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Abstract

We have numerically analyzed an electron beam (e-beam)-induced directional terahertz
(THz) radiation from metamaterials. Here, we used metallic grating structures with
graded depths, in which only one-way surface mode can be supported based on the spoof
surface plasmon polariton (spoof SPP) concept and gives unique directional THz radia-
tion. For numerical analysis, we used a simplified particle-in-cell (PIC) finite-difference
time-domain (FDTD) method. First, we describe our simplified PIC-FDTD method in
detail. Then, we show our results on the e-beam-induced directional THz radiation from
graded grating with graded depths. By passing pulsed (bunched) e-beam along the grat-
ing surface, directional THz radiations are obtained from one side of the grating with
shallower grooves. The direction of these radiations can be switched backward or forward
by making the groove depth deeper or shallower. The spectra of these directional radia-
tions are wideband and contain multiple sharp peaks. The deepest and the shallowest
groove depths determine the lowest and the highest frequency of the radiation band,
respectively. These unique radiation characteristics cannot be explained by the conven-
tional Smith-Purcell radiation and should be attributed to the spoof SPP that originates
from different locations on the graded grating.

Keywords: metamaterial, graded grating, electron beam, terahertz, THz, Smith-Purcell
radiation, particle-in-cell finite-difference time-domain, PIC-FDTD

1. Introduction

Recently, terahertz (THz) science and technology have been extensively studied from various

viewpoints [1, 2]. The THz frequency range is generally considered to be the range of 0.1–

10 THz. The electromagnetic (EM) waves that fall in the THz range can be utilized for various

types of applications such as spectroscopy, nondestructive inspection, security, and information

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



and communications technology. Optical techniques for a generation and detection of the THz

radiation usually require ultrafast short-pulsed lasers. As an alternative way, vacuum electronic-

based techniques have attracted much attention to develop next-generation table-top THz radi-

ation sources [3]. It has been known as Smith-Purcell radiation (SPR) since the 1950s that EM

radiation can be obtained by passing electron beam (e-beam) accelerated at a relativistic speed

along the surface of periodically corrugated metallic grating [4]. The wavelength λSPR and the

radiation angle θSPR of SPR measured from the direction of the e-beam satisfy the following

simple relation:

λSPR ¼
Λ

nj j

1

β
� cosθSPR

� �

(1)

where Λ is the period of the grating, βc is the electron velocity, c is the speed of light in vacuum,

and integer n is the order. Therefore, one can choose any spectral range of EM radiation in

principle by appropriately designing the grating period Λ. The original type of SPR is not

efficient enough to be widely utilized; however, there has been renewed interest in this area of

research since the observation of superradiance by Urata et al. in 1998 [5]. They used an

electron gun in a scanning electron microscope to flow a large current and discovered a

nonlinearly growing radiation power (superradiance). Theoretical [6, 7] and numerical [8–10]

investigations revealed that the bunching of an e-beam due to the interaction with induced

surface waves on the grating was essential to achieve superradiance through intrabunch and

interbunch double coherence. In such numerical investigations, the particle-in-cell finite-

difference time-domain (PIC-FDTD) method has been widely employed to reproduce the

Smith-Purcell superradiance.

On the other hand, quite significant progress has been made in the researches on meta-

materials in recent years, and various novel optical effects have been proposed and demon-

strated, such as negative refraction, superlensing, and optical cloakings [11–13]. Based on

metamaterials’ concept, one can design a rich variety of optical materials with unique disper-

sion characters which cannot be obtained in nature. The metamaterials’ concept also offers

new designing freedom of surface waves. It has been believed that surface waves like surface

plasmon polaritons (SPPs) in the visible or near infrared cannot be supported in longer

wavelength range like in THz because metals tend to behave as a perfect electric conductor

(PEC). However, Pendry et al. showed that surface waves like SPPs could be supported even

on PECs provided that there were arrays of corrugations or holes on metals [14, 15]. The

dispersion relations of such surface waves resemble those of SPPs, and the surface waves

introduced by Pendry et al. are usually called spoof SPPs. Dispersion relations of the spoof

SPPs strongly depend on the dimensions of corrugations and holes, which in turn implies that

almost arbitrary dispersion relations for the spoof SPPs can be designed through an appropri-

ate choice of structural parameters. Based on this concept, Gan et al. demonstrated an

ultrawide-bandwidth slow-light system with a graded metallic grating with linearly graded

depths [16]. Since the dispersion of the spoof SPPs is strongly dependent on the geometrical

parameters of the grooves, the upper limit (cutoff) frequencies for the existence of spoof SPPs

are also determined by the groove geometries. The group velocity of each mode approaches

zero near the cutoff frequency; therefore, graded grating structures with spatially varying

dispersions are capable of stopping spoof SPPs with different frequencies at different locations
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along the surface. The spatial distribution of spoof SPPs with different frequencies can be

tuned by appropriately designing the grade of the grating depths.

Here, we show an e-beam-induced THz radiation from such graded grating based on PIC-

FDTD method [3, 17]. We have obtained THz radiation with unique characteristics such as

arbitrarily chosen bandwidth and unique directionality, which cannot be expected from the

conventional theory developed for the SPR. Our findings may be utilized to develop novel e-

beam-based THz radiation sources.

2. Numerical simulation

In this section, numerical simulation techniques employed in this study, simplified PIC-FDTD

method, is described in detail, and parameters for our simulations are summarized.

2.1. Overview of simplified PIC-FDTD approach for the analysis of e-beam-induced THz

radiation

The PIC-FDTD method has been widely used to study underlying physical mechanism of the

Smith-Purcell superradiance [8–10]. To save computational time and memory, we have used

simplified version of PIC-FDTD method [17, 18]. In our simplified model, the electron-bunch is

treated as one negatively charged particle, the movement of the particle is restricted only in

two-dimensional (2D) (x-y) plane, and only transverse electric (TE) mode, with Ex, Ey, and Hz

fields, has been analyzed. Figure 1 shows schematic representation of the analyzed 2D system

and definitions of dimensions of the graded grating, where Λ, s, d, and Δd are period, width,

depth of the grooves, and depth variation, respectively.

Figure 1. Schematic representation of the analyzed 2D system and definitions of dimensions of the graded grating.
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In the FDTD method, the time-dependent EM field propagating in 2D system is simulated

using Yee’s algorithm [19, 20] to solve the following Maxwell’s equations (in the vacuum):

∇� E x; y; tð Þ ¼ �
∂B x; y; tð Þ

∂t
(2)

∇�H x; y; tð Þ ¼ ε0
∂E x; y; tð Þ

∂t
þ J x; y; tð Þ (3)

where E, H, and B are the electric and magnetic fields and magnetic flux density of EM wave, J

is the current density, and ε0 and μ0 are the dielectric permittivity and the magnetic permeabil-

ity in vacuum, respectively. In Yee’s algorithm, these differential equations are discretized

using centered finite-difference expressions for the space and time derivatives, and we have

the following set of equations for TE mode in 2D space:

En
x iþ

1

2
; j

� �

¼ CEX iþ
1

2
; j

� �

En�1
x iþ
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2
; j

� �
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(4)
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where superscript n is for the time step and (i, j) = (iΔx, jΔy) for the spatial position. The

coefficients in Eqs. (4)–(6) are as follows:

CEX iþ
1

2
; j

� �

¼
1�

σ iþ1
2;jð ÞΔt

2ε iþ1
2;jð Þ

1þ
σ iþ1

2;jð ÞΔt
2ε iþ1

2;jð Þ

(7)

CEXLY iþ
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2
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� �
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ε iþ1
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2;jð ÞΔt
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(8)
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CHZLX iþ
1

2
; jþ

1
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2

� �

1

Δx
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2

� �

1

Δy
(12)

Figure 2 shows a typical Yee’s 2D uniform rectangular grid for TE mode. Ex and Ey components

are located at the middle of the edge of each grid, and Hz component is located at the center of

the grids. The time evolution of EM fields is updated in a leapfrog manner. In order to model an

open system, we have employed perfectly matched layer (PML)-absorbing conditions [21].

The dielectric properties of metals are strongly dispersive; therefore, we utilized recursive

convolution (RC) approach [20] to model metallic grating. By adopting Drude model, fre-

quency dependence of dielectric permittivity of metal can be expressed as follows:

εr ωð Þ ¼ 1þ
ω2

p

ω jΓ� ωð Þ
¼ 1þ χ ωð Þ (13)

χ ωð Þ ¼
ω2

p

ω jΓ� ωð Þ
(14)

where ωp and Γ are the plasma frequency and collision frequency of metal, respectively. In a

linear dispersive medium, the time-domain electric flux density D(t) is related to the electric

field E(t) by the convolution:

D tð Þ ¼ ε0ε∞E tð Þ þ ε0

ðt

τ¼0

E t� τð Þχ τð Þdτ (15)

Since the Fourier-transformed electric susceptibility χ(τ) of Drude type of dispersion satisfies

the condition for a recursive computation, the convolution in Eq. (15) can be solved in a

recursive manner.

Figure 2. 2D uniform rectangular Yee’s grid for TE mode.

Electron Beam-Induced Directional Terahertz Radiation from Metamaterials
http://dx.doi.org/10.5772/intechopen.80648

117



In the PIC-FDTD method, time-dependent Maxwell’s equations are coupled with the equation

of motion of relativistic charged particles driven by the inertia and the Lorentz force and

solved in a leapfrog manner similar to the main FDTD algorithm. In our simplified version,

we assume the electron-bunch as one negatively charged particle with the following Gaussian

spatial charge distribution:

ne x; y; tð Þ ¼ N0exp �
x� x0 tð Þð Þ2 þ y� y0 tð Þ

� �2

2σ2

( )

(16)

σ ¼
w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ln 2ð Þ
p (17)

where N0 is the central electron density of the bunch and w is the half width of the bunch. The

coordinate (x0, y0) represents the center of electron-bunch, and its movement (trajectory) is

updated by solving following equation of motion:

∂P x0; y0; t
� �

∂t
¼ �nee E x0; y0; t

� �

þ v x0; y0; t
� �

� B x0; y0; t
� �	 


(18)

P x0; y0; t
� �

¼
mev x0; y0; t

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v x0; y0; t
� �

�

�

�

�

2
=c2

q (19)

where P is the momentum, e is the electron charge, v is the speed of the electron-bunch, and me

is the electron mass. The movement of the electron-bunch is assumed to be in a continuous

space, and the coordinate (x0, y0) of the center position of it is not necessarily on Yee’s discrete

FDTD grid points. Therefore, electric field and magnetic flux density on the electron-bunch to

solve Eq. (18) should be interpolated from those at the nearest grid points. We used linear

interpolation as schematically shown in Figure 3, in which Ex component is given as follows:

Figure 3. Schematic representation of the linear interpolation for Ex components at the center position (x0, y0) of the

electron-bunch.
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Ex5 ¼ 1� αð ÞEx1 þ αEx2 (20)

Ex6 ¼ 1� αð ÞEx3 þ αEx4 (21)

Ex ¼ 1� β
� �

Ex5 þ βEx6 (22)

In order to include the movement of the electron-bunch in the FDTD formalism, a current

source term is added to Ampere’s law:

J x; y; tð Þ ¼ �ne x; y; tð Þev x0; y0; t
� �

(23)

Figure 4 schematically summarizes our simplified PIC-FDTD simulation scheme. The solution

of the time-dependent Maxwell’s equations gives spatial counter maps of EM fields and their

time evolution. The solution of the equation of motion of relativistic electron-bunch gives its

trajectory, and the continuity equation gives the current and charge densities required for

Maxwell’s equations. The flowchart of our PIC-FDTD simulation is shown in Figure 5.

2.2. Analyzed models and parameters

In Figure 1, the analyzed 2D system and definitions of dimensions of the graded grating are

schematically shown. In Table 1, parameters used in this study are summarized. The graded

grating was assumed to be consisted of Ag, and the Drude model was adopted in order to

model the dispersion characters of its dielectric function and solved by using RC scheme as

discussed above. The plasma frequency (ωp) and the collision frequency (Γ) of Ag were set to

Figure 4. Schematic representation of simplified PIC-FDTD simulation scheme.
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be 2.2 � 103 and 5.4 THz, respectively. The grating period (Λ) and the groove width (s) are 170

and 60 μm, respectively. The number of grooves of the grating (N) is 35. The groove depth (d) is

gradually made deeper or shallower. Here, we denote each graded grating using grating

parameters as GG[ds, dd, Δd], where ds and dd are the shallowest and the deepest groove

depths, respectively, and Δd is the difference in depths between two consecutive grooves (all

values are in μm). The space increment for the FDTD grids chosen here is Δx = Δy = 10 μm. The

time increment is set to be Δt = 23 fs, which is sufficiently small to satisfy the condition for the

stabilization of the FDTD algorithm.

Figure 5. Flowchart of our PIC-FDTD scheme.
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A 20-μm-wide (w) bunched electron-bunch with Gaussian charge distribution (Eqs. (16) and

(17)) was sent 20 μm (w) above the grating at the relativistic speed. The maximum current

density at the center of the electron-bunch was assumed to be 1.0 � 106 A/m2, and the

acceleration energy of the electron-bunch is 30 keV, which is comparable to the recent experi-

mental condition by Urata et al. [5].

3. Results and discussions

In the e-beam-induced radiations from conventional periodic grating, there are two mecha-

nisms. One is the so-called Smith-Purcell radiation emitted while the e-beam is passing over

the grating. The radiation angle and its frequency satisfy Eq. (1). The other is the scattering of

surface waves at both ends of the grating long after the e-beam moved away from the grating.

These long-lived surface waves can propagate back and forth on the grating surface and can be

emitted repeatedly even long after the e-beam has moved away from the grating as long as

the surface waves can live. The frequency of the scattered surface waves is determined by

the intersection of the dispersion curves of the surface wave and the beam line. Here, we are

interested in the second mechanism long after the e-beam has moved away from the gratings,

but the groove depths are gradually graded, and, therefore, the dispersion curves of the

surface waves induced by an e-beam cannot be uniquely determined.

Figure 6(a) and (b) shows snapshot contour maps of the Hz field long after the e-beam has

moved away from the graded grating of GG[100, 168, 2] and GG[100, 168, �2], respectively. In

both cases, directional radiations are obtained only from the shallowest end of the graded grating,

in backward direction from GG[100, 168, 2] and forward direction from GG[100, 168, �2],

respectively. These directional radiation characteristics cannot be expected from a conventional

periodic grating and might be unique in the graded grating considered here.

Grating period (Λ) 170 μm

Groove width (s) 60 μm

Groove depth (d) Variable parameter

Number of grooves (N) 35

Plasma frequency of Ag (ωp) 2.2 � 103 THz

Collision frequency of Ag (Γ) 5.4 THz

Electron-bunch energy 30 keV

Half width of electron-bunch (w) 20 μm

Bunch-grating distance (w) 20 μm

Table 1. Parameters used in this study.
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As discussed by Gan et al. [16], the dispersion relations of the surface waves on these graded

gratings are different at each location on the grating, and thus the frequencies of the e-beam-

induced surface waves should also be different at different locations. These surface modes

with different frequency components originated from different locations on the graded grat-

ings can propagate toward the side with shallower groove depth due to the cutoff nature as

reported by Gan et al. [16], which may give a mechanism of the directional radiation obtained

only from the shallow end of the graded grating.

Figure 7(a) shows the time-domainHz field amplitude from GG[100, 168, 2] monitored at probe

P indicated in Figure 6(a). After around 400 ps, successive pulse train with exponentially

decaying magnitude can be seen. Magnified figure in the inset of Figure 7(a) indicates that each

pulse train has duration of tens of ps and seems to be composed by the beating between several

frequency components. Figure 7(b) shows the Fourier-transformed spectra of the far-field

radiation from GG[100, 168, 2] monitored at probe P and from GG[100, 168, �2] monitored

at probe Q. Both spectra have relatively wideband spectra and multiple sharp peaks, which

cannot be expected from a conventional SPR in a periodic grating. The beating response seen in

Figure 6. Snapshot contour map of Hz field long after the e-beam moved over (a) GG[100, 168, 2] and (b) GG[100, 168, �2].
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time-domain response in Figure 7(a) should be attributed to these multiple sharp peaks. These

two spectra from GG[100, 168, 2] and GG[100, 168, �2] are quite similar. The geometric param-

eters of these two graded gratings are identical except the groove depth variation Δd is opposite

in sign; therefore, e-beam-induced surface modes are almost identical in both graded gratings,

and only radiation direction was switched by making groove depth variation Δd opposite.

In order to clarify the nature of the surface modes, we have also investigated near fields

on the different locations on the graded gratings. Figure 8 shows Fourier-transformed

Figure 7. (a) Time-domainHz field amplitude from GG[100, 168, 2] monitored at probe P. (b) Fourier-transformed spectra

of the far-field radiation from GG[100, 168, 2] monitored at probe P (red solid line) and from GG[100, 168, �2] monitored

at probe Q (blue-dotted line).
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spectra of the near-field (surface wave) Hz field monitored just above each groove with

d = 160, 150, 140, 130, 120, 110, or 100 μm, along with that of the far-field radiation

monitored at the probe P, all in GG[100, 168, 2]. It can be seen that more peaks appear on

the higher-frequency side of the spectra for monitoring above the shallower grooves. This

is because the frequency of the surface waves and their cutoff frequency are lower at

deeper grooves, and more surface modes can be supported above the shallower grooves.

The spectrum monitored at the left end groove of the grating (d = 100 μm) is almost

identical to the far-field radiation spectrum, which also supports that the directional and

wideband far-field radiation with multiple sharp peaks was obtained as a superposition

of all of the surface modes with different frequencies originated at different locations on

the graded grating.

Figure 8. Fourier-transformed spectra of near-field (surface wave) Hz monitored at several positions 10 μm above each

groove with depth of d = 160, 150, 140, 130, 120, 110, or 100 μm, along with that of the far-field radiation monitored at the

probe P in GG[100, 168, 2] (from top to bottom). Markers A, B, and C refer to the peaks at 0.314, 0.329, and 0.347 THz,

respectively.
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In order to reveal from where each mode originate in the graded grating, we excited the

system with quasi-monochromatic EM pulse and monitored long enough until the initial pulse

damped and only long-lived surface modes survive. Figure 9 shows spatial distributions of Hz

fields for quasi-monochromatic long-lived surface modes of 0.314 (A), 0.329 (B), and 0.347 (C)

THz. It can be seen that each surface modes originate at different locations of the graded

grating and that higher-frequency modes originate at shallower grooves. This also supports

that a superposition of the surface modes with different frequencies originated at different

locations on the graded grating results in the directional and wideband far-field radiation with

multiple sharp peaks.

The fact that the dispersion characters and frequency of the e-beam-induced surface mode is

quite sensitive to the local environment of the grooves suggests that one can design the

radiation frequency of the directional radiation from graded gratings by appropriately

choosing groove parameters of the grating. Figure 10 shows the Fourier-transformed spectra

of the far-field radiation from graded gratings with different groove parameters: GG[100,

304, 6], GG[100, 236, 4], GG[100, 168, 2], GG[168, 236, 2], GG[50, 186, 4], and GG[50, 118, 2].

Roughly speaking, the deepest and shallowest grooves determine the lowest and highest

frequencies of the radiation, respectively. This can be confirmed by comparing spectra for

GG[100, 304, 6], GG[100, 236, 4], and GG[100, 168, 2], for example. The highest frequency of

these radiations is almost the same �0.40 THz and determined by their common shallowest

groove depth ds of 100 μm. The concept of spoof SPPs may be promising for developing THz

radiation sources.

Figure 9. Snapshot contour map of Hz fields long after the exciting quasi-monochromatic electromagnetic pulse has been

damped when the frequencies of the mode are 0.314 (A), 0.329 (B), and 0.347 (C) THz in GG[100, 168, 2]. Each mode and

its name (A, B, C) correspond to the peaks in the far-field radiation spectrum in Figure 8.
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4. Conclusions

We have numerically analyzed the e-beam-induced directional THz radiation from metallic

grating structures with graded depths. We used a simplified PIC-FDTD method for numerical

analysis to save computational time and memory, and the detailed description of our method

is given here. In our simplified model, the electron-bunch is treated as one negatively charged

particle with Gaussian charge distribution, and its movement is restricted only in 2D space,

and only TE mode, with Ex, Ey, and Hz fields, has been analyzed.

Our results show unique directional THz radiation from graded gratings. By passing pulsed

(bunched) e-beam along the grating surface, directional THz radiations are obtained from one

Figure 10. Fourier-transformed spectra of the far-field radiation from graded gratings with different groove parameters:

GG[100, 304, 6], GG[100, 236, 4], GG[100, 168, 2], GG[168, 236, 2], GG[50, 186, 4], and GG[50, 118, 2] (from top to bottom).
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side of the grating with shallower grooves. The direction of these radiations can be switched

backward or forward by making the groove depth deeper or shallower. The spectra of these

directional radiations are wideband and contain multiple sharp peaks. The deepest and the

shallowest groove depths determine the lowest and the highest frequency of the radiation

band, respectively. These unique radiation characteristics cannot be explained by the conven-

tional Smith-Purcell radiation and should be attributed to the spoof SPP that originates from

different locations on the graded grating. The unique e-beam-induced radiation from

metamaterials based on spoof SPP’s concept may open a way for a development of novel types

of THz radiation sources.
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