed. The model 
order reduction stage is implemented once at the end of each iteration. The main idea of the 
proposed model order reduction scheme is to approximate the posterior LKM order system 

state distribution f s[n]⏐ [n](·) by a reduced order GMM fs[n]⏐ [n](·). Estimation of the reduced 

order distribution involves minimization of the distance between the estimated and the 
“true” PDFs. The KLD is widely used to measure the distance between distributions: 

 
This induces that our main goal is to obtain: 

 
(58)

In [50], [51], it is shown that this minimization problem can equivalently be solved using 
Monte-Carlo realizations by the maximization of the likelihood function: 

 

(59)

where sj , j = 1,..., J are artificial samples generated from the distribution f s[n]⏐ [n] (s[n], 

θ [n⏐n]). Note that the size of the artificial data is theoretically unlimited and it is practically 

set according to the processor computational resources. There is no closed form solution for 

this maximization problem and the maximization can be carried out by the EM algorithm 

[50], using the following iterative expressions for mixture parameters estimation: 
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where θl = {μs[n⏐n, ηl[n]], Γs[n⏐n, ηl[n]]} and Φ(sj; θl) was defined in (6). One of the 
computationally efficient variations of the EM algorithm is the greedy EM algorithm, which 
iteratively minimizes the KLD of the estimated from the “true” distributions. The resulting 
reduced order mixture estimated using the greedy EM algorithm [51] is: 

 
Note that in general, the number of the mixture components may vary with n. Thus, the 
GMM order might be obtained using model order selection algorithms, such as the 
minimum description length (MDL) [52]. Alternatively, L can be set as an upper bound on 

the number of mixture components in the conditional PDF of s[n]⏐X [n]. Note that the EM 

role in the proposed order reduction scheme differs from the off-line EM algorithm 
presented in [21]. The proposed KLD-based model order reduction stage can be 
summarized as follows: 

1. Generate J samples {sj}  
from the distribution of s[n]⏐X [n], obtained by the GSF at the 

end of the estimated stage: 

 

2. Estimate a reduced order GMM with L mixture components using the greedy EM 
algorithm as follows [50], [51]: 

a. Initialization: calculate the ML estimation of the first Gaussian parameters, θ̂ 0, 

using the training data set, {sj}  in order to obtain (s). Set K# = 1. 

b. Generate a new mixture by 

 
(60)

where  are numerically obtained by: 

 

(61)

See [51] for further details. 

c. Apply the EM algorithm on the mixture (s), initialized by the mixture 
parameters, obtained in the previous step. 
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d. If the log-likelihood function in (60) does not significantly increase, set fs[n]⏐ [n](·⏐X 

[n]) = (·); otherwise, set K#  = K#  +1 and return to step (b). 
 

 

Fig. 2. The model order reduction procedure over 4 time instances. 

The KLD-based model order reduction stage is illustrated via a two-dimensional example in 
Fig. 2. The figure shows the mixture order evaluation over iterations. The measurement 
noise was assumed to be zero-mean Gaussian. Fig. 2 shows a sequence of four time 
instances from n = 0 to n = 3. The corresponding two-dimensional data is represented by 
dots. The distribution of the system noise u[n] with two mixture components is shown in the 

first row of Fig. 2. The estimated distribution of the system state s[n – 1]⏐X [n – 1] at the 

previous time instance is shown in the second row. The distribution of the estimated system 

state with increased model order s[n]⏐X [n] is shown in the third row. The mixture 

components of this distribution are obtained from the convolution of the mixture 
components in the first two rows. The figure shows that the mixture order grows at this 
convolution stage. The data are generated from the distributions of the system state 
prediction on the third row, and new distributions with reduced order are estimated from 
the generated data. The reduced-order conditional distributions of the system state given 

the data at time instance n, s[n]⏐X [n], are shown in the last row. The figure shows that no 
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significant information was lost during the model order reduction process, and the reduced 
order distribution adequately represents the data distribution. Next, the KLD was used to 
evaluate the distortion caused by the mixture order reduction procedure. A Gaussian 
measurement noise was assumed also in this example, i.e. M = 1. The system noise was 
modeled as GMM of order two. The proposed KLD-based model order reduction method 
was compared to the MR clustering method proposed in [22]. The first row in Fig. 3 shows 
the PDF of the system state in sequential steps. The uncertainty ellipses represent Gaussians 
with means marked by ‘x’ and their widths correspond to 2 (2 standard deviations). 
Ellipses with solid, and dashed-dot lines correspond to mixture component weights 

satisfying: αs[n⏐n, ηl[n]] > 0.01, and αs[n⏐n, ηl[n]] ≤ 0.01, respectively. Thus, the system state 
order grows from 4 to 32 over four iterations. The second line in Fig. 3 shows the reduced 
order GMM at the output of the KLD based model order reduction stage. The third line on 
Fig. 3 shows the reduced order GMM at the output of the MR algorithm. The figure shows 
significant difference between the mixtures obtained by the two methods. The KLD of the 
reduced-order GMM from the exponentially growing order GMM was calculated according 
to the following procedure: 
 

 

Fig. 3. KLD between system state distributions, obtained with and without model order 
reduction stage over 4 time instances. 
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• Sample artificial data vectors sj, ∀j = 1,..., J from the increased order GMM, representing 
the posterior state PDF. 

• Evaluate the KLD using Monte-Carlo simulations: 

 

In this example, the artificial data size was chosen to be J = 5000. The KLD between these 

distributions is shown at the last row as a function of the mixture order of fs[n]⏐ [n] for the 
two tested model order reduction methods. It is shown that for the proposed model order 
reduction method (a) the KLD decreases when the mixture order grows, (b) the proposed 
model order reduction method outperforms the ad-hoc MR method in the KLD sense. Fig. 3 
shows that the distribution obtained by the proposed model order reduction method, 
represents the data fairly good. 

B. NL-GMKF 
In this section, the recursive NL-GMKF for the nonlinear and non-Gaussian model described 
in Section IIB, is derived based on the MMSE criterion. 
Summary 

The following summarizes the NL-GMKF for recursive estimation of s[n] from X [n]. 
1. Initialization: 
Initialize the L-order GMM parameters of the state vector at time instance n = –1. 

 

Set n = 0. 
2. Mixture parameters of the state and measurement prediction: 

• Generate an artificial data set D from the conditional distribution of given 

X [n – 1], according to the PDF of s[n – 1]⏐X [n – 1] from the previous step and PDFs of 

u[n] and w[n]. 

• Apply the nonlinear function 
 
on D and obtain a new artificial 

data set D’. 

• Model the conditional distribution of y[n] given X [n – 1] using the new artificial data 

D’ by GMM of order L to obtain the parameters of  ψy[n⏐n – 1]: 

 
(62)

where 

 
(63)
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and 

 
(64)

3. Innovation: 
Calculate the innovation vector: 

 (65)

where 

 

(66)

4. PDF parameters of the state prediction and the innovation: 
Obtain the parameters 

 
(67)

where 

 
(68)

 
(69)

 (70)

5. Kalman gains: 
Calculate the Kalman gains 

 
(71)

6. Estimation 
6a. Estimated state mixture parameters: 
Obtain the estimated state mixture parameters: 

 
(72)

where 

 (73)

 (74)
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(75)

 

Fig. 4. NL-GMKF schematic diagram. 

6b. Estimation of the state vector: 
Obtain the system state estimation: 

 

(76)

7. Set n → n + 1, go to step 2. 
The NL-GMKF algorithm is schematically presented in Fig. 4. 
Derivation 

Let x̂ [n⏐n – 1] denote the MMSE estimator of x[n] from X [n – 1] using (8), x̂ [n⏐n – 1] is 

given by 

 (77)

and the innovation process defined as #x  [n], is given by 

 (78)
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If the transformation X [n] ↔ [XT [n – 1], #x T [n]]T is one-to-one, then the conditional 

distribution of s[n]⏐X [n] is identical to the conditional distribution of s[n]⏐X [n – 1], #x [n]. 

Since s[n] and #x [n] given X [n – 1] are assumed to be jointly GMM of order L, the 

conditional distribution of s[n]⏐ #x [n], X [n–1] given the random mixture indicator ηl[n] [47], 

is Gaussian. Therefore, the conditional distribution of s[n]⏐X [n] is GMM of order L: 

 (79)

In the following, the parameters of this conditional distribution,  ψs[n⏐n], where 

 
(80)

are derived. Since the conditional distribution of (s[n], #x [n]) given the random mixture 

indicator ηl[n], is jointly Gaussian, then the mean vector μs[n⏐n, ηl[n]] and covariance matrix 

Γs[n⏐n, ηl[n]] can be obtained as 

 
(81)

 
(82)

where 

 

(83)

Following the conventions of the KF, the lth Kalman gain corresponding to the lth mixture 
component, is defined as 

 (84)

Using (84), Eqs. (81) and (82) can be rewritten as 

 (85)

 (86)

In the following, the parameters required in (85) and (86), are obtained. Let 

 
Then, by using (7), (8) and (78) one obtains 

 

(87)

and 
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(88)

Since #y [n], is a linear transformation of y[n], then the vectors s[n] and #x [n] given X [n – 1] 

are jointly GMM of order L, that is, the conditional distribution of #y [n] given X [n – 1] can 

be modeled by an L-order GMM with parameters: 

 
(89)

where 

 
(90)

 
(91)

Using the properties of the jointly GMM-distributed random processes, s[n]⏐X [n – 1] and 
#x [n]⏐X [n – 1], the mixture weights can be obtained as: 

 

(92)

where 

 (93)

Therefore, one can calculate the PDF parameters of s[n]⏐X [n], given in (85), (86) and (92), 

using the parameters of the distribution #y [n]⏐X [n – 1] obtained in the following. The 

conditional PDF of y[n]⏐X [n – 1] is modeled by GMM of order L with parameters: 

 
(94)

where 

 
(95)

and 

 
(96)

Eqs. (94), (95), and (96) provides (62), (63), and (64). Since x̂ [n⏐n – 1] depends on X [n – 1] 

only, then from (88) we conclude that the conditional PDF of #y [n]⏐X [n – 1] is shifted by 

 compared to the conditional PDF of y[n]⏐X [n – 1]: 
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(97)

 (98)

 (99)

and 

 (100)

Hence the mixture weights and covariance matrices in ψy[n⏐n – 1] and [n⏐n – 1] are 

identical except the means as described in (100). Since the function G(·) is nonlinear, the 

parameters of the conditional distribution of #y [n]⏐X [n – 1] cannot be obtained analytically. 

Alternatively, the MC approach can be implemented. Thus, an artificial data set D is 

obtained from the conditional distribution of , given X [n – 1]. Next, the 

nonlinear function G(·) is applied on the data set D to obtain a new artificial data set D’, 

which is used to obtain the PDF parameters of #y [n]⏐X [n – 1], i.e. [n⏐n – 1]. The 

statistical parameters required for calculation of (84), (85) and (86) can be obtained from the 
parameters of [n⏐n – 1] in (89). The measurement prediction is calculated as a conditional 

mean estimator of x[n] given X [n – 1], using parameters obtained in (95) and (96) as follows 

 

(101)

The MMSE estimator in (9) is obtained using (85) and (92) as follows: 

 

(102)

This completes the derivation of the NL-GMKF. Note that the GMM order of the conditional 

distribution y[n]⏐X [n – 1] might be obtained using model order selection algorithms, such 

as the minimum description length (MDL) [52]. Alternatively, L can be set as an upper 
bound on the number of mixture components in the conditional PDF. In this work, the 

vector parameter [n⏐n – 1] is obtained from the data D’using the greedy EM algorithm 

[50]. The greedy learning algorithm controls the GMM order of the estimated PDF, which 
varies over the iterations. In [51] it was shown that the greedy EM algorithm is insensitive to 
the initialization. The PDF estimation using the greedy EM algorithm appears in [51], [50] 
and is summarized in the appendix. 

4. Simulation results 

A. GMKF 
In the following scenarios, the estimation performance of the GMKF is evaluated for 
different linear DSS models, and compared to the IMM, PF and GSPF in terms of root-mean-
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square error (RMSE) of the estimate of the first element in the state vector. Additionally, the 
performance of the GMKF is compared to the GSF with clustering MR algorithm [22]. In 
these scenarios, the standard sampling importance resampling (SIR) PF was used [1] with 
10000 particles. In the scenarios with real-valued Gaussian measurement noise, a common 
IMM algorithm was used [18]. The number of models corresponds to the number of mixture 
components in the PDF of the system noise. The GMKF performance is evaluated for 
various system noise PDFs and it is tested for N = 100 time instances. For estimation 
performance evaluation, each test was performed over 100 trials. In the first three scenarios, 
a practical application of maneuvering radar target tracking is addressed. In these scenarios, 
the state vector is composed of the target range and radial velocity, where the target range is 
observed by the radar. The DSS and measurement models are given by: 

 

(103)

where T = 0.1 sec is the sampling interval. Thus, the state transition matrix and the 

measurement matrix are given by A[n] =  and H[n] = [ 1 0 ], respectively. The 

conditional distribution of s[n]⏐X [n] was assumed to be real-valued GMM of order L = 16. 

The GMKF is initialized at time instance n = –1 with αs[–1⏐ – 1, ηl[–1]] = , μs[–1⏐ – 1, ηl[–1]] 

= 0, Γs[–1⏐–1, ηl[–1]] = ρI for l = 1,..., L, where ρ is a large number. For the GSPF, the 

conditional distribution of the state vector s[n], given X [n] was assumed to be GMM of 

order L = 16, and the number of particles for each Gaussian in the mixture was chosen to be 
2000. For the GSF with MR algorithm, the number of mixture components at the output of 
the MR was selected to be the same as in the GMKF. 

A.1 Maneuvering target tracking 
The measurement noise, w[n], was assumed to be zero-mean Gaussian θw = {μw = 0,  = 
0.1}. The target maneuvers (timevarying acceleration) are simulated by white-noise 
acceleration [61]. This model is commonly used for small, random maneuvers which are 

usually modeled by zero-mean Gaussian system noise with time-varying variance: u[n] ~ N 

(0, β[n]I) , ∀n = 0, 1, 2,..., where β[n] controls the target maneuvering. In the first part of the 
simulation (n = 0,..., 21) this parameter was β[n] = 0.01 to represent approximately constant-
acceleration. In the second part of the simulation n = 22,..., 82, the target's time-varying 
acceleration was simulated by a random vector with “wider” Gaussian, defined by β[n] = 1. 
For the GMKF, the GSPF and the GSF with MR, the system noise was modeled by GMM 
with two mixture components: 

 

where αu = 0.2. For the PF, the system noise is modeled by a single Gaussian with the 
following first and second order statistics: 

 
(104)
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The IMM consisted of two KFs, which correspond to the two modes characterized by the 
following system and measurement noise parameters: 

• Mode 1: non-maneuvering - θu1, θw = {0, 0.1}, 

• Mode 2: maneuvering - θu2, θw = {0, 0.1}. 
The transition probability matrix between the two models was selected to match the 
transition probabilities to the mean sojourn time in each mode [18]: 

 
(105)

which corresponds to 20 samples in first and 60 in a second mode. Note that the estimation 
performances of the IMM were weakly sensitive to small changes of the transition 
probabilities. The range and velocity estimate RMSE of GMKF, IMM, PF, GSPF, and MR are 
presented in Fig. 5. This figure shows that in the first part of the simulation (non-
maneuvering target), the estimation RMSEs of all the tested methods are close. However, 
beyond the switching point (maneuvering target), the GMKF outperforms the other tested 
algorithms. 
 

 
Fig. 5. GMKF vs. IMM, PF, GSPF, and MR for maneuvering target tracking. 

A.2 Comparison with the GSF 
The estimation performance of the GMKF is compared to the GSF (GMKF without the order 
reduction stage), which is optimal (but computationally impractical) in the MMSE sense. 
The measurement noise, w[n], was assumed to be real-valued zero-mean Gaussian with 
variance  = 0.1. The target maneuvers are modeled by GMM with two mixture 
components: 
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where 

 

and αu = 0.2. As it was shown in Section III-A, the GSF is optimal with respect to the MMSE, 
but it is impractical due to the model order growth. Therefore, the estimation RMSE of the 
GSF can be interpreted as a lower bound for the RMSE of GMKF. The range estimation 
performance of the GMKF and the GSF are shown in Fig. 6 for maneuvering target tracking. 
The GMKF performance is evaluated for N = 13 only, because longer runs are 
computationally impractical due to exponential model order growth. This figure shows that 
the GMKF performance is close to the lower bound provided by the GSF which is the exact 
MMSE. 
 

 

Fig. 6. GMKF vs. GSF for maneuvering target tracking. 

A.3 Non-Gaussian glint measurement noise 
The Middleton class-A model is widely used for glint measurement noise [3], [62]. This 
model consists of one Gaussian with high probability of occurrence and small variance and 
another with small probability of occurrence and very high variance: 

 

where αw = 0.9, θw1 = {μw1 = 0, 1 = 0.01},  θw2= {μw2 = 0, 2 = 1}. For the PF, the 
measurement noise is modeled by a single Gaussian with the following first and second 
order statistics: 
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(106)

The IMM [20] with 2 modes was used in this scenario. These modes are characterized by the 
following measurement and system noises parameters: 

• Mode 1: no glint:
 

 

• Mode 2: glint :  

In this scenario, it was assumed that the glint is time-independent. Therefore, the transition 
probability matrix between the two models is [20]: 

 
(107)

The estimation performances of GMKF, IMM, PF, GSPF, and MR are presented in Fig. 7. 
This figure shows that the GMKF outperforms the other tested algorithms. 
 

 

Fig. 7. GMKF vs. IMM, PF, GSPF, and MR for non-Gaussian glint measurement noise. 

A.4 GMKF sensitivity 
The main motivation of this test is to show that the estimation performance of the GMKF is 
weakly sensitive to the assumed GMM order of the posterior distribution. In addition, the 
sensitivity of the GMKF performance to the size of the artificial data used in the model order 
reduction algorithm, is tested. The DSS model, used in the previous scenario was adopted 
here. It was assumed that the elements of the system noise u[n] = [u1[n] u2[n]]T are 
independent where u1[n] and u2[n] are Laplacian-distributed with marginal PDFs 
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, n = 0,...,N –1, i = 1, 2, where b1 = 0.3 and b2 = 0.4. The measurement 

noise, w[n], was assumed to be zero-mean Gaussian with variance  = 0.1. The Laplacian 
PDF of the system noise vector is approximated by a GMM of order K = 16. Fig. 8 shows that 
for any number of Gaussians in the mixture, the GMKF estimation performance improves as 
the size of the artificial data in the EM stage increases. It can be observed that the estimation 
performance improves to a turning point, from which the estimation performance degrades. 
The reason for the estimation performance degradation is the overfitting problem [63]. The 
threshold for the number of the components in the mixture increases with the size of the 

artificial data used in the EM stage. This figure shows that only a minor improvement in the 
estimation performance is achieved with increase of the GMM order. 

B. NL-GMKF 
In this section, the NL-GMKF performance is evaluated using the following nonlinear DSS 
model with non-Gaussian driving and measurement noise distributions.  
Maneuvering target tracking model 
Maneuvering target tracking involves modeling of a maneuver control signal, which is 
unknown to the tracker. Typically, the control signal is modeled as a random process [18], 
[64]. Most maneuver models assume that target maneuvering is uncoupled in Cartesian 
coordinates. The well-known Singer model [65] assumes that the target acceleration is a 
zero-mean first-order Markov process. In this example, a two-dimensional target tracking 
problem is addressed. The two-dimensional time-varying target dynamics can be described 

by the system state vector, which consists of the target position [rx ry]T, velocity [ r$ x r$ y]T, and 

acceleration [ r$$ x r$$ y]T : 

 

The discrete-time Singer model is described by the linear transition function: 

 

where 

 

T is the sampling interval, and  is reciprocal of the maneuver time constant τ , that 

describes the maneuver duration. Note that this model can describe both maneuvering and 
nonmaneuvering motions. Thus, as maneuver time decreases, the Singer model reduces to 
the constant velocity (CV) model, and as the maneuver time increases, the Singer model 
reduces to the constant acceleration (CA) model. According to the Singer model, the target 
position change is determined by its velocity, the target velocity change is determined by its  
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Fig. 8. GMKF sensitivity testing. 

acceleration, and the acceleration change is driven by the system noise. Therefore, an 
alternative way to model target maneuver is to model abrupt changes of target acceleration 
that corresponds to increased variance of the system noise.  
Observation model 
The measurements from a typical two-dimensional radar consist of the target range and 
bearing. Therefore, the measurement equation is nonlinear. Assuming that the radar is 
placed at the origin (x, y) = (0, 0), the radar measurements: range, r[n], and bearing, β[n], of 
the target are described by the measurement function 

 

where w[n] is a zero-mean additive noise.  
Glint noise model 
The mixture approach is widely used in modeling the non-Gaussian glint noise. The glint is 
Gaussian-like around the mean and has a non-Gaussian, long-tailed nature in the tail region 
[3]. The data at the tail region represent outliers caused by the glint spikes. The outliers with 
low occurrence probability have a significant inuence on the conventional target tracking 
algorithms, such as the KF. In [3], [16] and [36], the glint noise was modeled as a mixture of 
two zero-mean Gaussians, where the outliers were represented by a zero-mean Gaussian 
with large (comparing to the thermal noise) covariance matrix. In [6] and [20], it was 
proposed to model the heavy-tailed distribution of the glint noise for each measurement 
component as a mixture of a zero-mean Gaussian noise with high occurrence probability 
and a Laplacian noise with low probability of occurrence: 

www.intechopen.com



 Kalman Filter: Recent Advances and Applications 

 

52 

 (108)

where αw is the glint probability, and L(w, θw2) is the Laplacian PDF in which θw2 contains 

the mean and the variance. The estimation performance of the NL-GMKF was compared to 
PF, IMM-EKF, UKF, and GSPF. The performances were tested for N = 150 time instances 
with sampling interval T = 1 sec. The following target tracking cases were tested: 
1. Nonmaneuvering target tracking in the presence of glint measurement noise 
2. Maneuvering target tracking with Gaussian measurement noise 
3. Maneuvering target tracking in the presence of glint measurement noise 
4. Maneuvering target tracking in the presence of glint measurement noise, whose 

statistics depend on the target maneuver 
5. Coordinated turn (CT) maneuvering target tracking in the presence of Gaussian or glint 

measurement noise. 
Table 1 shows time-varying statistical parameters of the system and measurement noises for 
the first four scenarios. In these scenarios, the target maneuver was modeled by Gaussian-
distributed system noise with time-varying variance and the following parameters: 

• Stages 1 and 3:  

• Stage 2:   
 

 

Table 1.Parameters of the system and measurement noise for scenarios 1-4 

The following parameters for the measurement noise in (108) were selected in all the 

scenarios: θwi = {μwi, Γwi}, i = 1, 2, where μw1 = μw2 = 0, = diag ([10m, 0.5mrad]), and Γw2 = 

ψ2Γw1. In the first two scenarios, target tracking performances were evaluated for a variety 

of glint noise statistics and maneuvering levels, respectively. In the first scenario, tracking 

performances of the different methods are evaluated for different probabilities of glint, αw, 

and different glint noise levels, ψ in the range of [1, 10]. In the second scenario, maneuver 

cases [18], [31], starting from low maneuvering target (commercial aircraft) to extremely 

highly maneuvering target, modeled by different values of ξ in the range [1, 100], were 

tested. Thus, ξ = 1 models extremely low acceleration standard deviation (STD) of about 

0.1g, and ξ = 100 models extremely high acceleration STD of about 10g. In all the scenarios, 

the initial target position, velocity and acceleration were as follows: 
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For performance evaluation, the RMSE of the two-dimensional target position r[n] = [rx[n] 

ry[n]]T and velocity $r [n] = [ r$ x[n] $r y[n]]T estimates were evaluated. The mean RMSE of the 
range and velocity estimation, defined as 

 

are evaluated in the following scenarios using 100 trials. In all the tests, the NL-GMKF was 
initialized at time instance n = –1 with 

 

where ρ is a large number, and I is an identity matrix. For the NL-GMKF and the GSPF, the 

conditional distribution of the state vector s[n], given X [n] was assumed to be GMM of 

order L = 16. For the GSPF, the number of particles for each Gaussian in the mixture was 

chosen to be 400 (totally 6400 particles). Addressing the nonlinear problem, the GSPF was 

implemented using first-order linearization in the time-update stage [35]. In the following 

tests, the standard sampling importance resampling (SIR) PF with 10000 particles was 

implemented [1]. For the PF, UKF and the GSPF, the first and second order statistics of the 

state vector s[n], given X [n] were initialized with 

 

In the UKF [55], the parameter that determines the spread of the sigma points was set to  

α = 0.95. The scaling parameter, k, was set to 0, and the parameter β, used to incorporate 
prior knowledge of the distribution [55], was set to 2. 

B.1 Nonmaneuvering target tracking in the presence of glint measurement noise 
The tracking performance of the NL-GMKF in the presence of non-Gaussian glint noise is 

tested in this scenario. A nonmaneuvering target was considered in order to evaluate the 

inuence of the non-Gaussian measurement noise on the tracking performance. In practice, 

this situation might occur when glint noise arises due to environmental factors such as 

turbulence and vibration and not due to target maneuver [53], [54]. Tracking performances 

of the tested algorithms are evaluated for various levels of glint noise covariance and its 

probabilities. In the NL-GMKF, the system noise was assumed to be Gaussian with 

parameters θu1. The measurement noise was modeled by the mixture in (108), with 

parameters defined in Table 1. The IMM consisted of two EKFs, which correspond to the 

two modes characterized by the following system and measurement noise parameters: 

• Mode 1: no glint: θu1, θw1, 

• Mode 2: glint: θu1, θw2. 
In this scenario, it assumed that the glint is time-independent. Therefore, the transition 
probability matrix between the two models is [20] 
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(109)

The tracking performances of the NL-GMKF, PF, IMM-EKF, UKF and GSPF in terms of 
mean RMSE, are shown in Fig. 9 for the two-dimensional position and velocity. It can be 
observed that the NL-GMKF outperforms the other tested algorithms. The tracking 

performances as a function of the glint probability, αw, and glint level, ψ, at time instance n 

= 75 are shown in Figs. 10 and 11, respectively. It can be observed that the NL-GMKF 
outperforms the other tested algorithms for the tested probabilities of glint and the tested 
glint levels. Note that the estimation performance of the NL-GMKF remains almost constant 
across the entire range of the tested probability of glint and glint level. 
 

 
Fig. 9. Tracking performance of NL-GMKF, PF, IMM-EKF, UKF and GSPF in the presence of 

glint noise with probability of αw = 0.3, and glint noise level of ψ= 5. 

B.2 Maneuvering target tracking 
In this scenario, target tracking performances of the NL-GMKF without glint noise are 
evaluated for a wide range of maneuvers, from low, hardly detectable, to very high. The 
glint produced by small targets at long distances may be negligible and target tracking 
errors arises solely due to target maneuver. The tracking performance of the NL-GMKF is 
tested in a wide range of maneuvers in order to test its ability to track highly maneuverable 
targets as well as slow maneuverable targets with low probability of maneuver detection. In 
this example, the maneuvering target was simulated during the second interval of the 
simulation. In the NL-GMKF, the system noise statistics were modeled by the mixture of 
two components: 
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Fig. 10. Tracking performance of NL-GMKF, PF, IMM-EKF, UKF and GSPF vs. glint noise 

probability with glint noise level ψ = 5 at time instance n = 75. 

 

Fig. 11. Tracking performance of NL-GMKF, PF, IMM-EKF, UKF and GSPF as a function of 

glint noise level with probability of glint αw = 0.3 at time instance n = 75. 
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 (110)

and the probability of target maneuver was selected to be αu = 0.2. The measurement noise 
model was assumed to be Gaussian with parameters θw1. The IMM consisted of two EKFs, 
which correspond to the two modes characterized by the following system and 
measurement noise parameters: 

• Mode 1: nonmaneuvering - θu1, θw1, 

• Mode 2: maneuvering - θu2, θw1. 
The first model represents the target motion in the first and third parts of the simulation, 
and the second represents the target motion in the second part. The transition probability 
matrix between the two models was selected to match the transition probabilities to the 
mean sojourn time in each mode [18]: 

 
(111)

which corresponds to 50 samples at each mode. The estimation performance of the IMM 
was found to be weakly sensitive to small changes of the transition probabilities. The 
tracking performances of the NL-GMKF, PF, IMM-EKF, UKF, and GSPF in terms of mean 
RMSE are presented in Fig. 12. This figure shows the mean RMSE of the target position and 
velocity estimation. It can be observed that at the first and the third parts of the simulation 
(nonmaneuvering target), the estimation performances of the tested algorithms are close. 
However, at the second part of the simulation (maneuvering target), the NL-GMKF 
outperforms the other tested algorithms. It is expected that the estimation errors in tracking 
highly maneuvering targets would be larger. However, high maneuvers can be easily 
detected and the estimation errors can be significantly reduced using a proper model. A 
more challenging scenario arises when tracking slow-maneuvering targets with low 
probability of maneuver detection. In this case, large errors may be due to mismatch in the 
model. These situations can be modeled by small covariance matrices of the system noise 
representing the maneuver, Γu2, which is determined by ξ. The tracking performance of the 
proposed NL-GMKF at time instance n = 75 as a function of the maneuvering level, ξ, is 
tested and presented in Fig. 13 for accelerations in the range 0.1g – 10g, which covers the 
entire range of maneuvering aircrafts [7]. This figure shows that the NL-GMKF outperforms 
the other tested algorithms for all tested maneuvering levels. This figure also shows that the 
performance of the NL-GMKF is almost constant for all tested maneuvering levels while the 
tracking performances of other tested algorithms degrade for higher maneuvering levels. 

B.3 Maneuvering target tracking in the presence of glint measurement noise 
In this example, maneuvering target tracking in the presence of glint noise was tested. It is 
assumed that the glint noise arises due to environmental factors such as turbulence and 
vibration and not due to target maneuver per se, and thus it is present during the entire 
simulation and its statistics are independent of the target maneuver. This scenario occurs in 
tracking close targets (such as a group of aircrafts) [20], [53], [54] and tests the effect of the 
glint noise on tracking the maneuvering target with various levels of maneuverability. The 
target maneuvering during the second interval, modeled by zero-mean Gaussian system 
noise with time-varying statistics described in scenario 2 with ξ = 10, was considered in this 
example. In the NL-GMKF, the statistics of the system noise used in scenario 2 was adopted.  
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Fig. 12. Tracking performance of NL-GMKF, PF, IMM-EKF, UKF and GSPF in the presence 

of maneuvering during n ∈[50, 100] with ξ = 10. 

 

Fig. 13. Tracking performance of NL-GMKF, PF, IMM-EKF, UKF, and GSPF in the presence 
of maneuvering target for various levels of maneuver at time instance n = 75. 
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The measurement noise was modeled by the mixture in (108), with parameters defined in 
Table 1. The IMM-EKF algorithm for maneuvering target in the presence of glint noise was 
implemented using an efficient layered implementation [31]. According to this scheme, two 
sets of modes are used. One corresponds to the presence or absence of target maneuvering 
and the other to the presence or absence of glint. Therefore, the IMM is implemented with 
four modes with transition matrices, defined in (107), (111) according to [31]. The 
parameters of the measurement and system noise were identical to those defined in 
scenarios 1 and 2, respectively. The IMM consisted of four EKFs, which correspond to the 
four modes characterized by the following system and measurement noise parameters: 

• Mode 1: nonmaneuvering and no glint - θu1, θw1, 

• Mode 2: maneuvering and no glint - θu2, θw1, 

• Mode 3: nonmaneuvering and glint - θu1, θw2, 

• Mode 4: maneuvering and glint - θu2, θw2. 
The tracking performances of the NL-GMKF, PF, IMM-EKF, UKF and GSPF in terms of 
mean RMSE for a maneuvering target with glint are shown in Fig. 14. It can be observed that 
the NL-GMKF outperforms the other tested algorithms during the entire simulation 
interval. 

B.4 Maneuvering target tracking in the presence of correlated statistics of glint noise 
In this example, a scenario of great practical interest in which the statistics of the glint noise 
and the target maneuver are correlated, was tested. In target tracking, changes in the target 
aspect with respect to the radar due to maneuver dramatically increases the radar cross 
section uctuations resulting in significant glint noise [20], [53]-[57]. Therefore, glint noise 
increases dramatically during the maneuver. This scenario is modeled by correlated time-
variations of the statistics of the measurement noise and the system noise. In this example, it 
was assumed that there is no glint noise during nonmaneuvering parts of the simulation 
(first and third parts), while it is present during the maneuvering part of the simulation 
(second part). The models for the tested tracking algorithms presented in the previous 
scenario, are adopted here too. The tracking performances of NLGMKF, PF, IMM-EKF, UKF, 
and GSPF of the maneuvering target with glint, are shown in Fig. 15 in terms of mean RMSE 
of the two-dimensional position and velocity. It can be observed that the NL-GMKF 
outperforms the other tested algorithms during the entire simulation interval. Note that in 
contrast to other tested scenarios, the performance of the NL-GMKF degrades at the 
switching point (comparing to almost constant performance obtained in the previous 
examples in Figs. 9, 12, and 14). This behavior occurs due to simultaneous changes in the 
system and measurement noise statistics and the difficulty to associate those changes, 
expressed by the innovation vector statistics, with glint noise or target maneuver. Fig. 16 
shows the tracking performances for various combinations of maneuvers and glint noise 
levels. One can notice that the tracking performance of the NL-GMKF does not 

monotonically decrease as a function of ξ or ψ. This phenomenon can be explained by the 

difficulties of the NL-GMKF to associate the increase in the innovation process variance to 
glint or to target maneuver. Note that Fig. 16 is in conformance with results in scenarios 1 
and 2. The first column in Fig. 16 (ξ = 1) corresponds to the NL-GMKF performance in the 

non-maneuvering scenario shown in Fig. 11, and the first row in Fig. 16 ( ψ= 1) corresponds 

to the NLGMKF performance in the scenario without glint noise shown in Fig. 13. The NL-
GMKF provides higher performance than the other tested algorithms, since it employs prior 
knowledge on the non-Gaussian PDF of system and measurement noise by approximating 
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Fig. 14. Tracking performance of NL-GMKF, PF, IMM-EKF, UKF and GSPF in the presence 

of maneuvering target during n ∈ [50, 100] with ξ = 10, and glint noise probability αw = 0.3 

with glint noise level ψ = 5. 

the non-Gaussian system state PDF by GMM and it does not attempt to estimate their 
parameters from the data. Therefore, performance degradation of the NL-GMKF in 
maneuvering or glint noise scenarios is due to reduction of information carried by the 
system model or measurements during maneuvering or glint samples, while in the other 
tested algorithms, it is due to modeling mismatch. 

B.5 Coordinated turn 
In this example, we consider a scenario in which the target maneuver is modeled by motion 
dynamics and not by increased system noise level. In air traffic control applications, the 
motion of the civil aircraft can be modeled by combination of intervals of constant velocity 
(CV) motion and intervals of CT with constant turning speed and a constant angular rate 
[18], [58]-[60]. In the considered scenario, the radar is positioned at [0m, 0m], and the target 
initial position at time t = 0 is [5km, 5km]. During the first 10 seconds, the target approaches 
the radar along the y-axis with constant speed of 100m/sec. Next, the target executes a 
coordinated turn during 10 seconds with angular velocity of  rad/sec, which corresponds 

to acceleration of about 4.5g. Finally, the target continues at constant speed of 100m/sec 
motion along x-axis for the next 10 seconds. The target trajectory is shown in Fig. 17. Two 
scenarios with Gaussian and glint measurement noise correlated to the maneuver statistics, 
were considered. In the first scenario, a zero-mean Gaussian measurement noise, defined in 
scenario 1, was considered during the entire simulation. In the second scenario, it was 
assumed that there is no glint noise during the CV intervals of the target motion and the 
glint noise increases during the CT interval. The measurement noise PDF in the 3 stages of  
 

www.intechopen.com



 Kalman Filter: Recent Advances and Applications 

 

60 

 

Fig. 15. Tracking performance of NL-GMKF, PF, IMM-EKF, UKF and GSPF in the presence 

of maneuvering target during n ∈ [50, 100] with ξ = 10, and glint noise with probability  

αw = 0.3 with glint noise level ψ = 5 during n ∈ [50, 100] with correlated statistics. 

target maneuver was taken according to the 3 stages of scenario 4. In the NL-GMKF, the 
statistics of the measurement noise, considered in scenario 3, was adopted here. The 
statistics of the system noise were modeled by a mixture of two components, as modeled in 

scenario 2. The covariance matrix of the second mixture component was selected to be = 

diag ([50m/sec2, 50m/sec2]). Two types of IMM-EKF algorithms were tested in this scenario: 
IMM-EKF(1) consists of two CV kinematics models with different system noise levels (similar 
to the IMM-EKF that was used in scenario 4), and IMM-EKF(2) consists of the CV and the CT 
models [18]. The IMM-EKF(1) parameters were set to be similar to the IMM-EKF in scenarios 
2 and 4, respectively. The covariance matrix of the system noise in the second mode of the 

IMM-EKF(1) was set to:  = diag ([50m/sec2, 50m/sec2]). The first mode of the IMM-EKF(2) is 

similar to mode 1 of the IMM-EKF in scenario 4. In the second mode of the IMM-EKF(2), the 
CT model [18] was incorporated by including the turn rate as part of the state vector. The 
system noise standard deviations of the CT model were 0.5m/sec2 and 0.03rad/sec. The 
transition probability matrix, defined in (111) was used for the IMM-EKF(2). The tracking 
performance of the NL-GMKF and IMM-EKFs algorithms for non-glint and glint scenarios 
are shown in the first and the second columns of Fig. 17, respectively. The two-dimensional 
CV-CT-CV trajectories estimated by the NL-GMKF and the IMM-EKFs, are shown in the 
first to third rows. The estimation performances of the tested algorithms as a function of 
time are shown in Fig. 18. This figure shows that performances of the NL-GMKF and the 
IMM-EKF(2) are similar and that both outperform the IMM-EKF(1) in the first scenario. 
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However, the NL-GMKF outperforms both IMM-EKF algorithms in the second scenario, in 
the presence of glint noise during the CT interval. It should be noted that the model of IMM-
EKF(2) is tailored to specific scenarios of CV and CT, while the NL-GMKF does not use such 
prior information. The use of CV and CT models can enable using smaller system noise 
variance and could be simply incorporated within the NL-GMKF. However, such a prior 
information increases the algorithm sensitivity to other types of target maneuvering. The 
target position and velocity estimation RMSEs in this scenario are slightly higher than the 
corresponding RMSEs presented in Fig. 16 due to modeling mismatch. Finally, the tracking 
performance of the NL-GMKF was evaluated for a scenario with longer maneuvering 
duration with the same high acceleration. This scenario models higher maneuvering 
intensity. In this scenario, the target executes a coordinated turn during 50 seconds with 
acceleration magnitude of about 4.5g. As in the previous case, the acceleration vector varies, 
and this variation is not modeled in the NL-GMKF. The estimation performances of the 
tested algorithms as a function of time are shown in Fig. 19. This figure shows that 
performances of the NL-GMKF and the IMM-EKF(2) are similar and both of them 
outperform the IMM-EKF(1) in the first scenario, while the NL-GMKF outperforms both 
IMM-EKF algorithms in the second scenario, in the presence of glint noise during the CT 
interval. 

B.6 NL-GMKF sensitivity 
The main motivation of this test is to show that the performance of the NL-GMKF is weakly 
sensitive to the assumed GMM order of the posterior distribution. In addition, the 
sensitivity of the NL-GMKF performance to the size of the artificial data used in greedy EM 
learning, is tested. Note that the size of the artificial data is theoretically unlimited and it is 
practically set according to the processor computational resources [40]. The scenario 4 is 
considered here and the position estimation performance at time instance n = 75 is used for 
sensitivity testing. Fig. 20 shows that for the tested number of Gaussians in the mixture, the 
NL-GMKF estimation performance improves as the size of the artificial data in the EM stage 
increases. It can be observed that the estimation performance improves to a turning point, 
from which the estimation performance degrades. The reason for the estimation 
performance degradation is the overfitting problem [63]. The threshold for the number of 
the components in the mixture increases with the size of the artificial data used in the EM 
stage. This figure shows that only a minor improvement in the estimation performance is 
achieved with increase of the GMM order. 

5. Conclusions 

Two new recursive filters, named as GMKF and NL-GMKF, for linear and nonlinear, non-
Gaussian problems were presented in this chapter. The GMKF algorithm consists of the GSF 
followed by an efficient model order reduction method. The GSF provides a rigorous 
solution for state vector estimation in a linear DSS model with GMM-distributed system and 
measurement noises and it generalizes the original KF to GMMs. Practical implementation 
of the optimal GSF is limited due to the exponential model order growth. The GMKF solves 
this problem via an efficient model order reduction method. The problem of exponential 
growth of the model order was solved via the mixture PDF estimation at each step using the 
greedy EM algorithm. It was shown that greedy EM-based order reduction scheme does not 
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signi_cantly reduce the GMKF estimation performance. The estimation performance of the 
GMKF was tested for non-Gaussian cases using simulations, and it was shown that the 
GMKF outperforms the PF, IMM and the KF. However this superiority comes at the cost of 
the extra computational complexity caused by the use of EM for model order reduction 
procedure. The NL-GMKF was also derived based on the MMSE criterion. It assumes a 
nonlinear DSS model with general non-Gaussian distributions for the system and 
measurement noise. The posterior distribution of the state vector is modeled by GMM 
whose parameters are determined to minimize its estimated KLD from the true distribution. 
The NL-GMKF was applied to a nonlinear problem of maneuvering radar target tracking in 
the presence of glint noise. The performance of the derived NL-GMKF was evaluated via 
simulations and compared to the PF, the IMM-EKF and the EKF. The simulations showed 
that the NL-GMKF outperforms the PF, the IMM-EKF and the EKF in the considered cases. 

APPENDIX 

Proposition 1: Consider two M-order jointly GMM-distributed random variables x and y 

whose joint distribution can be written as 

 
(112)

The MMSE estimator of y from x is 

 

(113)

where θm consists of the mean and covariance matrix of the mth mixture component of the 
PDF of x. 

The proof of this proposition can be obtained by noting that E(y⏐x) = EηmEy⏐x,ηm(y⏐x, ηm) 

where ηm is the random mixture indicator of the mth Gaussian [47]. Therefore, the 

conditional distribution of y⏐x, ηm is Gaussian, and this implies that the MMSE estimator of 
a GMM-distributed random vector is a weighted sum of linear MMSE (LMMSE) estimators. 
Note that the MMSE in (113) is nonlinear for M > 1, as expected in non-Gaussian problems. 
Proposition 2: Consider two statistically independent GMM-distributed random vectors  

x ~ GMM(αxk, μxk, Γxk; k = 1,..., K) and y ~ GMM(αyl,μyl,Γyl; l = 1,..., L). The random vector z, 
defined as: 

 (114)

is GMM-distributed of order J = KL : z ~GMM(αzj, μzj, Γzj; j = 1,..., J), with 

 (115)

 (116)

 (117)
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where the matrices Ax, Ay and the vector b are deterministic. The index j represents the 
combination of (k, l), through the relation: j = (k –1)L + l. 
Proof of Proposition 2 
Equation (114) can be rewritten as 

 
(118)

The vectors x and y are GMM-distributed of order K and L, respectively, and thus v = 
⎡ ⎤
⎢ ⎥
⎣ ⎦

x

y
 is 

GMM-distributed of order LK. Using GMM definition in (6), the PDF of v can be rewritten as 

 

(119)

From (119) it can be easily obtained that the weight of the lkth mixture component is  

αvlk = αxkαyl. Since z is a linear transformation of the GMM-distributed random vector v, 
therefore z is GMM-distributed of order LK. Hence, the lkth mixture weight in the 
distribution of z is 

 (120)

Let η# lk denote the random mixture indicator in the PDF of z. Using (118) and (119), the 

mean vector of the lkth mixture component is 

 

(121)

Similarly, the covariance matrix of the lkth mixture component is 

 

(122)

where the cross-covariance of x and y vanishes, because x and y, conditioned on the 

Gaussian indicator, η# lk, are statistically independent. 
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Fig. 16. Tracking performance of NL-GMKF in the presence of maneuvering target with 

glint noise during the second interval at time instance n = 75 and αw = 0.3. 
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Fig. 17. Tracking performance of NL-GMKF compared to IMM-EKF(1) and IMM-EKF(2) in a 
CV-CT-CV scenario, with and without glint during the CT period. 
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Fig. 18. Tracking performance of NL-GMKF, IMM-EKF(1) and IMM-EKF(2) in a CV-CT-CV 

scenario, without and with glint noise with probability αw = 0.3 and glint noise level ψ = 5 

during the CT period. 
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Fig. 19. Tracking performance of NL-GMKF, IMM-EKF(1) and IMM-EKF(2) in a CV-CT-CV 

high maneuver intensity scenario, without and with glint noise with probability αw = 0.3 

and glint noise level ψ = 5 during the CT period. 

 

Fig. 20. NL-GMKF sensitivity testing. 

www.intechopen.com



Kalman Filter Recent Advances and Applications

Edited by Victor M. Moreno and Alberto Pigazo

ISBN 978-953-307-000-1

Hard cover, 584 pages

Publisher InTech

Published online 01, April, 2009

Published in print edition April, 2009

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The aim of this book is to provide an overview of recent developments in Kalman filter theory and their

applications in engineering and scientific fields. The book is divided into 24 chapters and organized in five

blocks corresponding to recent advances in Kalman filtering theory, applications in medical and biological

sciences, tracking and positioning systems, electrical engineering and, finally, industrial processes and

communication networks.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

I. Bilik and J. Tabrikian (2009). MMSE-Based Filtering for Linear and Nonlinear Systems in the Presence of

Non-Gaussian System and Measurement Noise, Kalman Filter Recent Advances and Applications, Victor M.

Moreno and Alberto Pigazo (Ed.), ISBN: 978-953-307-000-1, InTech, Available from:

http://www.intechopen.com/books/kalman_filter_recent_adavnces_and_applications/mmse-

based_filtering_for_linear_and_nonlinear_systems_in_the_presence_of_non-gaussian_system_and_mea



© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


