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Chapter

Graphene-Based Heterogeneous 
Electrodes for Energy Storage
Ning Wang, Haixu Wang, Guang Yang, Rong Sun 

and Ching-Ping Wong

Abstract

As an intriguing two dimensional material, graphene has attracted intense inter-
est due to its high stability, large carrier mobility as well as the excellent conductivity. 
The addition of graphene into the heterogeneous electrodes has been proved to be 
an effective method to improve the energy storage performance. In this chapter, the 
latest graphene based heterogeneous electrodes will be fully reviewed and discussed 
for energy storage. In detail, the assembly methods, including the ball-milling, hydro-
thermal, electrospinning, and microwave-assisted approaches will be illustrated. The 
characterization techniques, including the x-ray diffraction, scanning electron micros-
copy, transmission electron microscopy, electrochemical impedance spectroscopy, 
atomic force microscopy, and x-ray photoelectron spectroscopy will also be presented. 
The mechanisms behind the improved performance will also be fully reviewed and 
demonstrated. A conclusion and an outlook will be given in the end of this chapter to 
summarize the recent advances and the future opportunities, respectively.

Keywords: graphene, heterogeneous electrode, energy storage, hydrothermal,  
EIS, XPS

1. Introduction

In order to overcome the exhaustion of fossil fuels and to address the ever-
growing demands for clean, sustainable and high efficient energy supply [1–3], the 
advanced energy storage techniques, including the supercapacitors, rechargeable 
batteries (Li-ion battery (LIB), Na-ion battery (SIB)), fuel cells as well as the solar 
cells have been widely investigated for the commercial use [4–6]. In the advanced 
energy storage devices, especially for the rechargeable batteries, the electrode 
materials should have the following features: high energy density, high working 
voltage, high power density, long cycling stability, high rate capacity as well as the 
environmental friendly [7–10].

In the rechargeable batteries, e.g. LIBs, the commercial anode material is graph-
ite, whose theoretical-specific capacity is only 372 mA h/g [10], which cannot meet 
the requirement of the advanced energy storage techniques as described above. 
In order to overcome the low specific capacity of the graphite anode, amounts of 
substitute anode materials, e.g. Si (4200 mAh/g) [11], SnO (790 mAh/g) [12, 13], 
SnSb (825 mAh/g) [14, 15], Sn (993 mAh/g) [16], SbS3 (947 mAh/g) [17], have been 
developed for high-capacity rechargeable batteries (Figure 1). However, the cycling 
stability became the most challenging issue for the high-capacity anode materials 
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due to the volume expansion along with the charge–discharge process [18], e.g. 
320% expansion for Si anode. Therefore, the gradient and/or the heterostructured 
anode materials could be the alternative approaches for the long cycling-stability, 
high specific capacity rechargeable batteries.

As a promising two dimensional (2D) material, graphene has attracted intense 
interest in the field of transparent electrode [20–24], field emission transistors (FET) 
[25–27], flexible devices [28–31], corrosion protection [32–34], catalysis [35–37] and 
energy storage [38–40], due to its large electrical conductivity, high thermal/chemical 
stability as well as the flexibility. With respect to the electrode materials, the graphene 
based heterogeneous electrodes were expected to occupy the excellent electrical 
conductivity, the long cycling stability and the high rate capability.

In this chapter, the assembly strategies for the graphene based heterogeneous 
electrodes, including the ball-milling, hydrothermal, electrospinning, microwave-
assisted approaches, and the characterization methods will be fully reviewed. The 
mechanism behind the enhanced performance with graphene will be discussed, 
and an outlook on the challenges that should be addressed in the future will also be 
illustrated in the end.

2. Strategies for the assembly

2.1 Ball-milling

As a low-temperature alloying method, ball-milling is highly efficient in 
preparing the alloys and composites [41–46]. As for the graphene based hetero-
geneous electrode materials, ball milling exhibited the advantages in the size/
layer reduction [47], interface-contact enhancement [48, 49] as well as the low 
cost and time saving [50].

As illustrated by Tie et al. [47], in the ball milling preparation of Si@SiOx/gra-
phene heterogeneous anode material (Figure 2), the graphene nanosheets (GNS) 
could be exfoliated from the expanded graphite (EG) due to the accumulated 
mechanical shearing force of the agate balls, and the particle size of silicon could be 
reduced to 50–100 nm, which contributed to the uniform dispersion of Si nanopar-
ticles on the GNS, and finally gave rise to the Si@SiOx/graphene composite. Owing 
to the reduced Si nanoparticle size, the SiOx adhesion layer as well as the synergistic 

Figure 1. 
Performance data of anode materials for SIB, reproduced with permission [19].
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effect of GNS, the Si@SiOx/graphene heterogeneous anode material exhibited the 
enhanced cycling stability, high reversible capacity, and rate capability.

Besides, the ball milling method could also be used to prepare other graphene 
based anode materials. Sun et al. [48] reported the ball milling synthesis of MoS2/
graphene anode materials used for high rate SIBs, where the bulky MoS2 and graphite 
were firstly expanded by the intercalation of Na+ and K+ between the layers, and then 
the several-layer MoS2 nanosheets and the graphene sheets could be exfoliated from 
the loose counterparts, which finally resulted in the formation of the restacked MoS2/
graphene heterostructures owing to the high surface energy and the interlayer Van 
der Waals attractions. Chen et al. [51] prepared the center-iodized graphene (CIG) 
and edge-iodized graphene (EIG) through the ball milling method, and the CIG were 
found to be an advanced anode material to boost the performance of the LIBs. In the 
other cases, Xia et al. [52] assembled the layer-by-layered SnS2/graphene anode mate-
rials for the LIBs via ball-milling, where the volume change of SnS2 could be buffered 
by the graphene, and the shuttle effect in the cycling could also be suppressed, both 
of which gave rise to an excellent rate capability and the negligible capacity fading 
over 180 cycles; Ma et al. [49] prepared the MoTe2/FLG (few-layer graphene) anode 
material for the LIBs through the ball milling of MoTe2 and graphite, which exhibited 
a high reversible capacity and an ultrahigh cycling stability.

2.2 Hydrothermal assembly

Hydrothermal method is an efficient and cost-effective approach for the assem-
bly of metastable crystalline structures [53–57], especially for the heterogeneous 
structure with solid interface contact [58–61]. As for the graphene based hetero-
geneous electrode materials, the use of hydrothermal assembly could effectively 
reduce the cost, improve the crystallinity, and consolidate the interface contact, and 
therefore improve the energy storage performance.

Pang et al. [62] reported the hydrothermal assembly of VS4@GS (graphene 
sheets) nanocomposites used as the anode material for the SIBs. As shown in 
Figure 3, the CTA+ (hexadecyl trimethyl ammonium ion) cations were firstly 
absorbed on the negatively charged GO (graphene oxide) sheets, and then the TAA 
(thioacetamide) and VO4

3− were attached onto the CTA+ to form the TAA-VO4
3−- 

CTA+-GO complex, which was then transferred into the VS4/GS composite under 
the hydrothermal conditions. As an anode material, this composite exhibited a large 
specific capacity, good rate capability, and remarkable long cycling stability, which 
should be ascribed to the porous structure together with the synergistic interaction 
between the highly conductive graphene network and the VS4 nanoparticles.

In other cases, hydrothermal assembly could also be used to fabricate the 
polyaniline (PANI)/graphene [58, 63], TiO2/graphene [64], Mn3O4/CeO2/gra-
phene [65], α-Fe2O3/graphene [59], and Mn3O4/graphene electrode materials 
[66]. As illustrated in the literatures, the hydrothermal assembly of graphene 
based heterogeneous electrode materials is usually starting with the graphite 
oxide (GO), the active electrode materials and/or surfactants, which should be 

Figure 2. 
Schematic illustration for ball milling synthesis of Si@SiOx/grapheme anode material [47].
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mainly due to the intrinsic negatively charged surface of the GO that could be 
easily attached to the positively charged surfactants, and facilitate the nucleation 
and the growth of active materials on the reduced graphite oxide (rGO, gra-
phene) sheets under the hydrothermal conditions. The strong interface adhesion 
and the high crystallinity of the hydrothermal assembled composite should 
benefit the electrode with improved energy storage performance.

2.3 Electrospinning

As an efficient fabrication method for nanofibers [67–73], the electrospinning 
method has also been developed for producing nanofiber/graphene heterogeneous 
electrode materials for the energy storage applications [74–78].

As an example, Wei et al. [78] demonstrated an electrospinning fabrication of 
GO-PAN/PVDF (GPP) membrane electrode for fuel cell applications. In the prepa-
ration of GPP membrane electrode material (Figure 4), the uniform GPP precursor 
was prepared by dispersing the PAN, PVDF, and GO in DMF solvent, and then the 
GPP nanofibers were coated onto the carbon paper sheet attached on a collector 
drum via the electrospinning. Finally, the electrode was assembled by loading the 
Pt/C catalysts on the GPP nanofiber membranes.

As a promising procedure, the electrospinning method was also reported to 
prepare the carbon nanofibers [74], carbonized gold (Au)/graphene (G) hybrid 
nanowires [75], GO/PVA composite nanofibers [76], and graphene/carbon nanofi-
bers [77] electrode materials for the supercapacitor, biosensor applications.  
It should be noticed that the uniformity and the viscosity of the precursor should 
be carefully controlled, since both of which are critical for the mechanical strength 
and the electrochemical performance of the ultimate products.

2.4 Microwave-assisted assembly

As a quick and even heating method throughout the sample, the microwave assisted 
heating method has been widely used in the preparation of nanomaterials [79, 80].  

Figure 3. 
Hydrothermal synthesis route for the VS4@GS nanocomposites [62].
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In the preparation of graphene based electrode materials, the microwave assisted 
method has shown the advantages in the reduction and exfoliation of GO, the time 
efficiency, and the energy saving [9, 81–83].

As shown in Figure 5, Kumar et al. [81] reported the microwave assisted syn-
thesis of palladium (Pd) nanoparticle intercalated nitrogen doped rGO (NrGO) 
and the application as anode material for the fuel cells. In this synthesis, the GO 
nanosheets could be reduced and exfoliated under the microwave irradiation with 
pyridine treatment, and the nitrogen doping could also be achieved via the further 

Figure 4. 
A synthetic route to GO-PAN/PVDF (GPP) nanofibers [78]. PAN is polyacrylonitrile, and PVDF is 
polyvinylidene fluoride.

Figure 5. 
Schematic illustration of the microwave assisted synthesis of Pd-rGO and Pd-NrGO hybrids [81].
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modification with pyridine. The obtained porous rGO and NrGO could be deco-
rated with Pd nanoparticles, which gave rise to a high electroactive surface, and 
therefore resulted in a high catalytic activity.

For the energy storage electrode materials, the microwave assisted method 
has been used to ultrafast assembly of the Mn0.8Co0.2CO3/graphene composite [9], 
SnO2/graphene composite for LIBs [82], and SnO2@graphene/N-doped carbons 
for SIBs [83]. The ultrafast and uniform heating effect of the microwave method 
should be due to the dielectric heating principle, under which the polar molecules 
in the microwave radiation could rotate in a high frequency, and thus generate 
thermal energies evenly across the samples, which benefits the synthesis with 
environmental friendship, low cost, low energy consumption as well as the porous 
structures that especially provide the quick transfer channels of the Li+/Na+ 
cations in the rechargeable batteries.

3. Characterization methods

3.1 Scanning electron microscopy (SEM)

In the morphology analysis of the graphene based heterogeneous electrode 
materials, the top-view and cross-section SEM (Figure 6) could be used to deter-
mine the distribution of the active materials wrapped or attached by the layered 
graphene substrates based on the high resolution detector for the secondary elec-
trons emitted on the sample surface. Combined with the EDS (energy dispersive 
X-ray spectroscopy) technique, the interface of the heterogeneous electrode could 
also be figured out clearly via the elemental mapping for the active materials and 
the graphene substrates [48, 51, 82].

Figure 6. 
SEM images for the Mn0.8Co0.2CO3/graphene oxide (a, b) [9] and Pd-NrGO hybrides (c, d) [81].
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3.2 Transmission electron microscopy (TEM)

As a powerful characterization method, TEM has been widely used to determine 
the morphology, crystal structure as well as the interface adhesion of the heteroge-
neous structures due to its atomic level resolution and the sensitivity to the contrast 
changes along with the elemental differences on the interface [84, 85]. With respect 
to the graphene based heterogeneous electrode materials, as shown in Figure 7, the 
uniform dispersion of SnO2 on the graphene layers could be determined in the low 
magnification TEM image (Figure 7b, c), and the well crystallized SnO2 nanoparticles 
could be clearly indexed in the HRTEM (high resolution transmission electron micros-
copy) and the corresponding FFT (Fast Fourier Transform) patterns (Figure 7d–i). 
The morphology and the crystal structure determined by TEM should be consistent 
with the result of SEM and XRD, respectively.

3.3 X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) is a promising technique for determining 
the stoichiometry, the valence states, and the bonding conditions of the elements in 
the compounds, which has been widely used to characterize the functional materi-
als [86–90]. Regarding to the graphene based heterogeneous electrode materials, as 
shown in Figure 8 for the high resolution XPS scan of Pd-NrGO hybrids [81], the C 
1s XPS peak could be split into the peaks for C=C (284.6 eV), C—O (286.4 eV), C—N 

Figure 7. 
(a) SEM image. (b, c) Low-magnification TEM images for the SnO2/graphene hybrids. HRTEM images showing 
the octahedral SnO2 model enclosed by {221} facets with (d–f) [   ̄  1       ̄  1    1] and (g–i) [   ̄  1    0 1] zone axes [7].
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(285.4 eV), and C=N (287.6 eV), the N 1S peak could be split into the graphitic-N 
(401.4 eV), pyrollic-N (400.1 eV) and pyridinic-N (398.1 eV) peaks, and the O 1S 
could be split into the Pd—O (529.5 eV), C—O (530.6 eV), and C=O (532.9 eV) peaks, 
which fully revealed the bonding information within the Pd-NrGO hybrids.

Figure 8. 
High resolution XPS spectra for (a) C 1s, (b) O 1s, (c) N 1s and (d) Pd 3d of Pd-NrGO hybrids [81].

Figure 9. 
(a) Cyclic voltammetry (CV) curves of carbon nanofiber samples, (b) rate capability curves of carbon nanofiber from 
10 to 100 mV/s, (c) GCD curves of carbon nanofiber samples, (d) rate capability curves of carbon nanofiber from 0.25 to 
1.5 a/g, (e) Ragone plots of the supercapacitor devices, and (f) Nyquist plots of carbon nanofiber samples [74].
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Apart from the SEM, TEM, and XPS, X-ray diffraction (XRD), Raman, FTIR, and 
thermal analysis methods (TGA, DSC) were also used to determine the crystal struc-
ture, morphology, thermal stability, and other physical/chemical characteristics of the 
graphene based heterogeneous electrode materials. The electrochemical performance for 
the energy storage was usually evaluated by the tests, including the cyclic voltammetry 
(CV), rate capability, galvanostatic charge/discharge (GCD), cycling specific capacity, 
and the electrochemical impedance spectra (EIS, e.g. Nyquist plots) (Figure 9).

4. Mechanisms

As for the active materials in the anode for the energy storage devices (e.g. superca-
pacitor, LIBs, and SIBs), the modification via bonding or attaching with the graphene 
or rGO always results in the improvement of the electrochemical performance with 
respect to the cycling stability, rate capability as well as the high specific capacity.

Behind the enhancement of the performance, there exist several possible mecha-
nisms for the property promotion as illustrated in the following:

a. The growth of nanoparticles for the active materials could be effectively restricted 
by the graphene, giving rise to the uniform dispersion of the nanoparticles that 
facilitates the increase of specific area and the active sites for K+/Na+ storage [7].

b. The non-faradaic capacitance could be contributed by the graphene due to the 
electrical double layer-effect [7].

c. The fragmentation of the active materials due to the volume expansion and con-
traction during the charge–discharge cycles could be depressed by the flexible 
graphene, which benefits the devices with excellent cycling stability and rate 
capability [7, 52].

d. The conductivity of the active materials could be enhanced by the graphene, 
which gives rise to the increase of reversible capacity [52].

e. The graphene in the composite could supply a physical barrier between the active 
materials and the electrolyte, which effectively suppresses the shuttle effect of the 
byproducts in the de-charge process that could fade capacity of the batteries [52].

5. Conclusions and outlook

In summary, the synthesis and the characterization of the graphene based het-
erogeneous electrode materials for the energy storage applications (e.g. SIBs, LIBs, 
and supercapacitor) have been fully reviewed and discussed in this chapter. In the 
synthesis of the title materials, ball milling and hydrothermal methods show the cost-
effective advantages. Comparatively, the electrospinning method exhibits the benefits 
in the nanowire composite assembly, and the microwave assisted approach occupies 
the superiority in the ultrafast fabrication. With respect to the characterization, the 
morphology could be determined by the SEM and TEM, and the electrochemical 
performance could be evaluated by the cyclic voltammetry (CV), rate capability, 
galvanostatic charge/ discharge (GCD), cycling specific capacity, and the EIS tests. 
In the composite, the graphene could restrict the growth of the nanosized active 
materials, contribute the non-faradaic capacitance, improve the conductivity, sup-
press the fragmentation, and supply a physical barrier between the active materials 
and the electrolyte, which benefit the devices with excellent cycling stability, large 
rate capability as well as the high specific capacity.
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