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Abstract

While deep learning delivers state-of-the-art accuracy on many artificial intelligence 
tasks, it comes at the cost of high computational complexity due to large parameters. 
It is important to design or develop efficient methods to support deep learning toward 
enabling its scalable deployment, particularly for embedded devices such as mobile, 
Internet of things (IOT), and drones. In this chapter, I will present a comprehensive sur-
vey of several advanced approaches for efficient deep learning in network compression 
and acceleration. I will describe the central ideas behind each approach and explore the 
similarities and differences between different methods. Finally, I will present some future 
directions in this field.

Keywords: deep learning, deep neural networks, network compression, network 
acceleration, artificial intelligence

1. Introduction

With the rapid development of modern computing power and large data collection technique, 
deep neural networks (DNNs) have pushed artificial intelligence limits in a wide range of 
inference tasks, including but not limited to visual recognition [1], face recognition [2], speech 

recognition [3], and Go game [4]. For example, visual recognition method proposed in [5] 

achieves 3.57% top-5 test error on the ImageNet LSVRL-2012 classification dataset, while face 
recognition system [6] achieves over 99.5% accuracy on the public face benchmark LFW [7], 

which both have surpassed human-level performance (5.1% on ImageNet [8] and 97.53% on 

LFW [9], respectively).

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



These powerful methods usually rely on DNNs containing millions or even billions of param-

eters. For example, the “very deep” VGG-16 [10], which achieves very impressive performance 
on ImageNet LSVRC 2014, uses a 16-layer deep network containing 138 million parameters 
and takes more than 500 MB in storing the model. Beyond the remarkable performance, there 
is increasing concern that the larger number of parameters consumes considerable resources 

(e.g., storage, memory, and energy), which hinders their practical deployment. First, for a 
deep neural network (DNN) usage on mobile, the storage bandwidth is very critical both for 
model size and data computation. For example, the mobile-first companies (such as Facebook 
and Baidu) are very care about the sizes of the uploaded file, while mobile sensor data compa-

nies (such as Google and Microsoft) usually build largely cloud powered systems with limited 
mobile computation. Second, for a DNN usage in cloud, memory bandwidth demand is very 
important to save transmission and power. Therefore, smaller models via DNN compression 
at least mean that they (1) are easier to download from App Store, (2) need less bandwidth to 
update to an autonomous car, (3) are easier to deploy on embedded hardware with limited 
memory, (4) need less communication across servers during distributed training, and (5) need 

less energy cost to perform face recognition.

The objective of efficient methods is to improve the efficiency of deep learning through smaller 
model size, higher prediction accuracy, faster prediction speed, and lower power consump-

tion. Toward this end, a feasible solution is performing model compression and acceleration 
to optimized well-trained networks. In this chapter, I will first introduce some background 
of deep neural networks in Section 2, which provides us the motivation toward efficient 
algorithms. Then, I will present a comprehensive survey of recent advanced approaches for 
efficient deep learning in network compression and acceleration, which are mainly grouped 
into five categories, including network pruning category in Section 3, network quantization 
category in Section 4, network parameter structuring category in Section 5, network distilla-

tion category in Section 6, and compact network design category in Section 7. After that, I will 
discuss some future directions in this field in Section 8. Finally, Section 9 gives the conclusion.

2. Background

In this section, a brief introduction and analysis are given with some classic networks as 
examples on the structure of deep networks, computation and storage complexity, weight 
distribution, and memory bandwidth. This analysis inspires the behind motivation of model 
compression and acceleration approaches.

Recently, deep convolutional neural networks (CNNs) have become very popular due to their 
powerful representational capacity. A deep convolutional neural network (CNN) usually has 
a hierarchical structure of a number of layers, containing multiple blocks of convolutional lay-

ers, activation layers, and pooling layers, followed by multiple fully connected layers. Figure 1 

gives the structures of two classic CNNs, where (a) AlexNet [1] and (c) VGG-16 [10] consist of 

eight and sixteen layers, respectively. The two networks are larger than 200 MB and 500 MB, 
which makes them difficult to deploy on mobile devices. The convolutional layers dominate 
most of the computational complexity since they need a lot of multiplication-and-addition 
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(MAC) operations to extract local pattern, while they contain less weights due to weight shar-

ing and local connectivity. By contrast, fully connected layers contain most of the weights 
since dense matrix-vector multiplications are very resource-intense. In addition, an activation 

layer (such as ReLU) contains a nonlinear function to activate or suppress some neurons. It 
can make the network more sparse and robust again to over-fitting while reducing the num-

ber of connections. A pooling layer is followed by a convolutional layer and aims to merge 
semantically similar features to reduce the memory.

As shown in Table 1, the complexity of CNNs could be spitted into two parts: (1) the compu-

tational complexity of a CNN is dominated by the convolutional layers and (2) the number of 
parameters is mainly related to the fully connected layers. Therefore, most model acceleration 

approaches focus on decreasing the computational complexity of the convolutional layers, 

while the model compression approaches mainly try to compress the parameters of the fully 
connected layers.

Figure 1. The structures of two classic deep networks. AlexNet (a) and VGGNet (b) all contain multiple convolutional 

layers (red), activation layers, and pooling layers (yellow), followed by multiple fully connected layers (green). The input 
and loss layer are marked in mazarine and blue, respectively.

Network Computational complexity Parameter complexity

MACs Conv (%) FC (%) Size Conv (%) FC (%)

AlexNet 724 M 91.9 8.1 61 M 3.8 96.2

VGG-16 15.5G 99.2 0.8 138 M 10.6 89.4

GoogleNet 1.6G 99.9 0.1 6.9 M 85.1 14.9

ResNet-50 3.9G 100 0 25.5 M 100 0

Table 1. The computational and parameter complexities and distributions for deep CNNs.
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DNNs are known to be over-parameterized for facilitating convergence to good local minima 
of the loss function during model training [11]. Therefore, such redundancy can be removed 

from the trained networks in the test or inference time. Moreover, each layer contains lots of 
weights near zero value. Figure 2 shows the probability distribution of the weights in two 
layers of AlexNet and VGG-16, respectively, where the weights are scaled and quantized into 
[−1, 1] with 32 levels to convenient visual display. It can be seen that the distribution is biased: 
most of the (quantized) weights on each layer are distributed around zero-value peak. This 
observation demonstrates that the weights can be reduced through weight coding, such as 
Huffman coding.

The memory bandwidth of a CNN model refers to the inference processing and greatly 
impacts the energy consumption, especially when running on embedded or mobile devices. 
To analyze the memory bandwidth of a trained CNN model, a simple but effective way is 
applied here by performing forward testing on multiple images and then analyzing the range 
of each layer output. The memory of each layer is dependent on bit width of each feature and 

Figure 2. The probability distribution of weights in two layers of AlexNet and VGG-16. It is shown that the weight 
distribution is around a zero-value peak.
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the number of output features. 1000 images from ImageNet dataset are randomly selected to 
perform inference with AlexNet and VGG-16, respectively; the mean range of output features 
on each layer are shown in Figure 3. It shows that the ranges of memory bandwidths in 
each layer are different and variable. Inspired by that, network compression and acceleration 
approaches can be designed to dynamically control the memory allocation in network layers 
by evaluating the ranges of each layer. Following these observations, many efficient methods 
for network compression and acceleration have been proposed, and several survey papers 
could be found in [12–14]. As shown in Figure 4, these approaches are grouped into five main 
categories according to their scheme for processing deep networks: pruning, quantization, 
approximation, distillation, and densification. In the following sections, I will introduce the 
advanced approaches in these categories.

3. Network pruning

DNNs are known to be over-parameterized for facilitating convergence to good local minima 
of the loss function during network training [11]. Therefore, the optimally trained deep net-

works usually contain redundancy on parameters. Inspired by that, network pruning category 
aims to remove such redundancy from the pre-trained networks in the inference time. In this 

Figure 3. The memory bit-width range of each layer of AlexNet (left) and VGG-16 (right).

Figure 4. The main categories of network compression and acceleration approaches.
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way, pruning approaches are applied to prune the unimportant or unnecessary parameters to 
significantly increase the sparsity of the parameters. Recently, many approaches are proposed, 
which consist of regular pruning approaches and irregular pruning approaches. As stated in 
[13], regular pruning refers to fine-gained pruning, while irregular pruning approaches are 
further categorized into four classes according to the pruning levels: vector level, kernel level, 
group level, and filter level. Figure 5 shows different pruning methods. The core of network 
pruning is measuring the importance of weights or parameters.

Fine-grained pruning is the most popular approaches used in network pruning. It removes any 
unimportant parameters in convolutional kernels by using an irregular manner. In early work, 
LeCun et al. proposed optimal brain damage, a fine-grained pruning technique that estimates the 
saliency of the parameters by using the approximate second-order derivatives of the loss function 

w.r.t the parameters and then removes the parameters at a low saliency. This technique shows 
to work better than the naive approach. Later, Hassibi and Stork [15] came up with optimal 
brain surgeon, which performed much better than optimal brain damage although costing much 
more computational consumption. Recently, Chaber and Lawrynczuk [16] applied optimal brain 

damage for pruning recurrent neural models. Han et al. developed a method to prune unimport-

ant connection and then retrain the weights to reduce storage and computation [17]. Later, they 
proposed a hybrid method, called Deep Compression [18], to compress deep neural networks 
with pruning, quantization, and Huffman coding. On the ImageNet dataset, the method reduced 
the storage required by AlexNet by 35× from 240 MB to 6.9 MB and VGG-16 by 49× from 552 MB 
to 11.3 MB both without loss of accuracy. Recently, Guo et al. [19] improved Deep Compression 
via dynamic network surgery which incorporated connection splicing into the whole process to 
avoid incorrect pruning. For face recognition, Sun et al. [20] proposed to iteratively learn sparse 

ConvNets. Instead of removing individual weights, Srinivas et al. [21] proposed to remove one 

neuron at a time. They presented a systematic way to remove the redundancy by wiring similar 
neurons together. In general, these irregular pruning approaches could achieve efficient com-

pression of model sizes, but the memory footprint still has not been saved.

Figure 5. Different pruning methods for a convolutional layer that has three convolutional filters of size 3 × 3 × 3 [13].
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Different from fine-grained pruning, vector-level and kernel-level pruning remove vectors 
in the convolutional kernels and 2D-convolutional kernels in the filters in a regular manner, 
respectively. Anwar et al. [22] proposed pruning a vector in a fixed stride via intra-kernel 
strided pruning. Mao et al. [23] explored different granularity levels in pruning. Group-level 
pruning aims to remove network parameters according to the same sparse pattern on the 
filters. In this way, convolutional computation can be efficiently implemented with reduced 
matrix multiplication. Lebedev and Lempitsky [24] revised brain damage-based pruning 

approach in a group-wise manner. Their approach added group-wise pruning to the train-

ing process to speed up the convolutional operations by using group-sparsity regularization. 

Similarly, Wen et al. [25] pruned groups of parameters by using group Lasso. Filter-level 
pruning aims to remove the convolutional filters or channels to thin the deep networks. Since 
the number of input channels is reduced after a filter layer is pruned, such pruning is more 
efficient for accelerating network inference. Polyak and Wolf proposed two compression 
strategies [26]: one based on eliminating lowly active channels and the other on coupling 
pruning with the repeated use of already computed elements. Luo et al. [27] proposed ThiNet 
to perform filter-level pruning. The pruning is guided by feature map, and the channels are 
selected by minimizing the construction error between two successive layers. Similarly, He 
et al. [28] applied an iterative two-step algorithm to prune filters by minimizing the feature 
maps. Generally speaking, these regular pruning (vector-level, kernel-level, group-level, and 

filter-level) approaches are more suitable for hardware implementations.

4. Network quantization

Typically, DNNs apply floating-point (such as 32-bit) precision for training and inference, 
which may lead to a large cost in memory, storage, and computation. To save the cost, net-
work quantization category uses reduced precision to approximate network parameters. 
These approaches consist of scalar or vector quantization and fixed-point quantization (see 
Figure 4).

Scalar or vector quantization techniques are originally designed for data compression, where a 
codebook and a set of quantization codes are used to represent the original data. Considering 
that the size of codebook is much smaller than the original data, the original data could be effi-

ciently compressed via quantization. Inspired by that, scalar or vector quantization approaches 
are applied to represent the parameters or weights of a deep network for compressing. In [29], 

Gong et al. applied k-means clustering to the weights or conducting product quantization and 
achieved a very good balance between model size and recognition accuracy. They achieved 
16–24× compression of the network with only 1% loss of accuracy on ImageNet classification 
task. Wu et al. [30] proposed quantized CNN to simultaneously speedup the computation and 
reduce the storage and memory overhead of CNN models. This method obtains 4–6× speedup 
and 15–20× compression with 1% loss of accuracy on ImageNet. With the quantized CNN 
model, even mobile devices can accurately classify images within 1 second. Soulié et al. [31] 

proposed compressing deep network during the learning phase by adding an extra regulariza-

tion term and combining product quantization of the network parameters.
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Different from scalar and vector quantization approaches, fixed-point quantization approaches 
directly reduce the precision of parameters without codebooks. In [32], Dettmers proposed 
8-bit approximation algorithms to make better use of the available bandwidth by compressing 
32-bit gradients and nonlinear activations to 8-bit approximations, which obtains a speedup 
of 50×. In [33], Gupta et al. used only 16-bit wide fixed-point number representation when 
using stochastic rounding and incur little to no degradation in the classification accuracy. Lin 
et al. [34] proposed a fixed-point quantizer design by formulating an optimization problem to 
identify optimal fixed-point bit-width allocation across network layers. The approach offered 
larger than 20% reduction in the model size without performance loss, and the performance 
continued to improve after fine-tuning. Beyond fixed-point quantization with reduced preci-
sion, an alternative is using binary or ternary precision to lower the parameter representation. 
Soudry et al. [35] proposed Expectation Propagation (EP) algorithm to train multilayer neural 
networks. The algorithm has the advantages of parameter-free training and discrete weights, 
which are useful for large-scale parameter tuning and efficient training implementation on 
precision limited hardware, respectively. Courbariaux et al. [36] introduced BinaryConnect 
to provide deep neural network learning with binary weights. BinaryConnect acts as regu-

larizer like other dropout schemes. The approach obtained near state-of-the-art results on 

permutation-invariant MNIST, CIFAR-10, and SVHN. Esser et al. [37] proposed training with 
standard backpropagation in binary precision by treating spikes and discrete synapses as 

continuous probabilities. They trained a sparse connected network running on the TrueNorth 
chip, which achieved a high accuracy of 99.42% on MNIST dataset with ensemble of 64 and 
92.7% accuracy with ensemble of 1. Hubara et al. [38] introduced a method to train Binarized 
Neural Networks (BNNs) at run-time. In trained neural networks, both the weights and acti-
vations are binary. BNNs achieved near state-of-the-art results on MNIST, CIFAR-10, and 
SVHN. Moreover, BNNs achieved competitive results on the challenging ImageNet dataset 
(36.1%, top 1 using AlexNet) while drastically reducing memory consumption (size and 
number of accesses) and improving the speed of matrix multiplication at seven times. Later, 
Rastegari et al. [39] proposed XNOR-Net for ImageNet classification. They proposed two 
approximations to standard CNNs with binary-weight-networks and XNOR-Networks. The 
first approximation achieved 32× memory saving by replacing 32-bit floating-point weights 
with binary values. The second approximation enabled both the filters and the activations 
being binary. Moreover, it approximated convolutions using primarily binary operations. In 
this way, it achieved 58× faster convolutional operations and 32× memory savings while a 
much higher classification accuracy (53.8%, top 1 using AlexNet) than BNNs. Beyond the 
great reductions on network sizes and convolutional operations, these binarization schemes 
are based on simple matrix approximations and ignore the effect of binarization on the loss. To 
address this problem, Hou et al. [40] recently proposed a loss-aware binarization method by 
directly minimizing the loss w.r.t. the binarized weights with a proximal Newton algorithm 
with diagonal Hessian approximation. This method achieved good binarization performance 
and was robust for wide and deep networks. Motivated by local binary patterns (LBP), Xu 
et al. [41] proposed an efficient alternative to convolutional layers called local binary convo-

lution (LBC) for facilitate binary network training. Compared to a standard convolutional 
layer, the LBC layer affords significant parameter savings, 9×–169× in the parameter numbers, 
as well as 9×–169× savings in model size. Moreover, the resulting CNNs with LBC layers 
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achieved comparable performance on a range of visual classification tasks, such as MNIST, 
SVHN, CIFAR-10, and ImageNet. Targeting at more faithful inference and better trade-off 
for practical applications, Guo et al. [42] introduced network sketching for pursuing binary-
weight CNNs. They applied a coarse-to-fine model approximation by directly exploiting the 
binary structure in pre-trained filters and generated binary-weight models via tensor expan-

sion. Moreover, an associative implementation of binary tensor convolutions was proposed 
to further speedup the generated models. After that, the resulting models outperformed 
the other binary-weight models on ImageNet large-scale classification task (55.2%, top 1 by 
using AlexNet). In order to reduce the accuracy loss or even improve accuracy, Zhu et al. [43] 

proposed Trained Ternary Quantization (TTQ) to reduce the precision of weights in neural 
networks to ternary values. TTQ trained the models from scratch with both ternary values 
and ternary assignment, while network inference only needed ternary values (2-bit weights) 
and scaling factors. The resulting models achieved an improved accuracy of 57.5%, top 1, 

using AlexNet on ImageNet large-scale classification task against full-precision model (57.2%, 
top 1, using AlexNet). TTQ was argued to be viewed as sparse binary-weight networks, which 
can potentially be accelerated with custom circuit. Generally speaking, the binary or ternary 
quantization approaches can greatly save the costs on model sizes, memory footprint, and 
computation, which make them friendly for hardware implementations. However, the accu-

racy needs to be improved especially in large-scale classification problems.

5. Network approximation

As stated in Section 2, the most computational cost of network inference comes from the 
convolution operators. In general, the convolutional kernel of a convolutional layer is rep-

resented with a 4D tensor, such as K∈Rwxhxcxs, where w and h are the width and height of the 
kernel filter, c is the number of input channels, and s indicates the target number of feature 

maps. The convolutional operation is performed by first transforming the kernel into a t-D 
(t = 1,2,3,4) tensor and then computed with efficient mathematical algorithm, such as by using 
Basic Linear Algebra Subprograms (BLAS). Inspired by that, network approximation aims to 
approximate the operation with low-rank decomposition.

Some approaches approximate 2D tensor by using singular value decomposition (SVD). 
Jaderberg et al. [44] decomposed the spatial dimension w × h into w × 1 and 1 × h filters, which 
achieved a 4.5× speedup for a CNN trained on a text character recognition dataset, with only 
an accuracy drop of 1%. Observing that the computation is dominated by the convolution 

operations in the lower layers of the network, Denton et al. [45] exploited the redundancy 

present within the convolutional filters to derive approximations that significantly reduce 
the required computation. The approach delivered 2× speedup on both CPU and GPU while 
keeping the accuracy within 1% of the original network on object recognition tasks. In [46], 

the authors proposed using a sparse decomposition to reduce the redundancy in model 

parameters. They obtained maximum sparsity by exploiting both interchannel and intrachan-

nel redundancy and performing fine-tuning to minimize the recognition loss, which zeros 
out more than 90% of parameters and with a less than 1% loss of accuracy on the ImageNet. 
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Inspired by that the convolutional layer can be calculated with matrix-matrix multiplication; 
Figurnov et al. [47] used loop perforation technique to eliminate redundant multiplication, 
which allows to reduce the inference time by 50%.

By successive 2D tensor decompositions, 3D tensor decompositions can be obtained directly. 
Zhang et al. [48] applied the strategy that conducts a 2D decomposition on the first weight 
tensor after SVD. Their approach had been used to accelerate very deep networks for object 
classification and detection tasks. Another 3D tensor decomposition, Tucker decomposition 
[49], was proposed to compress deep CNNs for mobile applications by performing SVD 
along the input channel dimension for the first tensor after 2D decomposition. To further 
reduce complexity, a block-term decomposition [50] method based on low-rank and group 
sparse decomposition was proposed by approximating the original weight tensor by the sum 
of some smaller subtensors. By rearranging these subtensors, the block-term decomposi-
tion can be seen as a Tucker decomposition where the second decomposed tensor is a block 
diagonal tensor.

4D tensor decomposition can be obtained by exploring the low-rank property along the chan-

nel dimension and the spatial dimension. This is used in [51], and the decomposition is CP 
decomposition. The CP decomposition can achieve a very high speedup, for example, as 4.5× 
speedup for the second layer of AlexNet at only 1% accuracy drop.

Beyond low-rank tensor decomposition approaches which are performed in original space 
domain, there are some network approximation approaches by processing parameter approx-

imation in transformation domain. In [52], Wang et al. proposed CNNPack to compress the 
deep networks in frequency domain. CNNPack treated convolutional filters as images and 
then decomposed their representations in the frequency domain as common parts shared 
by other similar filters and their individual private parts (i.e., individual residuals). In this 
way, a large number of low-energy frequency coefficients in both parts can be discarded to 
produce high compression without significantly compromising accuracy. Moreover, the com-

putational burden of convolution operations in CNNs was relaxed by linearly combining 
the convolution responses of discrete cosine transform (DCT) bases. Later, Wang et al. [53] 

extended frequency domain method to the compression of feature maps. They proposed to 
extract intrinsic representation of the feature maps and preserve the discriminability of the 

features. The core is employing circulant matrix to formulate the feature map transformation. 

In this way, both online memory and processing time were reduced. Another transformation 
domain scheme is hashing, such as HashedNets [54] and FunHashNN [55].

In general, network approximation category focuses on accelerating network inference and 
reducing network sizes at a minimal performance drop. However, the memory footprint usu-

ally cannot be reduced.

6. Network distillation

Different from the above approaches which compress a pretrained deep network, network dis-

tillation category aims to train a smaller network to simulate the behaviors of a more complex 
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pre-trained deep network or the ensemble of multiple pre-trained deep networks. The train-

ing applies a teacher-student learning manner. Early work proposed by [56] proposed model 

compression, where the main idea was to use a fast and compact model to approximate the 
function learned by a slower, larger but better-performing model. Later, Hinton et al. proposed 
knowledge distillation [57] that trained a smaller neural network (called student network) by 
taking the output of a large, capable, but slow pre-trained one (called teacher network). The 
main strength of this idea comes from using the vast network to take care of the regularization 
process facilitating subsequent training operations. However, this method requires a large pre-
trained network to begin with which is not always feasible. In [58], the authors extended this 

method to allow the training of a student that is deeper and thinner than the teacher, using not 
only the outputs but also the intermediate representations learned by the teacher as hints to 

improve the training process and final performance of the student. Inspired by these methods, 
Luo et al. [59] proposed to utilize the learned knowledge of a large teacher network or its 
ensemble as supervision to train a compact student network. The knowledge is represented by 
using the neurons at the higher hidden layer, which preserve as much information as the label 
probabilities but are more compact. When using an ensemble of DeepID2+ as teacher, a mim-

icked student is able to outperform it and achieves 51.6× compression ratio and 90× speedup 
in inference, making this model applicable on mobile devices. Lu et al. [60] investigated the 

teacher-student training for small-footprint acoustic models. Shi et al. [61] proposed a task-

specified knowledge distillation algorithm to derive a simplified model with preset computa-

tion cost and minimized accuracy loss, which suits the resource-constraint front-end systems 
well. The knowledge distillation method relied on transferring the learned discriminative 
information from a teacher model to a student model. The method first analyzed the redun-

dancy of the neural network related to a priori complexity of the given task and then trains a 
student model by redefining the loss function from a subset of the relaxed target knowledge 
according to the task information. Recently, Yom et al. [62] defined the distilled knowledge in 
terms of flow between layers and computed it with the inner product between features from 
two layers. The knowledge distillation idea was used to compress networks for object detec-

tion tasks [63–65].

Generally speaking, the network distillation approaches achieve a very high compression 
ratio. Another advantage of these approaches is making the resulting deep networks more 
interpretable. One issue needed to be addressed is reducing the accuracy drop ever improv-

ing the accuracy.

7. Network densifying

Another direct category for obtaining network compression and acceleration is to design 
more efficient but low-cost network architecture. I call this category as “network densify-

ing,“ which aims to design compact deep networks to provide high accurate inference. In 
recent years, several approaches have been proposed following this line. The general ideas 
to achieve this goal include the usage of small filter kernels, grouping convolution, and 
advanced regularization.
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Lin et al. [66] proposed Network-In-Network (NIN) architecture, where the main idea is 
using 1 × 1 convolution to increase the network capacity while making the computational 
complexity small. NIN also removed the fully connected layers instead of a global average 
pooling to reduce the storage requirement. The idea of 1 × 1 convolution is spread wide 
used in many advanced networks such as GoogleNet [67], ResNet [68], and DenseNet [69]. 

In [70], Iandola et al. designed a small DNN architecture termed SqueezeNet that achieves 
AlexNet-level accuracy on ImageNet but with 50× fewer parameters. In addition, with model 
compression techniques, SqueezeNet can be compressed to less than 1 MB (461× smaller than 
AlexNet). By using multiple group convolution, ResNeXt [71] achieved much higher accu-

racy than ResNet when costing the same computation. MobileNet [72] applied depth-wise 
convolution to reduce the computation cost, which achieved a 32× smaller model size and 
a 27× faster speed than VGG-16 model with comparable accuracy on ImageNet. ShuffleNet 
[73] introduced the channel shuffle operation to increase the information change within the 
multiple groups. It achieved about 13× speedup over AlexNet with comparable accuracy. 
DarkNet [74, 75] was proposed to facilitate object detection tasks, which applied most of the 
small convolutional kernels.

Moreover, some advanced regularization techniques are used to enhance the sparsity and 
robustness of deep networks. Dropout [76] and DropConnect [77] are widely exploited in 
many networks to increase the sparsity of activations for memory saving and weights for 
model size reduction, respectively. The activations neurons, including rectified Liner Unit 
(ReLU) [1], and its extends such as P-ReLU [78] are used to increase the sparsity of activations 

for memory saving while provide a speedup for model training, therefore they can facilitate 
the design of more compact networks.

8. Conclusions and future directions

It is necessary to develop efficient methods for deep learning via network compression and 
acceleration for facilitating the real-world deployment of advanced deep networks. In this 
chapter, I give a survey of recent network compression and acceleration approaches in five 
categories. In the following, I further introduce a few directions in the future in this literature 
including hybrid scheme for network compression, network acceleration for other visual tasks, 
hardware-software codesign for on-device applications, and more efficient distillation methods.

• Hybrid scheme for network compression. Current network compression approaches 
mainly focus on one single scheme, such as by using network quantization and network 
approximation. This processing leads to insufficient compression or large accuracy loss. It 
is necessary to exploit a hybrid scheme to combine the advantages from each network com-

pression category. Some attempts can be found in [18, 79], which have demonstrated good 
performance.

• Network acceleration for other visual tasks. Most current approaches aim to compress 
and accelerate deep networks for image classification tasks, such as ImageNet large-scale 
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object classification, MNIST handwriting recognition, CIFAR object recognition, and so 
on. Very little effort have been attempted for other visual tasks, such as object detection, 
object tracking, semantic segmentation, and human pose estimation. Generally, direct 

using network acceleration approaches for image classification in these visual tasks may 
encounter a sharp drop on performance. The reason may come from that these visual 

tasks requires more complex feature representation or richer knowledge than image 
classification. The work has provided an attempt in facial landmark localization [80]. 

Therefore, this challenging problem on network acceleration for other visual tasks is one 
of the future directions.

• Hardware-software codesign for on-device applications. To realize the practical deploy-

ment on resource-limited devices, the network compression and acceleration algorithms 
should take the hardware design into consideration besides software algorithm modeling. 
The requirements from recent on-device applications such as autopiloting, video surveil-

lance, and on-device AI enable tht it is highly desirable to design hardware-efficient deep 
learning algorithm according to the specific hardware platforms. This co-design scheme 
will be one future direction.

• More effective distillation methods. Network distillation methods have proven efficient 
for model compression in widespread fields beyond image classification, for example, 
machine translation [81]. However, these methods usually suffer from accuracy drop in 
inference, especially for complex inference tasks. Considering its efficacy, it is necessary 
to develop more effective distillation methods to extend their applications. Recent works 
[82–84] have given some attempts. Therefore, developing more effective distillation meth-

ods is one of the future directions in this field.
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