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1. Introduction 

Active estimation is becoming a more important issue in control theory and its application, 
especially in the nonlinear control of uncertain systems, such as robots and unmanned 
vehicles where time-varying parameters and uncertainties exist extensively in the dynamics 
and working environment. 
Among the available techniques for active modeling, Neural Networks (NN) and NN-based 
self learning have been proposed as one of the most effective approaches in 1990s (Pesonen et 
al., 2004). However the problems involved in NN, such as training data selection, online 
guaranteed convergence, robustness, reliability and real-time implementation, still remain 
open and limit its application in real systems, especially those requiring high reliable control. 
Most recently, the encouraging achievements in sequential estimation makes it becoming an 
important direction for online modeling and model-reference control (Napolitano, et al., 
2000). Among stochastic estimations, the most popular one for nonlinear system is the 
Extended Kalman Filter (EKF). Although widely used, EKF suffers from the deficiencies 
including the requirement of sufficient differentiability of the state dynamics, the 
susceptibility to bias and divergence during the estimation. Unscented Kalman Filter (UKF) 
(Julier et al., 1995; Wan & Van der Merwe, 2000) provides a derivative-free way to the state 
parameter estimation of nonlinear systems by introducing the so called ‘unscented 
transformation’, while achieving the second-order accuracy (the accuracy of EKF is first 
order) with the same computational complexity as that of EKF. 
Although the nonlinear state dynamics are used without linearization and the calculations 

on Jacobians or Hessians are not involved, UKF still falls into the framework of Kalman-type 

filters, which can only achieve good performance under a priori assumptions (Jazwinski, 

1970), which includes: 1) accurate reference models, 2) complete information of the noise 

distribution, and 3) proper initial conditions. However, such a priori knowledge is often not 

accurate, or even not available in practice. The normal UKF will suffer from performance 

degradation or even instability due to the mismatch between the a priori assumptions and 

the real ones within the system to be controlled. 

One of the approaches solving this problem is to introduce adaptive mechanism into a 
normal filter, i.e., the adaptive law automatically tunes the filter parameters to match the O
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real statistics that are insufficiently known as a priori. During the past decade, there have 
been some investigations in the area of adaptive filter, and most of them are constructed 
with respect to the KF or EKF. Mohamed et al. (Mohamed et al., 1999) studied the 
performance of multiple-model-based adaptive Kalman Filter for vehicle navigation using 
GPS. Loebis et al. (Loebis et al., 2004) proposed an adaptive EKF algorithm, which adjusted 
the measurement noise covariance matrix by fuzzy logic. Other works can also be seen in 
references (Noriega & Pasupathy, 1997; Mehra, 1970; Hu et al., 2003; Chaer et al., 1997; 
Garcia-Velo, 1997). As far as the adaptive UKF (AUKF) is concerned, the most-often-
mentioned scheme was proposed by Lee and Alfriend (Lee & Alfriend, 2004), where the 
Maybeck’s method (Maybeck, 1979) was modified by maximum-likelihood principle to 
estimate the error covariance matrix, and this estimator was further integrated into the 
normal UKF as the adaptive mechanism. 
In this Chapter, we first introduce the normal UKF algorithm. Then, two adaptive UKFs, 

which are the MIT-rule-based AUKF (MIT-AUKF) and master-slave AUKF (MS-AUKF), are 

proposed and analyzed in detail. In the MIT-AUKF: a cost function is first constructed from 

the error between the covariance matrix of innovation and their corresponding estimations; 

then, an MIT-like adaptive law is designed to online update the covariance of the process 

noise with the purpose of minimizing the cost function; and finally, the updated covariance 

is fed back into the normal UKF to realize the adaptive performance. The MS-AUKF, on the 

other hand, is composed of two parallel UKFs, where the master UKF is used to estimate the 

states or parameters as a normal UKF, and the slave one is dedicated to estimating the noise 

covariance matrix for the master UKF. 

In order to demonstrate their applications, the proposed AUKFs are tested with respect to 

the dynamics of an omni-directional mobile robot and a model unmanned helicopter. The 

improvements achieved from the adaptive mechanisms are demonstrated by the 

comparisons between the simulation results of the AUKFs and those of the normal UKF. 

Moreover, the integration of AUKF into robust control scheme is also introduced in the end. 

The Chapter is organized as follows: the unscented transformation (UT) and normal UKF 

are introduced in Section II. The MIT-AUKF and MS-AUKF are described in Section III and 

IV respectively. Simulations on both UKF and AUKF with respect to the joint estimation of 

states and parameters, as well as the integration of AUKF into robust control, are provided 

in Section V, followed by the conclusions. 

2. UT and normal UKF 

Instead of propagating the Gaussian variables through the first-order linearization model as 
EKF does, UKF uses the Unscented Transformation (UT) to handle the nonlinear plant 
directly. UT provides an approach to approximate the statistics of a nonlinear 
transformation like Eq. (1) by a finite set of ‘sigma points’. 

 κ = g(δ ) (1) 

where g(⋅) is a nonlinear function, and δ denotes an n×1 stochastic variable with the mean of 

δ  and the covariance of Pδ. 

In order to calculate the propagation statistics of δ through g(⋅), i.e., the mean (κ ) and 

covariance (Pκ) of the output ┢, the UT uses the following steps (see Fig. 1 also). 
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Fig. 1. Unscented Transformation 

UT-I: Definition of Sigma Points 
The distribution of ┢ can be approximated by a finite set of sigma points. These sigma points 

are calculated from the a priori mean and covariance of δ by the following equations, 

 

(2)

 (3)

where (·)i denotes the ith row of matrix (·), L is the number of sigma point, α and ┣ are both 

constants, and α determines the spread of the sigma points. 

UT-II: Propagating of Sigma Points 
Computing the transformation from the input δ-space to the output ┢-space of each sigma 

point by Eq. (1), i.e., 

 (4)

UT-III: Calculating the Mean and Covariance of output κ 

 

(5)

where the weights of   are calculated by 
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(6)

and ┚ is a constant with the purpose of incorporating part of the prior knowledge of the 

distribution of δ. It has been proved that, for Gaussian distributions, ┚ = 2 is optimal (Van 

der Merwe & Wan, 2001). 

With respect to the control application of a nonlinear system of Eq. (7), 

 

(7)

where xk ∈ Rn, and yk ∈ Rm
 are respectively, the state and output vector at time k; wk and vk are 

the process and measurement noise vector, which are both assumed to be Gaussian white 

noise with zero mean and covariance Rw and Rv; the normal UKF can be deduced as 

followings. 
UKF-I: Initialization 

 

(8)

where E[⋅] denotes the mean of [⋅] 
UKF-II: Sigma Points Calculation in the k-th time instant 

 
(9)

UKF-III: Time Update 

 

(10)
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UKF-IV: Measurement Update 

 

(11)

where Qw and Qv are the process and measurement noise covariance respectively, both of 
which are assumed to be known as a priori. The parameter ┙ is usually set within [0.0001, 1]. 

3. MIT-AUKF 

It is the same as KF to a linear system, UKF suffers performance degradation or even losing 
stability if the a priori knowledge of Qw and Qv in Eq.(10) and Eq.(11) mismatches the relative 
ones in real system denoted as Rw

 and Rv
 in the following sections. To avoid this problem, a 

MIT-rule-based approach is introduced in this section. 

3.1 Parameters to be turned adaptively 
From the previous introduction, there are six parameters need to be selected in UKF, 
including the initial state x0, initial covariance P0, process noise covariance Qw, measurement 
noise covariance Qv, and UT parameters ┙ and ┚. The x0 and P0, however, usually have 
asymptotically negligible influence on the estimation results as more data are handled with 
time proceeding. And the values of ┙ and ┚ only affect the higher order terms of the 
nonlinear estimation but have little relation with the estimation accuracy or stability of UKF. 
Thus, the covariance matrices Qw and Qv are the only possible parameters which the 
adaptive law could update for improving the performance of UKF. Indeed, the selection of 
Qw and Qv does have significant influence on UKF. If Qw and/or Qv are too small at the 
beginning of the estimation process, the uncertainty tube around the estimated value will 
probably tighten and a biased solution might appear. On the other hand, too large Qw 

and/or Qv will probably result in filter divergence. 
In this section, the adaptive UKF adjusting the process noise covariance Qw will be 
introduced. And without losing the generality, the case of adjusting Qv can be conducted in 
a similar way. 

3.2 Cost function 
In order to update the Qw in time, most adaptive filters tried to minimize the time-averaged 
innovations, i.e., the measured outputs and their estimated values. However, the 
computation of minimum innovations is time consuming and the results may be different 
from the ‘true’ values. Here, we propose a recursive algorithm to minimize the difference 
between the filter-computed and the actual innovation covariance.  
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The time-averaged approximation of innovation covariance is defined as 

 
(12)

where N is the size of the estimation window, vi is the innovation and can be written as, 

 (13)

where yi and  are respectively, the real measurement and its estimated value. From 

Eq.(11) of the standard UKF, the computed innovation covariance can be obtained as, 

 
(14)

Then, the criterion for adaptive UKF is to minimize the following cost function, 

 
(15)

3.3 MIT-AUKF algorithm 
The MIT rule is used in this section to derive the adaptive law. With the MIT rule, the 

parameters are adjusted in the negative gradient direction of the criterion function, i.e., 

m k

k k m

k

V
q

q
η

∂
= −

∂
$  (16)

where   is the m-th diagonal element of the process-noise covariance matrix at time k, i.e., 

 
 

and ┟ is the tuning rate that determines the convergence speed, and it is assumed to satisfy 

the following conditions, 

1

m m k

k k k m

k

J
q q T

q
η−

∂
= − ⋅

∂
 (17)

Eq.(16) leads to the following recursive scheme with respect to discrete time application, 

 
(18)
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where T is the sampling time. In order to calculate Eq. (18), the partial derivative of Vk with 

respect to  needs to be calculated. From Eq. (15), we have 

 
 

 
 
 

(19)

 
 
 

(20)

where (ΔSk)i,: and (ΔSk):,j denote the ith row and jth column of matrix ΔSk respectively. From 
Eq.(12) and (13), the first term of Eq.(20) is obtained as follows, 

 
 

| 1, | 1:,

| 1 , | 1,

11 1 1

( ) ( )( ) 1
( ) ( )

Tk
j j i j jk i T

j j j j i j j im m m
j k Nk k k

y yS
y y y y

Nq q q

− −
− −

= − +− − −

⎡ ⎤∂ ∂∂
= − − − −⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
∑  

 
 

(21)

And the second term of Eq.(20) can be obtained from Eq.(14), 

 

2
| 1 | 1,:,

, | 1 | 1 :, , | 1 | 1

0

ˆ( )
( ) ( )

Tn
k k k k ik i c T

i j k k k k i j k k k km m m
jk k k

y yS
w y y

q q q
γ γ− −

− − − −
=

⎡ ⎤∂ ∂∂
= − − − −⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
∑  

 

(22)

Thus, the recursive algorithm for the gradient of innovation vector (InV) can be formulated 
as follows, 
InV-I: Initialization 

 

 

(23)
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InV-II: Derivative of Sigma Points 

 

(24)

InV-III: Derivative Propagation 

 

 

(25a)

 
 

(25b) 

InV-IV: Interested Derivative 

 

(26)
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InV-V: Derivative Update 

 

(27a)

 

(27b) 

where 

 

Finally, the procedure of MIT-AUKF can be concluded as: 
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MIT-AUKF-I: Initialization 
Initialize the UKF algorithm from Eq.(8) and the gradient of Eq.(23), and let 

 

MIT-AUKF-II: Sigma Points Calculation at the k-th time instant 
Compute the sigma points as Eq.(9) and the derivative update of Eq.(24). 
MIT-AUKF-III: Time Update 
Obtain the time update of UKF as Eq. (10) and compute the derivative update of Eq. (25). 
MIT-AUKF-IV: Update Process Noise Covariance Matrix 
Compute the interested derivative with Eq.(26) and obtain new process noise covariance 
matrix by Eq.(18-22). 
UKF-IV: Measurement Update 
Complete the measurement update as Eq.(11) and the last update of Eq.(27). 

4. MS-AUKF 

In the MIT-AUKF, the partial derivative of ˆ
k

S with respect to  has to be calculated as Eq. 

(22), which will introduce a relative large computational burden. In this section, another 
AUKF scheme with master-slave structure is proposed with the purpose of avoiding the 
complicated calculation. 
Shown in Fig.2, the proposed MS-AUKF is composed of two parallel UKFs. At every 
timestep, the master UKF estimates the states/parameters using the noise covariance 
obtained by the slave UKF, while the slave UKF estimates the noise covariance using the 
innovations generated by the master UKF. It should be noted that the two UKFs are 
independent in the MS-AUKF structure. Thus, the slave UKF can be replaced by another 
simple filter such as KF to save the computational burden in time-critical application. 
 

 

Fig. 2. The Structure of MS-AUKF 

In the proposed scheme, the calculation of the master UKF is the same as that of a normal 

UKF. The slave UKF, on the other hand, needs to estimate the noise covariance. In this 

section, without losing the generality, the slave UKF is described to estimate the 
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measurement covariance matrix, here, we use the i

k
θ  to denote the ith diagonal element of 

matrix 
v

k
Q , i.e., 

 

(28)

In the case that the dynamics of ┠ are clearly known, i.e., 

 (29)

then Eq.(29) can be directly used as the reference model of the slave UKF. While the 

dynamics of ┠ are unknown, we can use a noise-actuated model like Eq.(30) instead. 

 (30)

where w┠k is supposed to be Gaussian white noise with zero mean. 

The innovation covariance generated by the master UKF is taken as the observation signal 

for the slave UKF, and then according to Eq.(11), the observation model can be described as, 

 
(31)

The measurement of ˆ
k

S  received by the slave UKF is, 

 
(32)

 
(33)

where vk is innovation, and yk is the real measurements in Eq.(11). 

Therefore, the recursive algorithm of the slave UKF can be formulated as, 

Slave-I: Initialization 

 

(34)

Slave-II: Sigma Points Calculation 

 
(35)
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Slave-III: Time Update 

 

(36)

Slave-IV: Measurement Update 

 

(37)

where Q┠ and R┠are respectively the process and measurement noise covariance matrix, and 

the weights can be calculated by Eq.(6). 

Finally, the procedure of the MS-AUKF can be easily obtained by directly combining the 

four steps of UKF as Eq.(8) – (11) and the slave UKF as Eq.(34) – (37). 

5. Application of AUKF 

In this section, we introduce the applications of the proposed AUKFs on the dynamics of 

both a ground mobile robot and a model helicopter, to demonstrate the performance of the 

AUKFs in state/parameter estimation and control. 

5.1 State estimation 
First, the simulations of applying the two AUKFs to state estimation are conducted with 

respect to the dynamics of the omni-directional ground mobile robot developed in 

Shenyang Institute of Automation, CAS (See Fig. 3) (Song, 2002), 

 

(38)
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(39)

where xw, yw, and φw respectively represent the displacements in the x-, y-direction and the 
rotation; u1, u2, and u3 are the actuated torques on each joint. Other parameters in Eq. (38) 
and Eq. (39) are listed in Table 1. 
 

 

Fig. 3. 3-DOF Omni-Directional Mobile Robot 

 

 

Table 1. Mobile Robot Parameters 

The state and measurement vectors are selected as follows, 

 

(40)

The sampling interval is set as T=0.01s. During the simulation, measurements are corrupted 

by an zero mean white noise with covariance Rv = diag{10-8; 10-8; 10-8}. The UKF parameters 

are designed as, 
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(41)

In order to demonstrate the performance of the AUKFs, we assume an abrupt change 
occurring with the process noise at the time of t=10s, i.e., the a priori knowledge is no longer 
match the real one after t=10s, 

 

(42)

In all of the three UKFs, i.e., the normal UKF, MIT-AUKF and MS-AUKF, the a priori process 
noise covariance is set as Q = diag{10-12, 10-12, 10-12, 10-8, 10-8, 10-8}. 
The velocity estimation errors of the three UKFs, under the same noise change of Eq.(42) at t 
=10s, are illustrated in Fig. 4, where the parameters required by the MIT-AUKF and 
MSAUKF are respectively selected as Eq.(43) and (44), 

 (43)

 

(44)

From Fig. 4, we can see that, with incorrect a priori noise statistic information, the normal 
UKF can not produce satisfying estimations due to the violation of the optimality 
conditions. On the contrary, the estimation errors of the two proposed AUKF are quickly 
convergent due to the performance of the adaptive laws. 
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Fig. 4. Velocity Estimation Errors With Respect To Changing Process Noise Covariance 

5.2 Performance comparison 
In this section, we compare the performance of the three UKFs in two aspects: 1) estimation 
precision, and 2) computational time. In order to quantify the estimation precision, the 
following criterion is defined, 

 

(45)

where Nk is the number of sample points, xk  is the real state or parameter, 
k

x  is the 

estimated state or parameter. 
 

 
*ER means Estimation error 

Table 2. Performance comparison of the two AUKFs 
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Table-2 shows the performance comparison of the three AUKFs, where the unit of the 

computational time has been ignored since the simulations are conducted by MATLAB, but 

the ratio among the three can indicate the complexity of AUKF with respect to that of the 

normal UKF. From Table-2, we can conclude that: 1) the computational time of the MSAUKF 

is almost one-third of that of MIT-AUKF, but one times longer than that of normal UKF 

because two UKFs have to be calculated in the MS-UKF. The accuracy of the MS-AUKF is 

about 2.5 times higher than that of normal UKF. The MIT-AUKF, although suffering from 

the most complicated computation, achieves the best accuracy among the three UKFs, and 

about 7% more accuracy than that of MS-AUKF. 

5.3 Disturbance estimation 
 

 

(a)Planform                                                                                          (b) Back view 

 
(c) Side view 

Fig. 5. Model Helicopter 

In this section, we investigate the disturbance and state estimation of an unmanned 
helicopter. The dynamics of a model helicopter can be described as (see Fig.5, and Koo & 
Sastry, 1998; He & Han, 2007), 
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(46)

 
 

(47)

where p∈R3 and vp∈R3 are the position and velocity vector of the center of mass in inertia 

frame; W∈SO(3) is the rotation matrix of the body frame relative to the inertia frame; のb is 

angular velocity vector; Θ = [φ θ ね]T is Euler angle vector; m and J are respectively, the mass 

and inertia of the helicopter; Ψ is the transformation matrix from angular velocity to angular 

position; f b and τ b are force and moment acted on the helicopter in body frame including 

disturbances; the subscript M and T denote the main and tail rotor respectively; T and Q are 

respectively, the force and torque generated by main or tail rotor; a1s and b1s, are 

respectively, the longitudinal and lateral tilt of the tip path plane of the main rotor with 

respect to shaft; hM, yM, hT, lM, lT are constants indicating the distances as Fig.5; Δ1 and Δ2 

denote the unmodeled dynamics. 

The forces T and the moments Q in Eq. (47) can be further calculated by 

 

(48)
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where m1~m6, n1~n10 are aerodynamics-related coefficients and the detailed description can 
be found in reference (Shim, 2000). These coefficients are time-varying and can not be 
accurately determined. 
It can be seen that the complete dynamics of Eq.(48) is too complicated to be used for 
controller design. Hence, it has to be simplified before using as a reference model of control. 
But the simplification will definitely introduce extra uncertainties besides the aerodynamics 
related disturbances, both of which need the controller to handle and overcome. One of the 
simplified models of aerodynamics-generated force/torque is like, 

 

(49)

And in the following simulation, we use the proposed MIT-AUKF algorithm to estimate the 
system states and the modeling error, and the estimated results are further used in an 
adaptive controller to attenuate the influence of uncertainties and disturbances in section 
5.4. The simulation is conducted on the yaw dynamics of Eq.(50), which can be obtained by 
Eq.(46)-(49) (Song & Han, 2007), 

 (50)

where 

 

The state and the measurement vector of AUKF are selected as, 

 

(51)

The sampling interval is T=0.02s. The measurements are corrupted by a zero mean additive 
white noise with covariance, 
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 (52)

The AUKF parameters are selected as, 

 

(53)

Assume an abrupt change occuring with respect to the process noise covariance at t=10s, i.e., 

 

(54)

while the prior knowledge remain unchanged during the estimation. The estimation results 

obtained by both the MIT-AUKF and normal UKF are presented in Fig. 6, where we can see 

that the state estimated by AUKF is not influenced by the noise covariance changed at t=10s. 

But for the state estimated by normal UKF, it starts to bias from its true value at t=10s. 

 

 

Fig. 6. State Estimation with Respect to Changing Process Noise Covariance 

Besides the state estimation, parameter estimation is also tested and compared between the 

MIT-AUKF and normal UKF. In order to estimate the model error, an extended reference 

model is proposed as Eq.(55), where the model error is treated as an extra parameter driven 

by noise. 
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(55)

where [ψ, ψ$ , ζ]T is the vector to be estimated, and ζ presents model error plus disturbance, 

w1, w2 and w3 are the process noises, f(.) can be found in the following Eq. (59). By assuming 
that the model error changes at t = 10s, i.e., 

 

(56)

and the state vector is subject to zero mean additive white noises with covariance, 

 (57)

Fig. 7 presents the results of disturbance estimation, from which we can see that the 
standard UKF cannot track the abrupt change due to the lower pseudonoise intensity. As for 
the adaptive UKF, the intensity of the pseudonoise increases during the parameter updates 
by the proposed adaptive mechanism. This accelerates the convergence of the model error 
estimation and makes the AUKF successfully track the abrupt change after a short period 
(about 1 second) of adaptation. 
 

 

Fig. 7. Comparison of Disturbance Estimation When Noise Covariance Changing 

5.4 Active estimation enhanced control 
In order to design a tracking controller involving active estimation for robustness 
enhancement, we use the feedback linearization method to divide the helicopter dynamics 
into two parts: position dynamics and yaw dynamics. It can be proved that Eq.(46), (47) and 
(49) can be transformed into the following form (He & Han, 2007), 

 
(58)
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 (59)

where Eq.(59) is the same as that in Eq. (55), and 

 

The disturbances of Δ1 and h2Δ1 can be measured by linear accelerometers, but we can not 

obtain the disturbance ζ since the angular acceleration is difficult to measure (He & Han, 
2007). In this section, we use the estimated disturbances ┞ in section 5.3 into the acceleration 
feedback control (AFC) scheme, proposed in He and Han’s paper (He & Han, 2007) and 
shown as Fig. 8, to attenuate its influence on the closed loop performance. And the detailed 
designing processes are as follows, 
Step I: 
Design a nonlinear H∞ controller with measurable disturbances of (58) based on He’s AFC 
based controller design method by taking u1=g2(p1, p$ 1,p2, p$ 2)u as independent inputs. 

Step II: 
With respect Eq. (59), design the following feedback linearization controller with estimated 
disturbances of (59) by taking  u2 =g3(p2, p$ 2, ψ, ψ$ )u as independent inputs. 

 
(60)

where k1 and k2 are positive constant; ζ̂  is the estimated disturbance and can be obtained by 

construct a dynamic model as Eq. (55). 
Step III: 
Obtain the control input u, 

 

(61)

Step IV: 
Compute the real inputs as Eq. (49) and Eq. (61).            █ 
The estimator parameters are the same as Eq. (57). And the following parameters are 
selected to construct the preceding controller, 

k1 = k2 = 4 
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Fig. 8. Tracking Controller Structure of Model Helicopter 

Fig. 9 shows the time response of the closed loop. From which, with the AUKF estimator, 
the yaw angle can go back to the desired value more quickly that that of UKF, and thus, it is 
clear that the controller with the AUKF has better attenuation disturbance performance. 
 

 

Fig. 9. Time Response of Yaw Angle With Tracking Controller 

6. Conclusions 

In this Chapter, two adaptive Unscented Kalman Filters (AUKFs), named MIT rule based 
AUKF and master-slave AUKF, are introduced respectively with the purpose of handling 
time-varying or uncertain noise distribution. According to the simulation results conducted 
on omni-directional mobile robot and model helicopter, we can conclude the followings: 
1. With incorrect a priori statistic information, the AUKFs perform much better than the 

normal UKF does. 
2. Although achieving a little higher estimation precision than the MS-AUKF does, the 

MITAUK suffers more complicated calculations. That means, the MS-AUKF is 
appropriate for the application where computation resources are critical. The MS-
AUKF, on the other hand, would meet the requirement of high precision estimation. 
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3. The proposed AUKF is feasible to be integrated into robust control scheme, to 
effectively reject the uncertainty/disturbance that are difficult for actually measured or 
off-line modelled. 
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