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Abstract

Sleep-wake cycle is probably the most truthful signature of life. These unavoidable 
interchangeable states are together the matrix for all that occurs in physiology, and its 
rhythms are regulated by homeostatic and circadian processes involving different neu-
ronal structures and distinct neural substrates. Hypothalamic regulation of sleep-wake 
cycle becomes of relevance as several neuropeptide-producing neurons involved in sleep 
and wakefulness regulation are located there. In this chapter, we provide a review of 
the hypothalamic regulation of sleep-wake cycle, focusing on the hypocretin system and 
melanin-concentrating hormone (MCH)-producing neurons located in the lateral hypo-
thalamic area (LHA).
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1. Hypothalamus as a sleep-wake cycle regulator aside the RAS

The invention of the EEG by Hans Berger was a landmark in the history of sleep science. 

Until then, sleep was primarily considered to be a passive state, resulting from an exhaustion-

modulated partial disconnection of sensory-motor circuitry from the higher-level neural 

regulators [1]. When early and after the first recordings of brain electrical activity, Berger 
established the alpha and beta waves as the EEG-dominant oscillations in healthy subjects [2]; 

he was proposing the electrophysiological definition of being awake. Later developments of 
Berger research allowed Frédéric Bremer, who was studying the physiology of the cerebellum 

and the neural control of muscular tone, to further investigate on the side effects of sleepi-
ness after a lesion was produced on the hypothalamus. Although not precisely involved in 

sleep research, Bremer curiosity on exploring the functional effects of lower brain damages 
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further led him to perform cats’ decerebration by which the forebrain was left in situ after 

a mesencephalic transection at intercollicular level. The results of this approach—the “cer-

veau isolé” model—leading to a persistent and indefinite condition with the brain deprived 
from the ascending sensory information, except for olfaction and optical ones, led Bremer to 

consider the hypothesis of sleep being a consequence of a complete deprivation of a sensory 

input arriving from the spinal cord. In this model, the cortical EEG pattern was dominated by 
a high-amplitude, low-frequency activity, like that observed in the slow-wave sleep (SWS). 

The following experiments, where the brain transection was performed at the level of the 

meeting point between the brain stem and the spinal cord, revealed very different results. In 
this “encephale isolé” model, an interchangeable oscillation between the sleep and the wake 

states, with an EEG pattern varying from the spontaneous low-frequency, high-amplitude 
activity usually observed in SWS, and high-frequency, low-amplitude activity, typical of 

wakefulness and rapid eye movement, was observed, not different from what can be noticed 
in a healthy condition. Although, at this time, Bremer was unaware of the reticular activating 

system (RAS), the assumption taken from his work that sleep was derived from a reduction 

in cortical tone while wakefulness resulted from the maintained sensorial flow to the brain 
served as the basis for later developments on sleep-wake cycle neurophysiology [3].

RAS was identified about 14 years later by Moruzzi and Magoun who significantly contributed 
to sleep-wake physiology by showing that brainstem reticular formation stimulation abolished 

EEG low-frequency activity and induced high-frequency activity in the cortical recordings [4]. 

Further experiments using the transection technique concluded that RAS underlies wakeful-

ness, while its absence or its “silence” precipitates sleep [5]. These results were, however, 

obtained in acute experiments when EEG was assessed almost immediately after the brain 

damage. However, Villablanca [6] observed that, in the animals transected and maintained 

alive days or weeks after the surgical procedure, a waking-like EEG activity characterized by 
low-amplitude high-frequency waves was observed, suggesting that the forebrain could be 

involved in this partial recovery of the normal rhythm, in particular, its magnocellular region 

which contains cholinergic, GABAergic, and glutamatergic neurons. This allowed conceptual-

izing that the wake-state modulation may also be dependent regions located rostral to RAS, 
in particular, of the forebrain. Some studies showed that the electrical stimulation of the pos-

terior hypothalamus and the basal forebrain in the isolated cat forebrain induced fast cortical 

EEG rhythms [7]. On the other hand, the cholinergic stimulation of these areas was shown to 

induce arousal, suggesting a role in the modulation of a wakening mechanism.

In a “diencephalic model,” resulting from the removal of the cortex and striatum, leaving the 

thalamus, hypothalamus, and basal forebrain connected to the brain stem, animals became 

hyperactive, hyperreactive to sensory stimuli, and with a low-amplitude, high-frequency activ-

ity in the thalamus. In “athalamic animal” in which the thalamus was removed, they were also 

hyperactive and reactive to sensory stimuli, but they could not localize the stimuli and do not 
show very much awareness with only brief periods of low-amplitude, high-frequency activity.

To evaluate how close is the relationship between the structure and the elicited command to 

develop wake, we can infer using the latency of a stimuli to induce awake EEG. The stimula-

tion of RAS-thalamic pathway is several times faster on inducing a wake-like pattern than 
stimulating basal forebrain or lateral hypothalamic/orexin pathways, thus meaning that for 

both regions, there is a need to project elsewhere to induce such a wake EEG pattern.
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In the 1920s, during the influenza epidemic, a new type of encephalitis, attacking brain 
regions and regulating sleep and wakefulness, was described by Constantin von Economo. 

This disorder, which was eventually called encephalitis lethargica or von Economo’s sleeping 

sickness, swept through Europe and North America, with some patients exhibiting severe 

insomnia, while others slept for 20 or more hours per day, arising only briefly to eat and 
drink. The postmortem autopsies of these patients indicated that those with an insomnia-like 

phenomenon had a damage in the anterior hypothalamus, whereas those with abnormally 

increased sleep periods showed an abnormal posterior hypothalamus. In view of that, an 

ascending arousal system originating in the brainstem that kept the forebrain awake was 

proposed and later described by Moruzzi and Magoun as the ascending reticular activating 
system. Later studies, during the 1980s, clarified the nature of this pathway.

Although Von Economo’s work represented a crucial achievement for sleep research, 

the seminal studies of the hypothalamic-hypocretin system were performed by Lecea and 

Kilduff who characterized the mRNA-encoding hypocretin and identified that the neurons 
were responsible for its production [8]. Soon after their findings, the relationship between 
hypocretin/orexin neurons and narcolepsy was established with a mutation in the orexin-2/

hypocretin-2 receptor observed in a narcoleptic dog [9]. Symptoms of narcolepsy, a disorder 

characterized by hypersomnolence and muscle weakness (cataplexy) triggered by emotion, 
were also associated to the absence of orexin/hypocretin [10] to the lack of orexinergic/hypo-

cretinergic neurons [11] or orexin/hypocretin 2 receptor [12]. Cell bodies of those neurons are 

in the perifornical area and lateral hypothalamus (LH), responsible for RAS and tuberomam-

millar nucleus (TMN) neurons activation and are active during wake state and rapid eye 

movement (REM) sleep [13].

2. Orexinergic neurons, their receptors, and physio-pharmacological 

aspects of orexinergic system related to the sleep-wake cycle

Prepro-orexin protein is the precursor protein, generating the excitatory neuropeptides orex-

ins A and B (hypocretins 1 and 2). Orexin A (hypocretin 1), with a structure of 33 amino acids 

and 3.5 kDa, is completely conserved among different mammals which reflects its physiologi-
cal relevance. Orexin B (hypocretin 2) is a 28-amino acid peptide with 2.9 kDa with 46% simi-
larity to orexin A [14]. Their neurons, located on the LH, project widely throughout the brain 

and spinal cord [15]. Orexin excites target neurons through two types of expressed G-protein-

coupled receptors. Orexin 1 receptor (OX1R) is dominantly expressed in the locus coeruleus 

(LC) and orexin 2 receptor (OX2R) is dominantly expressed in the arcuate nucleus (Arc), ven-

trolateral hypothalamus (VMH), LH, and TMN. Both OX1R and OX2R are expressed in the 

raphe nucleus and ventral tegmental area (VTA).

Similar to other wake-promoting neurons, orexin neurons fire mainly during active wakeful-
ness when orexin levels are highest and are silenced during NREM and REM sleep, concur-

ring with the lowest levels of orexin [16].

Different neuronal pathways involving orexin and neurotransmitters affecting its activ-

ity were identified. Neuropeptide Y (NPY) and agouti-related peptide (AgRP) in the Arc 

project to orexin neurons [17]. Also, serotoninergic neurons in the median/paramedian 
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raphe nucleus and GABAergic neurons in the ventrolateral preoptic (VLPO) nucleus send 

axons to orexin neurons [18]. VLPO is of major importance on initiating and maintaining 

NREM sleep as their neurons are activated by the somnogens adenosine [19] and prosta-

glandin D2 [20], and VLPO damage reduces NREM and REM sleep [21]. Orexinergic neu-

rons are also targeted by neuronal projections from the bed nucleus of the stria terminalis 

(BST), supraventricular zone, and dorsomedial hypothalamus (DMH) [18] and receive 

neuronal projections from the suprachiasmatic nucleus—the human master circadian 

clock [22]. A direct neuronal pathway between SCN and orexinergic neurons was not 

identified until now.

Since orexinergic neurons in LH are scarce and difficult to distinguish from other neurons 

just by morphology, a slice-path clamp technique, an electrophysiological method based 

on the expression of enhanced green fluorescent protein (EGFP) under the control of 

orexin promoter in transgenic mice, has been used in order to identify substances affect-

ing orexinergic neuron activity [23, 24]. For instance, this allowed to assume the effects 

of distinct neurotransmitters on orexin neurons: glutamate receptor agonists AMPA and 

NMDA depolarize orexin neurons, while GABAA and GABAB receptor agonists musci-
mol and baclofen hyperpolarize those cells. Serotonin and noradrenaline hyperpolarize 
all orexin neurons through two receptors coupled to inhibitory Gi proteins (5HT1A and 

alpha 2A receptors, respectively) and subsequently activate protein-coupled inwardly 

rectifying potassium channels. Recent optogenetic methods allowed to confirm that the 

activation of serotoninergic neuron terminal inhibits orexin neurons either directly (via 

5-HT1A receptor) or indirectly (via facilitation of GABAergic-inhibitory inputs) [25]. 

Dopamine also hyperpolarizes orexin neurons possibly by an indirect action through 
alpha 2A receptor [26], and glycine inhibits the activity of orexin neurons either directly 

and indirectly [27].

One complementary method to study the function of orexinergic neurons is to look for 

the physiological consequences of its ablation. Hara and coworkers generated transgenic 

mice, in which orexin neurons are ablated, and showed a phenotype similar to human 

narcolepsy [11], which also occurred in OX1r and OX2r knockout mice [28]. In transgenic 

mice, experimentally induced gradual ablation of orexin neurons using a specific “time-
controlled death” technique was associated to a fragmentation of the usual sleep-wake 

cycle [29]. The anatomical proximity and the genetic co-localization of the orexin neurons 
regulating sleep-wake state have recently benefitted from optogenetics. Using this kind of 
approach, Adamantidis and collaborators showed that by increasing the activity of orexin 

neurons, there was also an increased probability of transition to wakefulness from either 

NREM or REM sleep [30]. On the other hand, results from Zhang group using the same 

kind of approach indicate that the acute inhibition of orexinergic neurons leads to a time-of-

day-dependent induction of NREM sleep [31]. To overcome some difficulties related to the 
study of neuronal networks located deeper in the brain, several new-generation optogenetic 

tools are being developed with an expected great impact on the near future in the areas of 

chronobiology and sleep physiology.
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3. Melanin-concentrating hormone (MCH) and MCH neurons

The melanin-concentrating hormone is a 19-amino acid peptide predominant in specific 
neurons with the cell body located in the lateral hypothalamus and incerto-hypothalamic 

area of mammals. Apart from the sleep-active neurons in the preoptic area, these groups 

of neurons are also active during sleep, especially in REM sleep [32]. MCH neurons proj-

ect throughout the brain with a dense innervation of the cholinergic and monoaminergic 

arousal centers [33]. MCH decreases cAMP levels in the cell through the MCH receptor 

1(MCHR1), a G-protein-coupled receptor linked to Gq, Gi, and Go subunits which are 

expressed widely in the brain [34], and cellular electrophysiological studies showed that 

MCH has both presynaptic and postsynaptic strong inhibitory effects [35, 36]. The evi-

dence that MCHR1 is expressed in several areas of the brain including those which are 

part of physiological pathways within sleep-wake control mechanisms (hippocampus, 

subiculum, basolateral amygdala, shell of the nucleus accumbens, ventromedial nucleus, 

arcuate nucleus, tuberomammillary nucleus, dorsolateral pons including dorsal raphe, and 

locus coeruleus) [37] supports that MCH neurons must play an essential role on sleep-wake 

physiology.

Furthermore, while intracerebroventricular infusion of MCH peptide facilitates REM and 

NREM sleep [38], knockout of MCH is associated to a more active wakefulness state [39] 

and to a reduction on either REM or NREM sleep. Optogenetically selectively activated 

MCH neurons generally increase REM sleep duration [40–42]. Consistent results have 

shown that MCH neurons are strongly activated on REM sleep and de-activated during 

NREM, suggesting that MCH neurons promote REM sleep [32]. However, studies with 

timing-controlled ablation of MCH neurons revealed an increase in wakefulness and a 

reduction in NREM sleep, showing that MCH is also involved in the regulation of NREM 

sleep.

MCH neurons seem to inhibit some awake center neurons through GABAergic-inhibitory 

synapses onto histaminergic neurons of tuberomammillary nucleus. Recent work showed 

that the acute activation of MCH neurons, at the onset of REM sleep, extended the duration 

of this sleep stage but not that of the NREM sleep [42]. The inhibition of MCH neurons on the 

other hand reduces the frequency of theta rhythms from the hippocampus without interfering 

on REM sleep duration [41].

MCH neurons are excited by orexin, AMPA agonists, NMDA, and cannabinoid type-1 recep-

tor agonists [43–45] and inhibit orexinergic and adjacent GABAergic neurons [46]. It is clear, 

however, that orexin may also inhibit MCH neurons via GABAa receptors [47]. Dopamine is 

also an MCH neuronal inhibitor either via alpha-2 receptor [48] or via D1- and D2-like recep-

tors [49]. Furthermore, MCH neurons are inhibited by MCH itself and by GABA, noradrena-

line, serotonin, acetylcholine, neuropeptide Y, and histamine [50]. This mutual inhibitory 

interaction between orexin neurons and MCH neurons in the LH is crucial for the regulation 

of sleep-wake physiological cycle [51–53].
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4. Circadian regulation of sleep-wake cycles and some of its 

disturbances

Sleep disorders are complex phenomena. A detailed correlation of sleep-wake regulation and 

clinical states is beyond the scope of this chapter, but a few examples can help to bridge the 

basic science concepts to everyday clinical scenarios. Since the first description of the hypocre-

tin/orexin system 20 years ago, a body of literature investigating the physiologic and patho-

physiology role of this system, as well as the potential for drug development, has emerged. 

Disruption of this system has been linked to pathological sleep-wake states such as insom-

nia and narcolepsy. A role for the hypocretin/orexin system in other sleep disorders and in 

sleepiness associated with other neurological disorders has also deserved some investigation. 

Recent results indicate that subjects with head trauma or encephalitis may have moderately 

but significantly decreased hypocretin levels. A few selected subjects with Guillain-Barré syn-

drome, Parkinson’s disease (PD), multiple system atrophy, and other neurodegenerative dis-

orders have also been found to have shallow hypocretin levels. Importantly, central actions 

of orexin regulate motivated behaviors, stress response, and energy/glucose metabolism by 

coordinating regions of the central autonomic network and the endocrine system, these mul-

tiple actions of orexin being critical to maintaining life.

Considering these putative clinical targets, there has been an ongoing research in the devel-

opment of selective hypocretin/orexin receptor agonists and antagonists. Recently, suvorexant 

became the first US Food and Drug Administration (FDA)-approved hypocretin/orexin receptor 
antagonist for the treatment of insomnia [54], and Nagahara and coworkers published a work 

on the first hypocretin/orexin agonist with good potency and pharmacological selectivity [55].

4.1. Primary hypersomnias

4.1.1. Narcolepsy

As previously mentioned, narcolepsy has been associated with changes in the orexinergic/

hypocretinergic neurons. It is a disabling neurologic condition affecting around 1 in 2000 
individuals, characterized by excessive daytime sleepiness, frequently running with sudden 
muscle paralysis (cataplectic attacks), and transitions from wakefulness into REM sleep [56]. 

Human narcolepsy is a genetically complex disorder and environmentally influenced. The 
association of HLA with human narcolepsy suggests that it may have an autoimmune origin. 

Available treatment strategies are mainly symptomatic and include amphetamine-like stimu-

lants and antidepressants, being met with unsatisfactory results.

Canines with narcolepsy were found to have a mutation in the orexin-2 (hypocretin-2) recep-

tor [57] while mice lacking the orexin peptide or the neurons containing orexin (hypocretin) 

displayed behavioral and EEG signs of narcolepsy [11, 58]. Human subjects with narcolepsy 

have been found to have a lack or very low levels of hypocretin neurons (with an 85–95% 
reduction in the number of neurons) and orexin-A in the CSF [59]. These findings have 
been corroborated by postmortem examination of brain tissue of subjects with narcolepsy, 
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depicting massive losses of orexin neurons [60]. It is not yet entirely clear what leads to 

this massive loss of the orexin neurons. By contrast, the number of melanin-concentrating 

hormone (MCH) neurons is not reduced in number, indicating that the cell loss is relatively 

specific for hypocretin neurons.

4.1.2. Idiopathic hypersomnia

Idiopathic hypersomnia is characterized by excessive daytime sleepiness, without sudden 
muscle paralysis (cataplectic attacks) nor abrupt transitions from wakefulness into REM sleep 
but with a dopaminergic and overall aminergic impairment associated with this condition. 

Some authors have described low but detectable levels of hypocretin in these patients [61], 

while others reported normal levels [62, 63]. Postmortem studies are not available yet.

4.2. Hypocretin studies in neurodegenerative disorders

4.2.1. Parkinson’s disease

Sleep disturbances often occur in patients with Parkinson’s disease (PD) and can even pre-

cede the motor symptoms, showing, in this way, the close relation at a central level between 

autonomic (non-motor symptoms) and sleep centers. Excessive daytime sleepiness has been 

reported in almost half of the PD patients [64, 65]. In postmortem brain studies, hypocretin-1 

tissue concentrations in the prefrontal cortex were almost 40% lower in these patients, with 
the total number of hypocretin neurons being almost half compared with controls [66, 67]. A 

progressive loss of MCH neurons has also been described, increasing with the disease pro-

gression [67].

4.2.2. Multiple system atrophy

Sleep disturbances occur in 70% of patients with multiple system atrophy (MSA), a progres-

sive neurodegenerative disease of undetermined etiology, characterized by parkinsonian fea-

tures, cerebellar, autonomic, and urogenital dysfunction and corticospinal disorders [68]. The 

clinical features include reduced and fragmented sleep, excessive daytime sleepiness, rapid 

eye movement (REM), sleep behavior disorder (RBD), stridor, and sleep-disordered breathing 

[69, 70]. In these patients, Benarroch and coworkers found up to 70% reduction in the total 
number of hypocretin neurons in these populations of patients and described abundant glial 

cytoplasmic inclusions in the hypocretin distribution area [71].

4.3. Immune-mediated neurological disorders

4.3.1. Guillain-Barré syndrome

Guillain-Barré syndrome is a post-infectious polyradiculopathy affecting mainly the peripheral 
nervous system, frequently presenting also with autonomic nervous system failure symptoms. 

Not infrequently, these patients also show other signs of hypothalamic disturbance. Guillain-

Barré syndrome has been the only disorder besides narcolepsy in which undetectable levels of 
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hypocretin have been consistently observed [63, 72]. Patients with the lowest levels tend to have 

a more severe and rapid disease course, running with tetraplegia and respiratory failure. The 

mechanism underlying the lack or very decreased levels of hypocretin in Guillain-Barré syndrome 

remains unknown, but an immune-mediated hypothalamic dysfunction has been hypothesized.

4.4. Orexin and sleep-related physical disorders: cardiovascular disease

Almost all bodily functions are dependent on the autonomic nervous system (ANS), which 

exerts precise control over visceral functions. Sleep disruption causes an increased activity of 

the sympathetic nervous system in association with an elevated blood pressure, and the risks 

of hypertension and cardiovascular disease are increased as a consequence of either strong 

acute or long-term sleep disruption [73]. The hypocretin/orexin system also contributes to 

the regulation of cardiovascular functions via the autonomic nervous system. Hypocretin/

orexin neurons project to several brain regions involved in the regulation of cardiovascular 

activity, namely the paraventricular nucleus (PVN), nucleus tractus solitarius, and the rostral 

ventrolateral medulla (RVLM), all areas of the central autonomic network [74].

Over-activation of the hypocretin/orexin system has been implicated in the pathogenesis of 

hypertension. It has been shown that the central administration of orexins A and B increases 

arterial blood pressure and elicits tachycardia in animal models [74]. Conversely, orexin/

ataxin-3 transgenic rats, lacking orexin neurons, have a significantly reduced sympathetic 
nervous system tone and a lower systolic blood pressure when compared with controls [75]. 

In addition, spontaneously hypertensive rats (SHRs) have increased levels of hypocretin/

orexin [74] that, when blocked by the oral administration of almorexant or by intracerebro-

ventricular injections of TCSOX229, led to a significant reduction of systolic blood pressure 
while not affecting arterial blood pressure in normotensive animals [76, 77]. These data sug-

gest that hypocretin/orexin may play a significant role in the pathogenesis of hypertension. In 
humans, Dauvilliers and coworkers reported a lower cardiac activation associated with peri-

odic leg movements during sleep in narcoleptic patients which was proposed to be related to 

changes in baroreflex sensitivity [78]. The same group found a large percentage of diastolic 

non-dippers, with 64% failing to achieve the 15% fall point on diastolic blood pressure [79], 

and recent data suggested that narcoleptic patients displayed a nighttime non-dipping blood 
pressure pattern with increased systolic blood pressure during nighttime REM sleep [80].

The blunted cardiac activation and sleep-related blood pressure fall in narcoleptic patients 

may be clinically relevant and may indicate an increased risk for cardiovascular events among 

attributable to a potentially clinically significant hypocretin/orexin deficiency.

5. Conclusion

In summary, despite being present throughout the animal kingdom, the precise sleep function 

is still relatively elusive. However, it is evident that sleep regulation is fundamental for sur-

vival having the hypothalamus a significant role in those modulatory processes through the 
orexin/hypocretin and the MCH neurons. Nevertheless, further studies on sleep physiology 
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are needed to determine the inner mechanisms associated with sleep-wake cycle and their 

regulatory processes.
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