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Abstract

This chapter evaluates module architectures and units of photovoltaic cooling systems, 
aiming to determine, select and design a modular system that can be applied in a real-
scale photovoltaic power plant (PVPP) in order to enhance the yields of electricity pro-
duction (entitled cooled photovoltaic plant). An analysis of the local climatic, geographic 
and solar conditions as well as construction, operational and maintenance aspects was 
carried out. Worldwide, there are three main types of cooled photovoltaic systems: PVT 
liquid and air collectors, PV ventilated with heat recovery and non-PVT systems. Based 
on the local weather conditions (tropical warm and dry) with both temperature and solar 
irradiation index being high, it results the PVT-liquid system to be more suitable in a 
scenario with available cooling fluid. We conclude that the best design and arrangement 
of the cooling system are of the type coil and multiple channel because they permit better 
rates of heat exchange between the cooling fluid and the PV module.

Keywords: SFV, solar energy, photovoltaic/thermal, cooling photovoltaic system, PVPP

1. Introduction

Brazil is the fourth largest country in the world with 8.5 MMkm2 [1]; therefore, it presents 

diverse climatic characteristics along its territory. Nevertheless, the annual mean global 
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irradiation remains uniform, presenting a relative high average in the country and varying in 

a range of 4200–6700 kWh/m2—these values are, for instance, greater than most of the values 

observed in Europe (900–1850 kWh/m2). The lowest global solar irradiation value observed 

in Brazil (4250 kWh/m2) occurs in the northern coast of the state of Santa Catarina due to the 

steady rates of rainfall distributed along the year, whereas the highest value pertains to the 

northern region of the state of Bahia (6500 kWh/m2), near the state of Piaui, because this region 

presents the lowest rate of cloud cover in Brazil [2].

As energy production (thermal or electrical) entails the increase of temperature of the equip-

ment, directly affecting its efficiency, lifetime and pollutant emissions, cooling systems are 
employed in order to reduce the temperature of the system, such as radiators and water 

pumps employed in rotary machine of energy production (controlling overheating and NOx 

emissions of internal combustion engines Diesel and Otto), heat exchangers of a great variety 
used in hydraulic and gas turbines, which guarantee the maintenance of pillow blocks and 

shovels, among others [3, 4]. The photovoltaic modules (PMs), which are basically stationary 

solid equipment, are damaged with the effects of high temperatures during their operation 
because they absorb 80% of the solar radiation, which in turn only 5–20% is converted into 

electricity (depending on the employed technology) [5]. The rest of the solar radiation is then 

converted into heat, causing the modules to reach temperatures 35°C higher than the ambient 

temperature [6]; in some regions, these modules might reach temperatures higher than 90°C, 

causing malfunction or even permanent damage [7]. Alternatively, the photovoltaic thermal 

(PVT) system, which extracts the heat produced at the PV module through a thermal absorber 

system, might replace the traditional PV systems, improving its performance.

The aim of this work is to determine a model of cooling technology for photovoltaic power 

plants (PVPPs) by means of analysing both established and on-development cooling systems 

for PV modules. Therefore, we intend to improve the energy performance of photovoltaic 

power stations.

In these terms, the methodology considers the following steps:

1. study of local and geographic factors of the region where the photovoltaic power plant 

(PVPP) is located;

2. study of the factors that impact the increase of temperature on the photovoltaic (PV) mod-

ules and therefore impacting electricity production;

3. extensive study of the technical and scientific basis of the state of the art of cooling tech-

nologies for PV modules aiming at the understanding of the factors, which influence its 
functioning and performance. This step shall gather information regarding the materials 

employed on the construction of the selected technologies, methods and processes of con-

struction, operation, maintenance and quantitative measurement;

4. survey and analysis of the local water availability because the PVPP is located within an 

operating hydroelectric power plant (HPP) and

5. evaluation of the cooling technologies in order to support the selection of the most appro-

priate one, taking into consideration the local characteristics.
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2. Climatic aspects of the region for verifying energy application

The Northwest region of the State of Sao Paulo presents the highest score of mean solar radia-

tion of the state, with a mean annual value of 5.520 kWh/m2 and daily maximum value of 

5.970 and 6.672 kWh/m2 day, respectively, in the summer and spring, which lie close to the 

maximum values observed in the country [8]. The installation site of the photovoltaic power 

plant (PVPP), where the cooling systems for the PV modules are installed [9], presents an 

average annual solar radiation of 5.5 kWh/m2 day in the summer and minimum average value 

of 4.6 kWh/m2 day in the autumn [8], as shown in Figure 1.

According to Köppen classification, the city of Ilha Solteira presents warm and dry climate 
[10], with an average annual atmospheric temperature of 24.8°C and the maximum and 

minimum average annual temperatures of 33.0 and 13.1°C, respectively. Ilha Solteira has an 

annual rainfall index of 1309.4 mm, varying from 288.3 mm during the dry season (from April 

to September with an average monthly index of 48.1 mm) to 1.021 mm during the wet season 

(from October to March with an average monthly index of 170.2 mm, comprising 77% of the 

total rainfall in a year). The minimum rainfall index is observed in August (22.8 mm), whereas 

the maximum one is observed in January (225.9 mm). Regarding atmospheric temperatures, 

the dry season presents average value and maximum average value of 22.8 and 30.0°C, respec-

tively, whereas the wet season registers 26.9 and 32.5°C. The highest registered temperature 

was 42.0°C, which was registered on four different days, and the highest average daily tem-

perature was of 34.9°C, with minimum of 29.3°C and maximum of 38.9°C on that day [11].

Figure 2 shows rainfall indices (mm) and daylight (h/day) for the period 2004–2013. The 

graphic reveals that the minimum values registered for sunshine duration coincide with 

Figure 1. Global horizontal irradiance (kWh/m2) in the region on Ilha Solteira city [8].
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the maximum values of rainfall, thus they are inversely proportional and oscillate along the 

year. The highest rainfall rates occur in the beginning of the year, whereas the highest sun-

shine duration occurs in the middle of the year. It is also possible to note that the highest 

rainfall index registered (596.1 mm) was followed by a monthly sunshine duration of 5.4 h/

day, whereas the highest sunshine duration (11.6 h/day) registered in November 2010 was 

followed by a rainfall index of 138.9 mm. Overall, the mean monthly sunshine duration and 

rainfall indices for the analysed period are 7.7 h/day and 127.6 mm, respectively.

The global radiation (MJ/m2 day) is directly proportional to the sunshine duration, as 

described in Figure 3, and the peaks of maximum global radiation coincide with the peaks of 

sunshine. The highest mean global radiation (26.6 MJ/m2 day registered on December 2008) 

corresponds to the maximum mean atmospheric temperature of the same year (26.7°C), pre-

senting a mean monthly sunshine duration of 10.2 h/day. At the period of highest sunshine 

(11.6 h/day on November 2010), the mean global radiation was 26.2 MJ/m2 dia, corresponding 

Figure 3. Mean global radiation and monthly daylight for the period 2004–2013.

Figure 2. Rainfall index and monthly daylight for the period 2004–2013.
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to the second highest value for the period. The mean average global radiation for the whole 

period is 19.1 MJ/m2 day. Furthermore, the graphic shows that the oscillations registered for 

the maximum global radiation are smoother than the ones observed for the minimum ones, 

thus the minimum values vary more than the maximum ones. Another important charac-

teristic to be noted is that the mean global radiation values along the period lie closer to the 

maximum values than to the minimum ones, demonstrating that conditions of high radiation 

are more present in the region. The average minimum and maximum global radiation for the 

period is, respectively, 9.4 and 24.9 MJ/m2 day, reaching a peak of 35.4 MJ/m2 day observed on 

4 December 2008, with a corresponding sunshine duration of 15.8 h/day.

3. Analysis of the effect of temperature on PV modules

The temperature is a very important parameter on PV modules due to its influence on the 
behaviour of a PV system. The PV cells heat up due to their exposure to the solar rays, modi-

fying the efficiency of the system and the output energy, because high temperatures decrease 
the produced voltage, and inversely, higher voltages are produced in lower temperatures 

[12]. Any kind of PV system shall include a correction factor due to the effect of tempera-

ture [13]. This effect is a product of a natural characteristic of the silicon [12] because part 

of the absorbed solar rays is not converted into electric energy but dissipated in the form of 

heat. This is the reason for the PV cells and modules to present higher temperatures than 

the ambient while operating [14]. The highest temperatures on a PV system are observed at 

its inferior surface due to the higher thermal conductivity of the silicon that forms the PV 

cell, compared to the polymer material used at the superior surface [15]. This phenomenon 

is shown in Figure 4, presenting the difference of temperature among the superior and the 
inferior surfaces of 8.1°C [3, 4].

The voltage drop caused by the increase in the temperature is a result of the shrinkage of 

the semiconductor due to the band gap, which directly influences the open-circuit voltage 
(Vca), which in turn decreases following the voltage drop of the p-n junction. This effect can 
be explained by the thermal voltage, q/kT. Thus, the PV cells contain a negative temperature 

coefficient for the Vca. Moreover, lower output power given a constant photocurrent results 
from the charge carries, which are released with lower potential [16]. As the temperature 

increases, followed by an opening of the band and thus shrinking the semiconductors, more 

incident energy is absorbed, leading to a raise in the charge carriers from the valence band to 

the conduction band [12]. As a result, a larger photocurrent is observed, producing a larger 

short-circuit current for a given insulation, and PV cells have a positive temperature coef-

ficient Icc [16].

According to Makrides et al. [17], the place in the PV cells, where the highest increase in tem-

perature is observed, is at the main bus bar; a conductor line that enables the interconnection, 

capture and conduction of electrons from the secondary bars, which, as the primary ones, 

is a parallel conductor line responsible for the capture of electrons produced at the valence 

band of the PV cells. According to Prieb [18], as the silicon module temperature increases, the 

voltage decreases at a rate of −2.2 mV/°C and the short-circuit current increases at a rate of 
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0.06%/°C, such increase rebounds on the power, but it is insufficient to compensate the loss of 
power due to the voltage drop. In summary, variation of temperature results in a correspond-

ing variation of operational levels of maximum power extraction.

The energy conversion efficiency (η) of a PV cell is the percentage between power converted 

and power collected, when a PV cell is connected to an electrical circuit. This term can be 

calculated using the point of maximum power (P
max

) divided by the input light irradiance (E 

in W/m2) over a PV cell surface under standard test conditions (A
c
). In this way, it is possible 

to understand the decrease of η influenced by temperature increase, because such a decrease 
in the output power is directly proportional to the output voltage, which in turn is reversely 

proportional to temperature. Thus, just as the voltage, the efficiency of a PV module decreases 
with the increase of temperature.

4. Framework of cooling systems for photovoltaic modules

In photovoltaic thermal (PVT) systems, solar energy is converted into both heat, just as in con-

ventional solar thermal collectors, and electricity. In other words, PVT systems consolidate 

the electricity production of PV systems and the heat production of solar thermal collectors 

(see Figure 5). The real conversion occurs at the absorber, but part of this energy dissipates to 

the environment through radiation and convection. Systems where the absorber is in direct 

contact with other means are called uncovered PVT. In this case, the heat loss to the environ-

ment is considerable, and both temperature and thermal efficiency are relatively low. The 
uncovered PVT systems are recommended in cases when lower heating temperatures for 

Figure 4. Infrared image of the superior (left one) and inferior (right one) surfaces of a PV module [3].
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water are demanded or in order to improve the electric conversion yields of PV modules. 

The other kind of system is called covered PVT, and it is characterized by a cover, usually 

transparent, placed around the absorber. This cover transmits around 90% of solar incident 

radiation, depending on the material used. On most of the cases, the 10% reduction is less 

important than the effect of thermal insulation the cover achieves, improving the overall ther-

mal efficiency of the system [6].

The parameters of a PVT project vary substantially according to the type of application, which 

can aim at the use of hot water for pre-heating ventilation air or at cooling the PV systems. 

Heating and electricity demands can be satisfied by the appropriate PVT system, and its tech-

nical viability is documented according to Hasan and Sumathy [19].

There are many types and forms of PVT systems, which vary according to the photovoltaic 

module, the type of working fluid, the amount of radiation and geographic location of the 
facility, and other system specifications (such as flat plate or concentrator). The actual classi-
fication of PVT systems varies in the literature—the working fluid (commonly air and water) 
is the most common attribute used for classification purposes.

Compared to the air-type PVT, the water-type PVT systems are more efficient in terms of 
heat removal from PV [20], due to the higher thermal conductivity of the water, resulting in 

a higher heat transfer from the PV modules to the working fluid. Thus, a balance between 
thermal and electric yields has to be taken into account while selecting the appropriate PVT 

system.

4.1. Water-based PVT collector

Water-based PVT collectors consist of a heat absorber, either a cooling coil or a series of paral-

lel tubes coupled at the inferior surface of the PV laminate or glued with an epoxy adhesive 

material through which a fluid flows, cooling down the module. Moreover, the absorber 
might contain a thermal insulator in order to reduce thermal losses between the water and 

Figure 5. Comparison between the types of technology and the corresponding energy produced [19].
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the ambient—in contrast, in case heat removal from the PV module is intended, the thermal 

insulator is not added to the absorber. This type of cooling is accomplished by forced convec-

tion in which the fluid removes the heat from the module, increasing the system’s electrical 
efficiency of 4–5% [3].

There are several types of configuration for these collectors, but in all cases, a pump has to 
be installed for water circulation purpose. The four major models found in the literature are: 

sheet-and-tube PVT collectors, channel PVT collectors, free flow PVT collectors and two-
absorber PVT collectors. According to Zondag et al. [21], in order to improve the efficiency of 
the collector, it is preferable to design the water flow to occur below the PV module. However, 
in terms of the simplicity of the structure and the overall performance, a sheet-and-tube PVT 

collector is recommended. Additionally, in order to maximize heat transfer, the mean dis-

tance between the heat generation and the collectors should be minimum. Another suggestion 

regarding the area in which the liquid flows on the PV cell, this shall be as large as possible 
in order to cover the whole surface [22]. For this application, van Helden et al. [6] suggested 

a configuration with multiple channels that allow PV cells arranged in series to be cooled 
equally.

The simplest way to produce a PVT collector is to take a standard PV and integrate it into 

a thermal collector. However, this configuration exposes the PV module to the ambient, 
particularly to humidity, and therefore hampering practical applications. Furthermore, prob-

lems related to the electrical insulation may occur, such as the increase of thermal resistance 

between the PV laminate and the absorber due to the emergence of air layers—result from the 

low thermal conductivity triggered by irregularities at the inferior p-Si modules [21].

In order to increase electrical resistance between the PV cells and the absorber, a more 

advanced technique shall be applied, avoiding temperature increase and electrical loss. This 

technique is based on PVT modules that contain laminate photovoltaic cells followed by elec-

trical insulation and finally an absorber. However, problems such as the deformation of the 
PVT laminate due to the thermal expansion between the glass surface and the metal laminate 

of the collector occur. In order to avoid this problem, a tedlar laminate can substitute the 

glass at the inferior surface. It is important to note that this substitution requires a sufficient 
rigid absorber that enables the cells to be supported [21]. Usually, PVT modules produced in 

strips with a superior plastic layer have been used. In this case, the support is guaranteed by 

a cooper tube absorber installed at the centre of the strips. A variation of this design uses the 

borders of a galvanized sheet as the support of the PVT modules. The border of the galva-

nized sheets is bent, providing the basin for the cooper tubes, which are then welded together. 

Sheet-and-tube absorbers present technical restrictions at the construction phase because the 

tubes are located underneath the absorber, leading to difficulties at the lamination process. 
Overcoming this problem is extremely complex because the high temperatures of the welder 

hamper the encapsulation process and diminish the reliability of the heat transfer. The utiliza-

tion of an aluminium sheet, which is introduced by a cladding process, may overcome such 

limitation [23].

It is worthwhile to mention that, independent of the selected technique, the encapsulant mate-

rial has to be resistant to temperatures as high as 130°C, and particular attention to the optical 
properties of the PV cells has to be paid [24]. An alternative way to avoid the complications 
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caused by high temperatures consists of applying silicon. However, this option presents the 

disadvantage of diminishing the efficiency of thermal exchanges in case an air layer is acci-
dentally produced.

4.2. PVT-air collector and ventilated PV with heat recovery

PVT-air collectors are similar to a standard hot air collector with a PV laminate applied at the 

superior cover of the air channel. PVT-air collectors are cheaper than the liquid ones due to its 

flexibility and easy conversion properties. They can be constructed with or without glass, and, 
in general, they are recommended in the cases when the user has a demand for hot air spe-

cially to be directly applied for heating purposes. This application is restricted to places where 

there is a demand for hot air usually applied for pre-heating in building systems, where the 

temperature demand ranges from 15 to 25°C [19].

As the heat transfer in a PVT-air system is more critical than in the liquid ones, it is important 

to adopt an adequate heat transfer model. Due to heat transfer effects at the entrance, the 
Nusselt number (Nu) in PVT-air systems varies 10% along the entrance length for a given suf-

ficient large channel, and therefore, the hydraulic diameter shall be twice the size of the height 
of the channel. The impact of the air flow induced by buoyancy and heat transfer through a 
vertical channel induces an increased velocity of the heat flux non-uniformly inside the duct. 
This effect is directly connected to the form of the exit side of the duct. Briefly, in order to 
enhance the heat transfer in a PVT-air system, it is necessary to control its induced flow and 
buoyancy. Another option extensively applied in experimental research consists of increasing 

both the turbulence in the flow channel and the heat transfer surface area [19].

In terms of constructive aspects of the fixation of the cooling system of the PV modules and 
the corresponding used materials, PVT-air systems are similar to PVT-liquid ones. The usage 

of air as the heat transport medium as opposed to other working fluids, for example, water, 
presents some advantages such as the non-freezing property of the collector fluid (important 
factor when applied in low temperature regions), no risk in case of leakage, and the input is 

freely and permanently available. This solution is indicated for regions where the access to 

water is restrict or economically unviable. Nevertheless, some disadvantages shall be taken 

into consideration, such as low heat capacity and low heat conductivity, which result in low 

heat transfer. Thus, this configuration is not recommended when the cooling of the PV mod-

ules is aimed (there is considerable heat loss), and, in case of a passive systems, without an 

air injection system, the PVT-air system may result in low yields due to the low density and 

thermal conductivity properties of the air.

The difference between a ventilated PV with heat recovery and PVT collectors reside in the 
fact that, generally, a PVT system is projected for a specific application (e.g., building), lacking 
a standardized production system. The similarities between both the systems cause practitio-

ners to often select the wrong option for the project. This scenario may change in the short 

term once various institutes and manufacturers, specially in Europe, are channelling efforts 
towards standardization.

Conventional PV modules for facades and roofs, where frequently air incidence is present at 

the inferior surface of the modules due to its inclination, enable the air to cool the PV by means 

Development of Modular Cooling for Water-Cooled Photovoltaic Plant in Real Scale
http://dx.doi.org/10.5772/intechopen.79101

79



of natural convection. This heat can be recovered, and, in this case, the PV is considered to 

act as a PVT collector. Due to its easier construction and operation, PVT with heat recovery 

systems is extensively studied as an alternative solution to “Building Integrated Photovoltaic” 

(BIPV). This system can operate either during the winter, providing heat, or during the sum-

mer as active cooling systems [25]. An extensive research carried out by Bazilian et al. [26] 

proved that this type of system is more suitable for low temperature applications. Moreover, 

he observed that building integrated systems could represent a cohesive project and become a 

good solution for providing energy in buildings, pointing the necessity to further increase the 

research in the area in order to make these systems commercially available. Another research 

[27] also showed that BIVP collectors are more suitable for low temperature ambient. This 

system, if applied at facades, can not only provide the electricity gains but also protect the 

building against solar radiation, reducing the thermal cooling load and providing the heat for 

internal uses in the building. In the absence of direct demand of heat, this can be utilized to 

induce a pressure difference, supporting the ventilation system. Additionally, the PV mod-

ules may substitute facade cladding materials [19].

4.3. Cooling system of PV module (non-PVT)

The cooling system of PV modules non-PVT consists of water injection on the module’s 
superior surface. As the water flows on the surface, it removes the heat stored at the module 
through conductive and convective heat transfer. This system is simple and is composed of a 

PV module, a pump and a water storage tank. The water injection is done over the module’s 
superior surface through various orifices installed along a tube, guarantying homogeneous 
heat exchanges along the whole surface.

Results obtained by [28] showed that the convective heat exchange between the cooling water 

and the module’s superior surface lead to increases of 15% in electricity production during 
peak solar radiation. Moreover, the results indicated that a 5% increase in the energy out-

put can be obtained during dry and warm seasons. In another experiment, Odeh et al. [29] 

designed a system in which tubes were incorporated in order to allow the water to flow on 
the module’s surface based on gravity, improving the yields related to the water pumping 
system. The test was carried out in different cities of Australia (Sydney, Perth and Darwin) in 
order to consider different climatic conditions. The results showed that the increase in output 
power of the systems varied in a range of 4–10% when the cooling system was operating. 

Around 50% of the increase is attributed to the direct cooling effect resulted from the contact 
between the water and the surface, whereas the other 50% comes from the increase of solar 

radiation due to the refraction of the light beam on the water layer.

5. Important aspects of the water supply for PV systems

The PVPP to be tested in this work is located within the facilities of a hydroelectric power 

plant (HPP), enabling the ease of access to the cooling water. The use of the water is possible 

in two different ways: either it is done at the end of the hydroelectrical energy production 
process, after the water runs through the turbines, or it is directly applied at the reservoir, 
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before the energy production phase, with the condition that the water has to be reintroduced 

in the system, either in the reservoir or at any step of the hydroelectrical energy production. 

After analysing numerous configurations, the following two available options are analysed 
and discussed.

5.1. Output water from the cooling of the pillow blocks

Cooling water from the pillow blocks is permanent available along the year only at the opera-

tion period in which the cooling machines operate. Before the water enters the heat exchanger 

of the pillow blocks, it passes through a chemical process (chlorination) aimed to control 

mussel fouling. In order to seize the water at this step of the process, several interventions 

at the structure of the dam would have to be carried out, such as drilling on the walls and 

ceilings of the machine rooms, redeployment of electrical conduits and lubricants located at 

the dam’s internal channels, power down and drilling of the main discharge line from the 
heat exchanger of four turbines and construction of a 700-m pipeline up to the dam’s rockfill 
plus an enlargement of 77 m from the rockfill to the PVPP. During the summer, the water 
temperature measured at this site presents a maximum value of 39°C and an annual average 

of 32°C and, at the coldest period, a maximum of 29°C and an average of 26°C [3].

• Advantage: chlorinated water, avoiding the necessity of treatment water plant for the cool-

ing of the PVPP; output water, avoiding the necessity of reintroducing the water into any 

other step of the HPP; no pumping process required.

• Disadvantage: several physical interventions at the dam’s structure; power down of two 
generators, if these are operating during the implementation of the cooling system; rede-

ployment of electrical conduits and lubricants used at the operation of the generators; con-

struction and enlargement of pipes; high water temperature; water supply dependent on 

the operation of the generators.

5.2. Rockfill water from the HPP

The rockfill raw water from the HPP is collected at the bottom of the dam; therefore, its tem-

perature is more constant along the year, with an average value of 24°C, a minimum of 19°C 

in the winter and a maximum of 29°C in the summer. The rockfill line runs over less than 
500 m between the exit of the HPP’s internal facilities and the administrative parking zone. 
The distance between the ending point of the rockfill line and the PVPP facility is of 77 meters. 
Among others, this water has been used for cleaning, gardening, hydrant backup and external 

supply. These conditions enable the permanent and continuous supply of water along the 

whole year [3].

1. Advantages: no necessity for interventions at the dam’s structure; no necessity for shut-
ting down any HPP’s operation; ending process water, avoiding the necessity to return it; 
no pumping system required; relatively small extension of the pipeline; permanent water 

flow along the year.

2. Disadvantage: implementation of a chlorination system.
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6. Conclusion

The PVPP’s facility site presents a dry and warm weather, with an average temperature of 
24.8°C and a rainfall index of 1.309 mm. The rain season occurs between October and March 

with 77% of the annual rainfall lying within this period, whereas the dry season occurs 

between April and September. The mean global solar radiation and the mean sunshine dura-

tion are, respectively, 19.1 MJ/m2 day and 7.7 h/day. Furthermore, the highest historic tem-

perature (42°C) was recorded within the rainy season. These characteristics demonstrate high 

sunshine duration and global radiation along the year.

Based on the analysis of this report, the liquid PVT without thermal insulation is the most rec-

ommended solution. The fact that the PV modules present inferior temperature 8.1°C higher 

than the superior one (filed measurements), the absence of waste water (closed system) and 
the high demand for cooling the PV modules for energy production corroborates the adopted 

solution. Another advantage of liquid PVT systems is that it enables the use of standard PV 

modules, which present high thermal exchange rates, being highly recommended for warm 

regions. It is important to mention that three configurations are possible among the liquid PVT 
system, two of those regard sheet-and-tube (coil) and the other is of the type multiple channel.

Moreover, based on qualitative analysis of the local conditions observed on the site, the most 

suitable source of cooling fluid is the water from the rockfill line of the HPP, because of the 
proximity between the existing line and the PVPP area, permanent and continuous water 

supply along the year, no pumping required and, most importantly, the absence of structural 

interventions at the dam.
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