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Abstract

Accelerated orthodontic tooth movement has been recently the topic of interest for ortho-
dontic practitioners. Increased numbers of both clinical and research articles associated with
the accelerated orthodontic treatment have been published in peer-reviewed journals in the
last couple of years. Biochemical approaches such as administration of drugs, vitamins, and
proteins and/or physical approaches such as surgery, vibration, and photobiomodulation
have been widely reported and demonstrated the predicted outcome; however, the results
are controversial. Very few reports addressed on genetic background of patients or utiliza-
tion of molecular biological approach on the accelerated orthodontic treatment. In this
chapter, we will discuss about biology of tooth movement and how the advances in gene
therapy and molecular biology technology would shape the future of orthodontic treatment.

Keywords: gene therapy, molecular biology, orthodontic, accelerated tooth movement

1. Introduction

Orthodontic tooth movement is a biological process that requires the relay of mechanical

loading to biological signals by periodontal ligament (PDL) and alveolar bone (AB) cells such

as osteoblasts, osteocytes and osteoclasts. The mechanotransduction of signals involves dyna-

mic cellular communication which allows for coordinated cellular response of alveolar bone

remodeling and periodontal tissue homeostasis that occurs in response to orthodontic force.

This complex process depends on adaptive tissue remodeling of periodontium for both ana-

bolic and catabolic events. Compression and tension forces from orthodontic treatment create

stress and strain to the PDL and AB cells and their surrounding extracellular matrices (ECM),

which respond to the stress and strain from orthodontic forces by expressing and secreting
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biologic mediators and inflammatory cytokines, osteoclast differentiation factors and ECM

proteins such as collagen I, III, V and their modifying enzymes and proteases. These biomole-

cules, in turn, initiate the activation of fibroblasts, osteoblasts, osteocytes and recruitment and

differentiation of osteoclasts leading to anabolic activities on the tension side and increased

osteoclastic activity and low bone density on the compression side of tooth movement. These

cellular and molecular events are strictly controlled at transcriptional, posttranscriptional and

translational levels and the interference of these events affects the rate of tooth movement.

Therefore, understanding the mechanism of cellular and molecular events of tooth movement

will allow us to apply the cutting edge knowledge to improve clinical orthodontic practice

using gene therapy or molecular biology approaches.

2. Orthodontic tooth movement models

Several models have been proposed for mechanism of initiation of orthodontic tooth move-

ment as below.

1. Pressure-tension model: it was derived from the observation of experiments from animal

models, in which a force of a given direction was applied to a tooth to create the tension

and compression areas in periodontal tissues [1–4]. The histological studies demonstrated

that bone was deposited on the alveolar wall on the tension side of the tooth in the

presence of both heavy and light forces, with newly formed bone spicules followed the

orientation of the periodontal fiber bundles. On the compression side, with the light forces,

alveolar bone was resorbed directly by numerous multinucleated osteoclasts in Howship’s

lacunae (frontal resorption). In contrast, the periodontal tissues were compressed with

heavy forces, leading to capillary thrombosis, cell death and the production of localized

cell-free areas (hyalinization). Hyalinization phenomenon was later supported by several

investigators [5–7]. At the hyalinization sites, osteoclastic resorption of the adjacent alveo-

lar wall did not take place directly, but was initiated from the neighboring marrow spaces

referred as ‘undermining resorption’ [8].

2. Bone bending/piezoelectric current model: it was observed that the deformation that

occurred when an external load was applied to a long bone produced electrical current in

the surface curvature of the bone. Increased bone concavity was shown to be associated

with electronegativity and bone formation; while increased bone convexity was associated

with electropositivity and bone resorption [9]. This model has major flaws given the fact

that piezoelectricity does not require the presence of living cells. Dead bone produces the

same effects, which appear to be generated by shearing forces acting on the collagen fibers

of the bone matrix. Therefore, the stress-generated electrical potentials could be a by-

product of deformation. In addition, the magnitude of the current is small and may not

be sufficient to induce cellular changes [8, 10].

3. Neurogenic inflammationmodel: itwas basedon the assumption that orthodontic toothmove-

ment was the result of inflammatory processes triggered by peripheral nerve fibers referred as

neurogenic inflammation. This inflammation is characterized by the release of neuropeptides

such as calcitonin gene-related peptide (CGRP) and substance P upon the stimulation of
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afferent nerve endings [11]. A report showed that the nerve ending released the neuropeptides

after periodontal ligament had been strained by the force applied to the tooth [12].

4. Fluid flow shear stress model: it was based on the concept that osteocytes respond to

mechanical forces. Locally strain derived from the displacement of fluid in bony canaliculi

of osteocytes is very important [13]. When loading occurs, interstitial fluid squeezes

through the thin layer of the non-mineralized matrix surrounding the cell bodies and cell

processes, resulting in local strain at the cell membrane and activation of the affected

osteocytes [14]. With regard to orthodontic force, the force on the side of the tooth receiv-

ing orthodontic pressure creates shear stress and activates responses on osteocytes [15].

The shear stress on the osteocytes induces increased secretion of biological mediators from

the osteocytes leading to activation of osteoclasts [16, 17]. At the same time, on the tension

side, the increased pulling force on the periodontal ligament is transferred to the bone. The

resulting deformation drives the fluid flow shear stress on the network of osteocytes. This

shear stress induces osteocyte activation, and osteocytes respond by secreting signaling

molecules that contribute to osteoclast recruitment and differentiation.

In addition, it has been shown that compressive force induces bone matrix deformation and

microcracks; and the accumulation of microscopic cracks in the bone matrix may induce

additional damage to osteocytes in the microcrack region [18]. Microcracks are more prevalent

on the pressure-side than on the tension-side of the tooth, and it has been hypothesized that

microcracks were the first damage induced by the orthodontic force to induce osteocyte

apoptosis and bone remodeling. Osteocyte apoptosis has been observed at the pressure side

in an experimental tooth movement model in animal models, which may be associated with

the subsequent bone resorption [19, 20]. Therefore, the microcracks may play a role in the

initiation of bone resorption on the pressure side of the tooth under the compressive force of

orthodontic loading [21].

3. Molecular mechanism of orthodontic tooth movement

Although there are several models proposed to explain the events of orthodontic tooth move-

ment, no single model could directly and comprehensively explain this process. The evidence

from histological and animal studies has shown that this complex biological process is initiated

from the application of mechanical forces onto the orthodontic appliances, which converts into

the biological signals to stimulate mechanosensitive cells. (Figure 1) [22] Literatures showed

that orthodontic force application induced physiologic adaptation of alveolar bone with small

magnitude of reversible injury to periodontium [23]. Significant evidence suggests that when

mechanical loading forces are relayed from the orthodontic appliances to the PDL and bone

tissues, the mechanoreceptor cells percept the loading forces as shear stress and strain [24] as

the tooth shifts its position in the PDL space resulting in compression and tension areas in PDL

and bone tissues [25].

The sequence of biological events after loading of orthodontic force occurs as (1) fluid flow

changes and matrix strain (Figure 2); (2) strain on mechanoreceptor cells (Figure 2); (3) cell

activation (Figure 3); and (4) tissue remodeling leading to tooth movement (Figure 4) [15].
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The mechanoreceptor cells in periodontal tissue include osteocytes and bone lining osteoblasts in

alveolar bone and fibroblasts in PDL. The final result as tissue remodeling occurs in both miner-

alized and non-mineralized ECM during the tooth movement [26]. Recent studies have indicated

that osteocytes are capable of sensing strain in their bone lacunae followingmechanical loading of

the bone [21]. The mechanism of how osteocytes sense, transfer, and respond to mechanical strain

remains unclear. Osteocyte processes have been shown to utilize integrins, gap junctions and ion

channels to respond to mechanosensing external physical stimuli [27, 28]. Fluid flow-induced

shear stress is the strain resulted from an immediate change in fluid flow in the lacunar-

canalicular system leading to an increasing strain on the osteocytes. This shear stress can amplify

the mechanical signals to the osteocytes [14, 29]. Several proteins such as integrins, connexin 43,

osteopontin, and vitronectin, and several transcriptional factors such as c-Fos expression in the

osteocytes are affected by loading forces [30–32]. In addition, the reduced number of primary cilia

of osteocytes could affect their secretion of prostaglandins (PGs) and increased cyclooxygenase-2

(COX2) and RANKL/OPG ratio in osteocytes in response to fluid flow shear stress [33, 34]. Recent

studies showed that osteocytes can induce both anabolic and catabolic bone signals in response to

loading [35–37], yet the mechanism of how osteocytes switch from catabolic activity to anabolic

activity is unclear. Under compression, osteocytes undergo apoptosis and are coupled with bone

resorption [19, 38]. However, fluid flow shear stress may induce osteocytes to secrete anabolic

bone proteins such as prostaglandin-E2 (PGE2) or nitric oxide (NO) [39, 40]. Several recent

evidence demonstrated the significance of osteocytes during osteoclast differentiation and

Figure 1. Illustration of cellular events of periodontal ligament and alveolar bone at non-loading state. Blood vessels and

periodontal fibroblasts reside in between the periodontal ligament collagen fibers. Inactive osteoblasts line along the

alveolar bone surface and quiescent osteocytes reside in their bony lacunae. Modified from Hatch [25].
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activation [41–43]. The osteocyte ablation in vivo caused a significant reduction in osteoclas-

togenesis and osteoclastic activity under loading forces, suggesting the important roles of osteo-

cytes during orthodontic tooth movement [44]. Increased evidence supported the close

association between osteocytes and osteoclasts during tooth movement. Experimental tooth

movement in mice demonstrated increased expression of osteopontin [45], matrix extracellular

phosphoglycoprotein (MEPE) [46], and receptor activator of nuclear factor-kB ligand (RANKL)

[43, 47] in osteocytes. These proteins play important roles in osteoclastic activity and osteoclas-

togenesis because deficiency of these proteins results in significant reduction or absence of the

osteoclasts and increased bone mass in the animals [43, 48]. Osteocyte apoptosis occurred abun-

dantly on the compression side of tooth movement in 1 day after loading, and then an increased

number of osteoclasts were observed until day 3, resulting increased tooth movement by day 10

[49]. It is speculated that apoptotic osteocytes may release signaling proteins such as RANKL and

interleukin (IL), to osteoclast precursors, and initiate osteoclastogenesis. In contrast, when

subjected to fluid flow sheer stress, osteocytes secrete NO and PGE2, which these proteins have

potent, anabolic, and direct effects on osteoblasts [40, 50, 51]. PGE2 expression increased in

loaded bone tissue [52]. NO secreted from osteocytes promotes osteoblast differentiation, and

Figure 2. Initial cellular events in periodontal ligament after force loading during tooth movement. The blood vessels are

squeezed then local hypoxia and fluid flow change are initiated from the loading force. The mechanical strain affects the

periodontal fibroblasts and osteoblasts in the periodontal ligament space. The strain creates fluid flow shear stress and

strain on the osteocytes in their bone lacunae. The mechanical strain induces secretion of inflammatory cytokines and

biological signaling mediators including interleukins, prostaglandins, tumor necrosis factors, nitric oxide, growth factors,

proteinases and cell differentiation factors. These mediators, in turn, activate the periodontal fibroblasts, osteoblasts and

osteocytes. Modified from Hatch [25].
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plays an important role in bone formation during loading [40, 53]. NO can influence bone mass

and simultaneously inhibit osteoclast activity [54]. Increased NO production by osteocytes after

mechanical stimulation by fluid flow modulates apoptosis-related gene expression suggesting

that NO maintains osteocyte viability [55].

Beside osteocytes, preosteoblasts are also responsive to mechanical force. Mechanical force

loading triggers several cell signaling pathways in osteoblasts such as calcium (Ca2+), NO,

IL1β and adenosine triphosphate (ATP) in a short period of time [24, 56, 57]. NO and IL are

potent mediators secreted during orthodontic tooth movement [58, 59]. Preosteoblast differen-

tiation can be induced on the tension side of tooth movement via integrin/focal adhesion

kinase signaling and Ca2+ channels [60, 61]. Fluid shear stress can trigger Ca2+ signaling

pathway and promotes ATP release, PGE2 secretion and proliferation of osteoblasts [24, 57].

While on the compression side, reduced blood flow in PDL and localized hypoxia occurs. The

reduction in O2 tension stabilizes hypoxia inducible factor-1 (HIF-1), a transcription factor that

activates vascular endothelial growth factor (VEGF) and RANKL expression in PDL fibroblasts

and osteoblasts leading to osteoclast differentiation and favoring bone resorption in areas of

compression [62–64]. As mentioned above, inflammatory cascade is important for orthodontic

Figure 3. Intermediate cellular events in periodontal ligament during tooth movement. The blood vessels dilate due to

the response to the released mediators and cytokines. The activated fibroblasts, osteoblasts and osteocytes are ready to

secrete M-CSF and RANKL to activate preosteoclasts from blood and bone marrow. In addition, the activated osteoblasts

release OPG to act as competitive decoys for RANKL. The PDL fibroblasts release MMPs to degrade collagen fibers in the

periodontal ligaments. Modified from Hatch [25].
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tooth movement. During the process, inflammatory cytokine such as IL-1β, PGE2, tumor

necrosis factor-alpha (TNF-α) and NO are secreted from preosteoblast in PDL and osteocytes

in bone lacunae during the orthodontic tooth movement [59, 65, 66]. Compression is associated

with elevated COX-2 which catalyzes production of PG, including PGE2, from arachidonic

acid [67, 68]. Administration of PGE2 into alveolar bone of mice induces both osteoclasts and

osteoblasts [26]. During orthodontic tooth movement, pain sensation occurs and, coinciden-

tally, substance P and calcitonin gene related peptide (CGRP) are induced to be secreted

during the tooth movement. These neuropeptides can enhance cellular secretion of inflamma-

tory cytokine and in turn increase vasodilation and permeability of surrounding blood vessels

[69–72]. Several evidence showed that the inhibition of inflammation hindered tooth move-

ment [73, 74], while inflammation in the alveolar bone promoted tooth movement [75, 76].

Osteoclasts are the major key cells that play significant roles during tooth movement. Osteoclasts

are multinucleated giant cells which are formed by the fusion of mononucleated osteoclast

precursors derived from hematopoietic origin and function to resorb the alveolar bone during

tooth movement. The osteoclast progenitor cells require macrophage colony stimulating factors

(M-CSF) for their proliferation and survival. M-CSF is a secreted cytokine by osteoblasts and

affects osteoclast progenitors. The RANK/RANKL/OPG system has been a crucial mechanism in

osteoclastogenesis during bone resorption and tooth movement [77–79]. Receptor activator for

nuclear factor κB (RANK) is a transmembrane protein and a member of tumor necrosis factor

Figure 4. Late cellular events in periodontal ligament and alveolar bone front during tooth movement. The activated

osteoclast is derived from the fusion of preosteoclasts, creates ruffle border to seal the bone surface area and releases

MMP9, TRAP and acid to resorb bone matrix and minerals. Apoptotic osteocytes also release the biomolecules and

mediators to activate osteoclast recruitment for bone resorption leading to tooth movement. Modified from Hatch [25].
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receptor family that is expressed on osteoclastic precursors, preosteoclasts and osteoclasts.

Receptor activator for nuclear factor κB ligand (RANKL) is a transmembrane protein and is a

member of the tumor necrosis factor superfamily that is expressed on preosteoblasts, osteoblasts

and osteocytes [80]. RANK is the receptor for RANKL and the binding between both of them

stimulates the differentiation of preosteoclasts into mature osteoclasts. Osteoprotegerin (OPG) is

a soluble extracellular tumor necrosis receptor protein that is secreted by preosteoblasts and

osteoblasts. OPG is a decoy receptor for RANKL in regulating bone metabolism and inhibiting

osteoclastogenesis and bone resorption. RANKL/OPG ratio is an important determinant of bone

mass and skeletal integrity and also an indicator for the osteoclast function [78, 79]. Increased

evidence demonstrated the direct association of tooth movement and activities of osteoclasts.

Accelerated osteoclast resorption in alveolar bone of OPG deficient mice was observed during

tooth movement [81] while inhibition of RANKL or deletion of RANKL in mice resulted in

suppression of tooth movement [47]. In addition, local administration of M-CSF resulted in

modulation of rate of tooth movement in animals [82].

Overall, the mechanism of tooth movement is complex and need strictly coordinated regulation

of PDL, osteoclasts, osteocytes and osteoblasts. It is very challenging clinically to apply optimal

force onto the tooth to avoid hyalinization. Clinically, tooth movement in patients is a result of

combination of undermining and frontal resorption [83]. Compression sides involve increased

expression of PGE2, TNF-α and IL-1β. PGE2 promotes osteoblast and osteoclast differentiation

and activity. Activated osteoblasts secrete RANKL and OPG to trigger osteoclast differentiation

and activity. TNF-α and IL-1β promote osteoclast differentiation and activity. In addition, matrix

metalloproteinases (MMPs) expression is increased as well as the expression of M-CSF [84].

Loading compressive force affects osteocytes to upregulate the expression of connexin 43 [85],

endothelial nitric oxide synthase (iNOS) [50], osteopontin [45], SOST [86] and RANKL [47].

These molecules recruit osteoclast precursors and activate osteoclasts to resorb the alveolar bone

on the compression side. While on the tension side, increased expression of transforming growth

factor-β (TGF-β), a potent ECM growth factor, was detected [87]. Several anabolic molecules

such as bone sialoprotein (BSP) [88], collagen I (ColI) [89], vascular endothelial growth factor

(VEGF) [84, 90], tissue inhibitors of metalloproteinases (TIMPs) [91], insulin-like growth factor

(IGF) and its related receptor [92], heat shock protein 27 (HSP 27) [93] and ATP [94] were

increasingly expressed on tension side during tooth movement. IL-6 around the osteocytes under

loading can promote its signaling toward osteoblast pathway [53]. The presence of TIMPs

around tension side is speculated to control the activity of MMP and remodeling pattern in

alveolar bone. The anabolic events such as increased osteoblast activity and decreased osteoclast

activity occur on the tension side of tooth movement.

4. Studies on genetic manipulation of tooth movement

Administration of proteins that affect or activate osteoclasts could be a direct approach to

modulate tooth movement though the dosage and side effects such as root resorption are

factors of consideration. With modern advanced technology, the manufacturer can generate a

large amount of human recombinant proteins for therapeutic purposes. However, the life span
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of these proteins once administered in human body is short and may not reach therapeutic

level [95]. Gene therapy is a therapeutic approach that uses genes to treat or prevent diseases.

Gene therapy is designed to introduce nucleotides into the cells to compensate for mutated

genes or to restore the normal protein. If a mutation causes a crucial protein to be defective or

missing, gene therapy may be able to introduce a normal copy of the gene to restore the

function of the protein. After integration of the genes that encoded the target protein into the

patient’s genetic machinery, gene therapy can allow the body to produce the required protein

constantly so the level of protein will be constantly high at therapeutic level [96]. The concept

of gene therapy includes cloning of selected DNA/RNA fragments into a delivery system in

order to administer into the host or patient. The delivery system could be viral vectors or non-

viral vectors such as liposomes, peptides, polymer particles, gene gun and electric perforation

[97]. The clinical application of gene therapy can be achieved with in vivo or ex vivo approaches.

The in vivo gene therapy will include injection of vectors into the patient directly while the

ex vivo approach includes the introduction of vector into the cells then the transfected cells are

transplanted back into the patient [98–100].

Recently gene therapy has been approved to be implemented in medicine. The U.S. Food and

Drug Administration (FDA) regulates all gene therapy products in the United States and

oversees research in this area. In medicine, the FDA recently approved gene therapy for the

treatment of some types of leukemia and inherited blindness [101]. Several experiments of

gene therapy in dentistry involved orofacial pain, squamous cell carcinoma, tooth and bone

regeneration, salivary gland disease and orthodontic treatment [102].

The gene therapy experiments in orthodontic treatment are still limited to cell cultures or animal

experiments [103]. The purposes of previous gene therapy in orthodontic treatment were to

investigate the possibility of acceleration of tooth movement or reduction of root resorption by

modification of osteoclast differentiation factors such as RANKL or OPG [104–109]. The first

attempt for gene therapy in orthodontic treatment aimed to transfer OPG gene into periodontal

tissue to reduce osteoclast activity and inhibit tooth movement. The gene transfer approach

using a hemagglutinating virus of Japan (HVJ) envelope vector carrying mouse OPG messenger

RNA (mRNA) was performed in rats for 21 days of tooth movement. The vector solution was

administered into rat’s palatal gingiva by infiltration injection. The result showed that local OPG

gene transfer reduced the number of osteoclasts and decreased tooth movement by 50% in rats in

the experimental group compared to the ones in the control group. The effect of OPG gene

transfer was local and did not affect bone mineral density of tibia of the animals [105]. The same

group of investigators performed another experiment using the same system to transfer mouse

RANKL mRNA to periodontal tissue to activate osteoclastogenesis and accelerate tooth move-

ment in rats. The results showed that local RANKL gene transfer induced increased numbers of

osteoclasts and accelerated tooth movement by approximately 150% in the rats in the experi-

mental group compared to the control group. The effect of RANKL gene transfer was local and

did not elicit any systemic effects. Interestingly, the number of osteoclasts was reduced time

dependently after gene transfer [104]. Another group of investigators compared corticotomy

with gene therapy using a hemagglutinating virus of Japan envelope vector containing mouse

RANKLmRNA in rats for 32 days. The results showed increased level of RANKL protein 3 folds

in the gene therapy group and 2 folds in the corticotomy group after 10 days; however, the level
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of RANKL protein was maintained in the gene therapy group but not in the corticotomy group.

The number of osteoclasts in the RANKL gene therapy group was significantly higher at day 10

with or without tooth movement compared to the tooth movement only group. The tooth

movement distance was 2 times more in the RANKL gene therapy group and 1.5 times in the

corticotomy group; however, the rate of tooth movement slowed down in the corticotomy and

controls groups but was constant in the RANKL gene therapy group. It was concluded that gene

therapy was an alternative treatment for corticotomy to accelerate tooth movement and the

efficacy of treatment was higher than corticotomy to accelerate tooth movement [106]. The OPG

gene transfer experiment was performed by another group of investigators using the same viral

envelope packaging and delivery system to investigate the inhibition of orthodontic relapse in

rats. The first molars in the rats were moved mesially for 3 weeks then the springs were removed

to generate orthodontic relapse in the rats. The rats received OPG gene therapy then were

observed for 2 weeks. The results showed that relapse was significantly inhibited 2 times

compared to the mock and control groups. The bone mineral density and bone volume fraction

of alveolar bone were significantly increased in the gene therapy group compared to the mock

and control groups. No difference of bone mineral density and bone volume fraction of tibia was

found among groups. The investigators stated that local OPG gene therapy to periodontal tissues

could inhibit relapse after orthodontic tooth movement via osteoclastogenesis inhibition [110].

The same group of investigators further investigated the effect of local OPG gene therapy on

orthodontic root resorption with the same design of experiment. They utilized a microcomputed

tomogram and histological analyses. The result showed no difference between root resorption at

the beginning and the end of tooth movement in the OPG gene therapy group. However, the

repair of root resorption in the gene therapy group was higher than other control groups [107].

Another study investigated the effect of local OPG gene therapy using mesenchymal stem cells

as carriers for plasmid containing OPG mRNA. This cell mediated OPG gene transfer was

generated by insertion of plasmid containing OPG mRNA into the mesenchymal stem cells and

the cells were injected into the animals. The result showed that the cells containing OPG package

grew in the animals’ PDL and the number of osteoclasts, level of RANKL and bone resorption

were reduced significantly after single injection. The level of OPG was highest in the gene

therapy group [108].

Gene therapy is a promising treatment option for a number of diseases (including inherited

disorders, some types of cancer, and certain viral infections). This approach is still in the

developing process as an alternative approach to treat deformity or disease that conventional

method could not achieved. Although many clinical trials have shown the efficacy of the

treatment, the technique remains risky and is still under processes of investigation to make

sure that it will be safe and do not elicit any systemic or hereditary effects for the patients.

5. Future of genetic manipulation of tooth movement

With the rise of advanced technology in biomedical engineering and medicine, gene therapy is

no longer a science fiction. Several gene therapies have been approved to treat many conditions

and deformities not only in the United States but worldwide [111]. In the past decade, gene
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targeting using endogenous microRNA (miRNA) has emerged as a powerful tool for targeted

gene delivery. miRNAs are short, noncoding and highly conserved RNA sequences that tightly

regulate the expression of genes by binding to their target sequence in the corresponding

mRNAs [112, 113]. Majority of miRNA biogenesis involves transcription by RNA polymerase II

to generate primary microRNA (pri-miRNA) followed by Drosha (RNase III enzyme)

processing, which produces precursor miRNA (pre-miRNA). The pre-miRNA is transported to

the cytoplasm via exportins/RanGTP complex. In the cytoplasm, the pre-miRNA is cleaved by

another RNase III enzyme called Dicer to generate mature miRNA. The mature miRNA then

forms a microRNA associated RNA-induced silencing complex (miRISC) with Argonaute pro-

teins. The complex is steered to the target mRNA via base pairing with the target sequence of the

miRNA. The degree of perfect complementarity at nucleotides 2–8 (binding sequence) in the 50-

end of the miRNA is essential for a successful action of the RISC complex. Depending on the

extent of complementarity with the target sequence, gene expression is repressed either by

inhibition of translation or by cleavage of the corresponding mRNA [114]. The process of gene

therapy using endogenous miRNAs involves selection process of miRNA candidates, design of

expression cassettes if constant expression is needed, selection of delivery carrier, and evaluation

of system in cells, animal models and clinical trials [114]. Several miRNAs have been reported for

their expression and roles in PDL and alveolar bones [115–118]. Under loading, several miRNAs

in PDL and alveolar bone respond to the loading force and orientation of forces in different

pattern of expression [119–121]. miRNA-21 has been shown to have critical roles in PDL,

osteoblasts and osteoclasts [120, 122–127]. In addition, miRNA-21 deficient mouse demonstrated

delayed tooth movement compared to the control mice via inhibition of osteoclastogenesis [127].

miRNA-29 was reported as a crucial miRNA for alveolar bone remodeling during tooth move-

ment due to its expression under different orientation of loading forces and its expression profile

in crevicular fluid during tooth movement in human [121, 128]. miRNA-29 expression in human

PDL was up-regulated under compression but down-regulated under stretch force orientation

[121] and its expression on crevicular fluid increased along the course of tooth movement [128].

Moreover, miRNA-29 sponge transgenic mice demonstrated delayed tooth movement due to the

decreased numbers of osteoclasts [129]. These microRNAs could be a target candidate for gene

therapy for orthodontic tooth movement. There are viral and nonviral delivery systems in

clinical trials for gene therapy. Among viral vector system, lentiviral vector-based system has

been developed and tested for its safety for more than 10 years. Non-integrating lentiviral vector

have been investigated as a means of avoiding insertional mutagenesis. However, there is

a disadvantage of this approach regarding the short-lived of the vectors in dividing cells [130].

Nonviral gene delivery systems (nVGDS) have great potential for therapeutic purposes and

have several advantages over viral delivery including lower immunogenicity and toxicity, better

cell specificity, better modifiability, and higher productivity. However, there is no ideal nVGDS;

hence, there is widespread research to improve their properties [97]. The nVGDS system includes

chemicals, peptides, liposomes, and polymers [97]. Exosomes are small (30–150 nm in diameter)

extracellular vesicles that are formed in multivesicular bodies and are released from cells as

the multivesicular bodies fuse with the plasma membrane. The exosomes were proposed to

be used for delivery of miRNAs, protein and oligonucleotide complex [131], and were found

to be cell secreted from osteoclasts [131] and in gingival crevicular fluid during the course

of tooth movement [128].
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Another genome editing system that has recently gained attention in research and clinical

application is CRISPR/Cas9 system. The CRISPR/Cas9 system is based on CRISPR (clustered

regularly interspaced short palindromic repeats) sequence and CRISPR associated (Cas)

gene mechanism that are crucial for innate defense mechanism in bacteria and archaea

enabling the organisms to respond to and eliminate invading genetic materials from their

phages [132]. The CRISPR/Cas9 system consists of two key molecules that introduce a

mutation into the DNA. First, Cas9 is an enzyme that acts as a pair of DNA scissor. It cuts

the two strands of DNA at a specific location in the genome so the genome editing could be

performed either addition or removal. The other molecule is guide RNA (gRNA) which

consists of a small piece of predesigned RNA sequence (�20 bases long) located within a

long RNA scaffold. The long RNA scaffold binds to DNA and the gRNA sequence guides

Cas9 to edit the specific part of genome. gRNA sequence is designed to be complementary to

the target DNA sequence in the target gene in the genome. gRNA sequence consists of short

palindromic repeats and the sequences that complement with the target genes. The target

sequences should be present close to protospacer adjacent motif (PAM) sequence which

increases the specificity of Cas9. After Cas9 nuclease enzyme site specifically cleaves double

stranded DNA activating double-strand break repair machinery. If the DNA repair template

is provided, the piece of DNA repair template will be inserted into the sequence of target

genes [133, 134]. With this mechanism, the plasmid containing gRNA, Cas9 sequences,

TracrRNA (transactivating CRISP RNA) and DNA repair template sequence can be intro-

duced into cells or embryo of the animals by viral or nonviral delivery system [135]. Until

now, there is no CRISPR/Cas9 experiment involving orthodontic tooth movement, however,

this technology has been implemented in recent mineralized tissue research [136–139].

Future directions of gene therapy include the enhancement of the lentiviral vector-based

approaches, fine tuning of the conditioning regimen, and the design of safer vectors or

nonviral vector delivery system. In orthodontic field, the gene therapy approach will need

several fundamental cell culture and animal experiments to demonstrate the safety and

efficacy of the treatment concept. Clinical trials are required as the next step to ascertain the

clinicians and patients for efficacy of the treatments.
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