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Abstract

Gas-insulated switchgear (GIS) is a common electrical equipment, which uses sulfur 
hexafluoride (SF

6
) as insulating medium instead of traditional air. It has good reliability 

and flexibility. However, GIS may have internal defects and partial discharge (PD) is 
then induced. PD will cause great harm to GIS and power system. Therefore, it is of 
great importance to study the intrinsic characteristics and detection of PD for online 
monitoring. In this chapter, typical internal defects of GIS and the PD characteristics are 
discussed. Several detection methods are also presented in this chapter including electro-
magnetic method, chemical method, and optical method.

Keywords: GIS, internal defects, PD, intrinsic characteristics, electromagnetic detection 
method, chemical detection method, optical detection method

1. Introduction

Gas-insulated switchgear (GIS) is an electrical equipment that conceals traditional electrical 

devices in a chamber. GIS has obvious advantages over traditional air-insulated switchgear 
(AIS). Firstly, GIS demands less area thus reducing the cost; secondly, GIS has a longer over-

haul period; and finally, GIS has higher reliability. For these reasons, GIS has been widely 
used in the world nowadays [1–4]. However, GIS has a complex structure that internal defects 
may come into being during process of manufacturing, transferring, and installing [5, 6]. 

These defects will induce partial discharge (PD) [7–9], which causes potential internal insula-

tion aging. The insulation aging may develop into serious fault and blackout [10, 11]. PD also 
reflects GIS insulation state. By monitoring PD signals, potential defects can be recognized.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1.1. Typical types of GIS internal defects

There are several types of GIS internal defects, namely high-voltage (HV) conductor protru-

sions, free metal particles, floating potential, insulator metal pollution, and insulator gap [7]. 

The various defects in GIS are shown in Figure 1.

In recent decades, GIS has also been deployed widely in China. However, operating expe-

rience shows that although GIS equipment has high reliability, inevitable internal defects 
will still lead to failure and gradually major accidents. This has become a hot topic in power 
system [12].

According to statistics, the State Grid Corporation of China had a total of 48,498 GIS equip-

ment in operation by the end of 2013, with a growth of 17.8% of the previous year. In the same 
year, 11 trips occurred in the GIS operation of the national grid system in China. CIGRE 23.10 

Working Group GIS Fault Investigation Report shows that in all failures of GIS that occurred 
before 1985, the insulation failure accounted for 60 and 51% after 1985. According to operation 

analysis of the State Grid of China, at the end of June in 2008, 33 GIS accidents occurred includ-

ing 24 insulation accidents, while operation failure occurred 74 times including 13 insulation 

accidents [4]. GIS insulation failure accidents are diverse. According to Figure 2, insulation 

faults caused by bad contact and defects of metal particles occupy a larger proportion [12].

In this chapter, we will focus on four typical types of GIS internal insulation defect, that is, 

free-metal particles, conductor protrusions, insulator gap, and insulator metal pollution.

1.1.1. Free metal particles defect (denoted as P-type defect)

Free-metal particles defects in GIS are one of the main causes of insulation failure. During the 
GIS assembling, installation or operation process, its metal parts may rub against each other, 

thus creating free metal particles. Due to their small size, these metal particles will move and 
beat under the electric field forces. If the range of particle movement is large enough, it is 
possible to form conductive paths or arc passages between the HV conductor and the shell, 
causing serious damage to the GIS. The path forming depends on many factors including 
applied voltage, shape and size of particles, and the position of the particles [12].

Figure 1. GIS internal insulation-defect type diagram.
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1.1.2. Metal protrusions defect (denoted as N-type defect)

Metal protrusion defects refer to the defects that form on the protruding parts such as HV 
conductor inside GIS. Just like free-metal particles defect, these protrusions are usually 
formed during process of assembling, installation, or operation. Due to the sharp tip of the 
protrusions, the electric field will be distorted and strong electric field will then come into 
being. Under the rated working voltage, the strong electric field will induce a stable PD, but 
under some overvoltage, it may cause breakdown and GIS fault.

The discharge characteristics of protrusion on HV conductor and that on inner wall of shell 
are different. Protrusions on the HV conductor usually discharge in the negative half-cycle of 
the power frequency, while protrusions on the inner wall of the shell usually discharge in the 

positive half-cycle of the power frequency. Some tiny protrusions will be ablated in long-term 
discharge and will not threaten the insulation of GIS. However, larger protrusions will persist 
for a long-time and damage the operation insulation of GIS [12].

1.1.3. Insulator gap defect (denoted as G-type defect)

Insulator gap defects in GIS mainly happen on the basin-type insulator, which can be clas-

sified into two types. One type is due to internal bubbles of epoxy resin resulting during 
process of manufacturing. Then during operation, PD will take place in these bubbles under 
strong electric field, resulting in gradual insulation deterioration of the basin-type insulator, 
and serious insulation breakdown may follow;

The other type is due to electric force in the long-term operation. Mechanical vibration process 
may result in connection loosening of basin-type insulator and HV conductive rod connection 
loosening. Then an insulator gap defect forms and induces PD, resulting in deterioration of 
the insulating properties of the basin-type insulator [13].

Figure 2. GIS equipment-defect type statistics.

Typical Internal Defects of Gas-Insulated Switchgear and Partial Discharge Characteristics
http://dx.doi.org/10.5772/intechopen.79090

105



1.1.4. Insulator metal pollution defect (denoted as M-type defect)

The surface of the insulator sometimes adsorbs some metal particles which move under the elec-

tric field force. Some of the particles may not be dangerous at first, but due to the mechanical vibra-

tion under electrostatic force, their movement facilitates the discharge and then induces the PD.

Due to strong adsorption, some of the particles will not move. Particles fixed on the insulator 
surface forms insulator surface pollution defects. These fixed metal particles have the follow-

ing characteristics: on their surface, charges will accumulate, and these surface charges some-

times aggravate the distortion of the electric field, causing PD. Particle-induced discharge 
will cause insulator surface damage, resulting in surface tree marks. Eventually, it may cause 
serious insulation breakdown and flashover [14].

1.2. Typical detection methods of PD

Under the operating voltage, the insulation defect will cause the local electric field distor-

tion in the insulation medium. When the local electric field reaches the critical breakdown 
field strength, PD will be induced and a large amount of charged particles will be generated. 
Charged particles under electric field will migrate, recombine, and adhere, resulting in pulse 
current, and accompanied by optical, electrical, thermal, and acoustic effects. By effective detec-

tion of these signals, PD can be measured in the GIS. At present, there are five commonly used 
PD signal detection methods, that is, pulse current method [15], ultra-high frequency (UHF) 
method [16], ultrasonic method, chemical detection method, and optical detection method [17, 

18]. In this chapter, we will focus on the following three PD signal detection methods:

1.2.1. UHF method

When a PD occurs, a non-periodically changing current pulse excites a changing magnetic 
field and radiates a high-frequency electromagnetic (EM) wave through the insulator. Due to 
the short-duration of the PD current pulse and the steep rising edge, the excitation frequency 
of the EM wave ranges from several MHz to several GHz [19, 20].

Because GIS is a good coaxial waveguide structure, high-frequency EM waves can be effec-

tively transmitted within the GIS. Through the high-frequency sensors installed inside or 
outside GIS, the detection of these EM signals and PD signals can be achieved. This method 
is called UHF method.

The UHF method has many advantages. Firstly, it uses the UHF signal to avoid EM interfer-

ence due to low frequency in the power grid and has strong anti-interference ability. Secondly, 

it can pinpoint the location of the PD [21]. Finally, this method has a large detection range and 
requires fewer sensors to be installed [11, 22].

1.2.2. Chemical detection method

Many studies show that the SF
6
 gas will decompose under PD and the decomposed compo-

nents will further react with moisture and oxygen in the gas chamber of GIS to generate a 
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series of chemical substances including SO
2
F

2
, SOF

2
, CF

4
, SO

2
, SOF

4
, S

2
F

10
, SiF

4
, HF, CO, CO

2
, 

CH
4
, and SF

4
. By detecting these decomposed components in the GIS gas chamber, it is pos-

sible to determine whether there is a PD source [23, 24].

Studies have shown that PD sources caused by different types of defects differ in SF
6
 decom-

position components, their ratio, and gas generating rate. So one can also identify the PD type 
by detecting SF

6
 decomposition components.

SF
6
 decomposition component method is able to locate the fault to find fault gas chamber, 

response accurately and timely to sudden failure, and judge the type of defect. It is also free 

from the scene of EM and noise interference, and regular detection can reflect the develop-

ment of PD in GIS.

1.2.3. Optical detection method

In the process of PD, molecular ionization, ion recombination, and atomic energy level transi-
tion will excite and radiate optical signals. Optical detection methods of PD based on ultravio-

let light (UV), infrared ray (IR), and visible light have been developed.

The spectral range of optical signal generated by PD in SF
6
 gas is roughly 460–550 nm, which 

is mainly visible light. The basic principle of optical detection method is to use optical sensors 
to receive optical signals generated by the PD source and convert optical signals into electrical 
signals through the optical converter [17, 18].

Optical detection is not affected by strong EM interference on site, its anti-interference abil-
ity is more outstanding than the other two methods, and real-time monitoring of GIS PD 
phenomenon can be achieved. However, due to poor-optical signal transmission and GIS is 
a closed structure of equipment, the optical method cannot be used for outer GIS detection; 
optical sensors must be installed inside the GIS.

2. Physical model of typical defects and the electrical field simulation

In order to simulate GIS insulation defects and PD, what we choose for the physical model of 
insulation defect designed in this chapter is stainless steel, aluminum, and brass, and the solid 

insulation material is epoxy resin [25].

2.1. Typical detection methods of PD construction of insulation defect physical model

2.1.1. N-type defect

Under steady-state AC voltage, the prominent parts are distributed in the electric field and 
form the local high field strength zone. This corona sometimes appears to be relatively stable 
as the discharge only occurs in a local area instead of throughout the entire electrode. In this 

chapter, pin-plate electrodes are used to simulate N-type defects. As shown in Figure 3, the 

pin electrodes are used to simulate abnormal protrusions on HV conductors and the plate 
electrodes simulate the metal shell of GIS.
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In order to obtain a stable PD, an electrode is adopted with a tip radius of curvature of about 
0.3 mm as well as a cone angle of 30°, and a ground plate electrode diameter of 120 mm as 

well as 10 mm thickness. Aluminum needle electrodes are designed and manufactured, with 
ground electrode material stainless steel, and electrode surface all were well polished.

2.1.2. P-type defect

Conductive particles have the shape of powder, flake or large solid particles, etc.; they get the 
charge in the electric field and will move or beat under electrostatic force. If the electric field is 
strong enough and the energy obtained by the conductive particles is large enough, particles 
are possible to cross the gap between the shell and the HV conductor or move to a point where 
the insulation is damaged.

The motion intensity of the conductive particles depends on the material, the shape, and the applied 
voltage, as well as the strength and duration of the external electric field strength and the location of 
the particles in GIS cavity. When the metal particles come close without touching the HV conduc-

tor, then PD arises as the electrical characteristics. Half of the actual GIS equipment uses a structure 
with a coaxial cylinder between the HV conductor and the shell, that is, a slightly uneven electric 
field structure [26]. In order to effectively simulate the slightly heterogeneous electric field structure 
of the coaxial cylinder inside the real GIS, the ball-bowl electrode shown in Figure 4 is selected 

in this chapter. The bowl electrode is cut by a half of a stainless steel hollow sphere. In order to 
ensure the steady PD experiment, it is necessary to limit the beating range of the copper scrap. HV 
terminal ball electrode diameter is designed to be 44 mm, the ground bowl diameter is designed to 

be 120 mm, and particle maximum beating range up to 40 mm.

2.1.3. M-type defect

Due to electric force, some metal particles are absorbed on the insulator, thus distorting the 
insulator surface electric field and causing PD. Some metal particles on the insulator may not be 
dangerous at first, but under mechanical vibration and electric force, there will be slight move-

ment and potential danger. Metal particles on the surface of the insulator will form surface 

charge aggregation, thereby increasing the possibility of failure. Particle discharge can cause 

Figure 3. N-type insulation defect model. (a) Model diagram and (b) physical diagram.
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damage to the surface of the insulator, causing surface tree marks in the power frequency field. 
Once the discharge channel is formed, a serious insulation accident will be caused.

In this chapter, rectangular copper cutting (5 × 18 mm2) is used to stimulate M-type defect. The 
contact surface of electrodes and cylindrical insulator is polished to avoid potential air gap 
discharge. The model structure is shown in Figure 5. The plate diameter is 120 mm, the epoxy 
resin cylindrical insulator diameter is 60 mm, and the thickness is 25 mm. The HV electrode 
material is aluminum, and the ground plate electrode material is stainless steel.

2.1.4. G-type defect

G-type defects are often formed in the manufacturing process such as epoxy curing shrinkage 
and internal voids [17]. The mechanism of air gap discharge is complicated, and it is generally 
believed that there are three ways of air gap discharge, that is, the throughout discharge, the 
discharge along the surface of the upper and lower electrode and the discharge along the air 

gap wall. In this chapter, G defects model is shown in Figure 6. The cylindrical insulator and 
the grounding electrode are closely adhered with epoxy glue to ensure that there are no gaps or 

bubbles between them. The air gap size at the interface between the high voltage plate electrode, 
and the insulator is about 1–3 mm. In order to reflect the real air gap situation, the insulator is 
slightly concave at the center of the upper surface, and the edge of the air gap is arc shaped.

2.2. Insulation defect electric field simulation

In this chapter, the finite-element analysis software COMSOL is used to simulate the electric 
field distribution of four insulation defect models. The simulation results are used to evaluate 
the feasibility of the model and provide the preliminary data reference for the following PD test.

In the simulation, a cylindrical cavity is used to simulate the SF
6
 discharge gas chamber. The solu-

tion domain is set as SF
6
 and the boundary conditions are grounded. The specific technical param-

eters of the simulation model and the relative dielectric constants are shown in Tables 1 and 2.

Figure 4. P-type insulation defect model. (a) Model diagram and (b) physical diagram.
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2.2.1. N-type insulation defect

Due to the axial symmetry of N-type insulation defect, a two-dimensional axisymmetric 
model is adopted in this chapter. The HV-terminal needle electrode potential is set to 25 kV, 
the plate electrode with the cavity shell boundary is set to ground, and the needle-plate spac-

ing is set to 10 mm.

The results of the electric field simulation of N-type insulation defect are shown in Figure 7. 

It can be seen from the figure that the distribution of the electric field between the needle and 
plate is extremely uneven. The electric field strength value at the tip of the needle electrode is 
high, and the electric field distortion at the tip of the needle electrode reaches up to 351 kV/cm.

Figure 6. G-type insulation defect model. (a) Model diagram and (b) physical diagram.

Figure 5. M-type insulation defect model. (a) Model diagram and (b) physical diagram.
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Cavity 

height/mm
Cavity 

diameter/mm

Plate 

electrode 

diameter/mm

Plate 

electrode 

thickness/mm

Needle 

curvature 

radius/mm

Cone 

sharp 

corners/°

Insulator 

diameter/mm

Insulator 

thick- 

ness/mm

350 180 120 10 0.3 30 60 25/20

Table 1. Model technical parameters.

Material SF6 Aluminum Stainless steel Aerosols (Copper) Epoxy resin

Relative permittivity 1.002 1.0 1.0 8000 3.8

Table 2. Relative dielectric constant of each part of the material.

Figure 7. N-type insulation defect space electric field simulation output (mm).

Figure 8. P-type insulation defect space electric field simulation output.
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2.2.2. P-type insulation defects

Like N-type insulation defect, P-type insulation defect is also axisymmetric, so a two-dimen-

sional axisymmetric model is adopted again for P-type insulation defect. In the simulation, 
the potential of the HV terminal ball electrode is set to be 30 kV, and the potential of the bowl 
electrode is set to be grounded. The distance between the ball and the bowl is set to 30 mm, 
and metal particles with a diameter of about 2 mm are placed in the bowl electrode. The float-
ing particles are treated with the virtual large dielectric constant method.

The results of the electric field simulation of the P-type insulation defects are shown in 
Figure 8. The metal particles cause a distortion of the electric field between the electrodes. 
When the electric force is greater than the gravity of the metal particles, the particles will 
move or beat under the force. It can be seen from the figure that the electric field on the surface 
of metal particles close to the high voltage end is seriously distorted, and the maximum field 
strength reaches 155 kV/cm.

2.2.3. M-type insulation defects

In the simulation, the electrode potential of the HV terminal plate is set to be 30 kV, the 
boundary of the lower plate electrode and the cavity are set to be grounded, the thickness of 
the cylindrical insulator is set to 25 mm, and the surface is pasted with a metal copper cuttings 
of about 5 × 18 mm2.

As shown in Figure 9, the simulation results show that the electric field at the surface of the 
insulator where the metal pollutants are located has been distorted, forming a very uneven 
field with the maximum field strength of 192 kV/cm. Based on the simulation results, insula-

tor surface metal contamination will lead to PD before the insulator flashover.

2.2.4. G-type insulation defects

In the simulation, the potential of HV board is set to 60 kV. The boundary between lower 
board electrode and cavity is grounded. The upper surface of insulator is slightly concave 
with an average thickness of 20 mm. Between the HV board is arc-shaped air gap, with maxi-
mum gap 2 mm.

Figure 9. M-type insulation defect space electric field simulation output.
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As shown in Figure 10, the simulation results of the electric field are mainly concentrated 
in the air gap between the high-voltage conductor and the insulator. The maximum field 
strength is 71.3 kV/cm. From the simulation results, G-type insulation defect has higher initial 
discharge voltage.

3. UHF characteristics of typical defects PD

As mentioned in Section 1, PD can be detected by UHF method. In this section, UHF charac-

teristic of PD will be discussed. Experiments and analysis will be shown as follows.

3.1. Experimental setup

The detecting and measuring platform for PD is shown in Figure 11. The regulator (T1) input 
voltage is 220 V, the output voltage is adjustable from 0 to 250 V, the regulator output voltage 
through non-halo test transformer (T2: 10 kVA/50 kV) is boosted as the test voltage and is applied 
to the test object through a 10 kΩ protection resistor (R

r
). The protection resistor is used to limit 

the amplitude of the short circuit current which may appear after the breakdown of the test object. 
To measure the test voltage, a capacitor divider in parallel on both ends of the test object is used 
[27]. The experimental voltage is acquired by outer UHF antenna developed by the authors (ultra-
high frequency microstrip antenna, with 340–440 MHz bandwidth) and displayed on the digital 
storage oscilloscope (DSO: Lecroy WavePro 7100). The DSO has the largest sample rate of 20 GS/s.

3.2. Data acquiring and processing

Experiments can be done on the platform in Figure 15. Large numbers of data can then be 
acquired and processed. All sampling data are unified and normalized, so that the resulting 
mathematical models are more universal [28]. Unification means that each PD signal consists 
of 10,000 sampling points at a sampling rate of 20 GS/s (i.e., the sampling time is 500 ns, the 
sampling step is 0.05 ns, and the trigger point is set at the 4000th point). Normalization means 
that each value of the sample points is divided by the maximum absolute value.

Figure 10. G-type insulation defect space electric field simulation output.

Typical Internal Defects of Gas-Insulated Switchgear and Partial Discharge Characteristics
http://dx.doi.org/10.5772/intechopen.79090

113



Figure 11. Detecting and measuring platform.

Types of defects Coefficients Value Coefficients Value Coefficients Value

N-type a1 0.2002 b1 4852 c1 435.3

a2 0.1863 b2 4444 c2 215.2

a3 −0.9328 b3 3998 c3 19.2

a4 0.3613 b4 6097 c4 769.7

a5 −0.3475 b5 5767 c5 119

P-type a1 0.2858 b1 4305 c1 39.6

a2 0.2332 b2 4531 c2 97.7

a3 0.1117 b3 4762 c3 104.1

a4 −0.9565 b4 3998 c4 19.1

a5 0.0454 b5 6181 c5 211.8

M-type a1 0.9757 b1 4000 c1 23.2

a2 0.7679 b2 5298 c2 521.2

a3 0.7750 b3 6661 c3 606.1

a4 1.1040 b4 5951 c4 591.9

a5 −1.5420 b5 5981 c5 1006.0

G-type a1 1.0100 b1 3998 c1 30.3

a2 0.0588 b2 5156 c2 358.2

a3 0.8981 b3 4368 c3 177.9

a4 −1.0730 b4 4358 c4 201.4

a5 0.0232 b5 7225 c5 152.5

Table 3. Parameters of different types of defect.
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Mathematical models of PD for VHF measurement are established by fitting to Gaussian plots 
function, the selected mathematical model is [28]:

  (1)

where a
i
, b
i
, and c

i
 are parameters and different of defects have different parameters. Based on 

massive experiment data, these parameters can be calculated as shown in Table 3.

Figures 12–15 show time domain and frequency domain UHF PD characteristics, and they, 
respectively, denote G-type defect, M-type defect, N-type defect, and P-type defect. In time 
domain, the unit of x-axis is nanosecond, while in frequency domain, the unit of x-axis is 

gigahertz. Notice that the y-axis in time domain and frequency domain has no unit because it 
represents normalized data, that is, the U* and A* both stand for per unit.

Figure 12. G-type defect UHF PD characteristics. (a) Time domain and (b) frequency domain.

Figure 13. M-type defect UHF PD characteristics. (a) Time domain and (b) frequency domain.
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For G-type defect characteristics curve, in time domain, there is a sharp jump at the 4000th 
point, and the curve is smooth after the jump; while in frequency domain, there is a jump 
after the original point, and the curve is smooth after the jump except for some protuber-
ant points. For M-type defect characteristics curve, in time domain, there is a sharp jump at 
the 4000th point, and the curve is smooth after the jump with two peaks; while in frequency 
domain, there is a jump after the original point with a smaller jump afterwards, and the curve 
is smooth except for some protuberant points. For N-type defect characteristics curve, in time 
domain, there is a sharp jump at the 4000th point toward the negative direction, and the curve 
is smooth after the jump with a flat segment and then two peaks; while in frequency domain, 
there is oscillation on the whole frequency axis. For P-type defect characteristics curve, in time 
domain, there is a sharp jump at the 4000th point toward the negative direction, and several 
peaks follow afterwards; while in frequency domain, there is a jump after the original point 
with several oscillations afterwards.

Figure 14. N-type defect UHF PD characteristics. (a) Time domain and (b) frequency domain.

Figure 15. P-type defect UHF PD characteristics. (a) Time domain and (b) frequency domain.
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4. Chemical characteristics of typical defects PD

In GIS, PD takes place accompanied by SF
6
 decomposition. In addition, different defects will 

lead to different decomposition components. Based on this idea, chemical methods can be 
used to detect PD [23].

4.1. Experimental setup

The detecting and measuring platform for PD is shown in Figure 16. The measuring platform 
is similar to that in Section 3.1, but the UHF antenna will be replaced by gas chromatography 
mass spectrometry (GCMS), with its type Shimadzu QP-2010 Ultra.

The experiment is carried out in the gas chamber, which is closed filled of SF
6
 gas with a 

specific pressure. Certain type of insulation defects for PD is also placed in the chamber. The 
coupling capacitor (Ck: 500 pF/100 kV) provides a high frequency and low-impedance path to 
the pulsed current and is converted to a voltage signal via a sense-less impedance (Z

m
: 50 Ω), 

and it is displayed by digital storage oscilloscope. The decomposed components generated 
under PD are detected by GCMS.

4.2. Experimental steps

In this chapter, SF
6
 decomposition experiments under four types of insulation defects are 

carried out. Under each type, the experiments last for 96 h. The decomposition gas is collected 
every 12 h, and the concentration of characteristic decomposition components CF

4
, CO

2
, SO

2
F

2
 

is measured. The initial discharge voltage and the test voltage of various insulation defects are 
shown in Table 4. The experimental process is as follows:

1. The insulation defect model is installed in SF
6
 partial discharge decomposition gas cham-

ber, the vacuum chamber is first evacuated and then filled with fresh SF6 gas, and then 
evacuated. Repeat the process until the chamber is filled with pure 0.2 MPa SF

6
.

2. Connect the test circuit according to Figure 20, and then adjust the regulator to slowly 

increase the test voltage until the oscilloscope can detect PD on the defect model. Record 
the experimental voltage U

0
 at this time, that is, the initial discharge voltage. Then, con-

tinue to raise at the experimental voltage.

3. Every 12 h, SF
6
 gas is collected. The single collection gas volume is about 100 mL. Gas 

chromatograph is used to analyze the concentration of gas components.

4. After a 96-h continuous experiment on a defect model, another model of the defect will 

replace it and continue the experiment according to the aforementioned steps until all four 

types of defects are all done.

4.3. SF
6
 decomposition characteristics

The decomposition components under the four types of defects are shown in Figure 17(a)–(d),  

that is, N-type, M-type, P-type, and G-type defect, respectively. Four characteristic 
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decomposition components are generated, but the amounts of different characteristic compo-

nents are quite different.

Under the N-type defect, at the end of the experiment, that is, at 96 h, concentration of SOF
2
 

was as high as 1114.5 μL/L, SO
2
F

2
 was 471.2 μL/L, CO

2
 was 124.8 μL/L, and CF

4
 was only a few 

μL/L. It was detected in the experiment that the concentration of components in ascending 
order is SOF

2
 > SO

2
F

2
 > CO

2
 > CF

4
. Concentrations of SOF

2
, SO

2
F

2
, and CO

2
 all have an almost 

linear increase, indicating that PD is stable. The gas production rate dropped within a few 
tens of hours before the end of the experiment. It is preliminarily inferred that the moisture 

and oxygen in the gas chamber decreased after being consumed in experiment, resulting in 

a corresponding slowdown of various chemical reaction rates. Although the concentration of 
CF

4
 generally increases, it does not increase simply linearly, and even decreases sometimes. 

The reason for this is that concentration of CF
4
 is too low. Although the gas chromatograph 

detector sensitivity is very high, the final calculation of the test results needs to be integrated 
on the resulting chromatographic peak, when the concentration result is low, the impact of 
integral error will be greater.

The decomposition components under the M-type defect are shown in Figure 17(b). The 
amounts of different characteristic components are also different. However, compared 
with the N-type defect, the difference is much smaller. At 96 h, concentration of SOF

2
 was 

42.78 μL/L, concentration of SO
2
F

2
 was 14.95 μL/L, concentration of CO

2
 was 2.18 μL/L, and 

concentration of CF
4
 was 6.18 μL/L. In the experiment, the concentration of components in 

ascending order is SOF
2
 > SO

2
F

2
 > CF

4
 > CO

2
. Concentration of SOF

2
 and SO

2
F

2
 gradually 

increased, but their increasing rate gradually decreased, especially SO
2
F

2
. Its concentra-

tion almost stopped increasing at the end of the experiment. That is because the insulator 

Voltage Defect type

N-type (kV) M-type (kV) P-type (kV) G-type (kV)

Starting discharge voltage 16.2 21.6 17.5 25.7

Experimental voltage 19.4 25.9 21.0 30.8

Table 4. Test voltage under different insulation defects.

Figure 16. Detecting and measuring platform.
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surface contamination is gradually ablated by discharge; its effect on the electric field dis-

tortion becomes weaker and weaker, resulting in gradual decrease in discharge intensity. 
Because of sufficient fluorine atoms generated by the discharge and carbon atoms provided 
by the insulator, CF

4
 is relatively less affected by the discharge intensity and its concentra-

tion increases substantially linearly with time. The increase of CO
2
 does not simply grow 

linearly, and sometimes even decreases. The main reason for this is the concentration of 
CO

2
 is low under M-type defect, and the integral error of the gas chromatograph has a 

greater impact on it.

The characteristic decomposition components under the P-type defect are shown in 
Figure 17(c). Under this defect, four characteristic decomposition components were also gener-

ated. At 96 h, the concentration of SOF
2
 was 238.9 μL/L, the concentration of SO

2
F

2
 was 15.82 μL/L, 

the concentration of CO
2
 was 16.63 μL/L, and the concentration of CF

4
 was 32.68 μL/L. The con-

centration of components in ascending order is SOF
2
 > CF

4
 > CO

2
 > SO

2
F

2
. The concentration of 

the four characteristic components did not increase linearly. In the first 24 h of the experiment, 
the components concentration increased linearly, and the increasing rate was larger; from 24 

Figure 17. Decomposition concentration under four types of defects. (a) N-type defects, (b) M-type defects, (c) P-type 
defects, and (d) G-type defects.
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to 36 h, the concentration of components also increased, whereas the increasing rate dropped 

sharply; from 36 to 48 h, the increasing rate rapidly increased. After 48 h, the increasing rate 
decreased slowly. At the end of the experiment, all characteristics components concentration 

almost stopped increasing. The main reason for this is that the discharge formed by the defects 
of P-type defect is unstable; the free particles are moved under strong electric field force due 
to their small mass. Only when moved to the position conducive to discharge will the particles 
lead to discharge. These particles may move randomly, which will lead to unstable discharge.

The characteristic decomposition components under G-type defect are shown in Figure 17(d). 

The concentration of the four characteristic decomposition components under the insula-

tion defect is low. At the end of the experiment, the concentration of SOF
2
 was 3.71 μL/L, 

the concentration of SO
2
F

2
 was 7.57 μL/L, the concentration of CO

2
 was 6.37 μL/L, and the 

concentration of CF
4
 was 1.01 μL/L. The concentration of components in ascending order is 

SO
2
F

2
 > CO

2
 > SOF

2
 > CF

4
. There is no obvious regularity in the increasing of concentration 

of the four characteristic components. The time-varying increasing rate is mainly due to the 
unstable PD, sometimes the discharge is very intense, and sometimes discharge stops. In 
addition, the overall discharge repetition rate is not high, resulting in the overall concentra-

tion of decomposition products not high and growth not regular.

Figure 18. Decomposition components amount under four types of defects. (a) SOF
2
 amount, (b) SO

2
F

2
 amount, (c) CO

2
 

amount, and (d) CF
4
 amount.
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A conclusion of SF
6
 decomposition component under four types of insulation defects can be 

drawn that, amounts and ratio of decomposition components are different under different 
defects. Under each defect, the decomposition components under four types of defects com-

pared with each other is as shown in Figure 18. For example, the amount of SOF
2
 is higher than 

SO
2
F

2
 under the N-type defect, whereas the amount of SO

2
F

2
 in G-type defect is higher than 

SOF
2
. The decomposition amounts of CF

4
 and CO

2
 also vary with different types of defects, 

more CO
2
 is detected under N-type defect, and only a smaller amount of CF

4
 is detected. 

Under P-type defect, the amount of CF
4
 is larger than that of CO

2
. Under M-type defect, only 

a small amount of CO
2
 is detected; under G-type defect, both CF

4
 and CO

2
 are detected, but 

the concentration of CO
2
 is higher than that of CF

4
. Under N-type and M-type defects, the 

decomposition components increasing rate is stable, which is due to the reason that PD is 
stable under the two defects. In contrast, under P-type and G-type defects, PD is unstable. The 
reason is that particles and gap is not conducive to stable PD. The repetition rate varies with 
time, as well as the discharge amplitude. Especially under P-type defect, due to movement of 
metal particles, concentrations of decomposition components vary most intensively.

5. Optical characteristics of typical defects PD

In GIS, PD will ionize SF
6
 molecules, and electrons will release and gain energy during the 

ionization process. When the electrons release energy, they will release photons at the same 
time, which are called luminescence; the positive and negative ions after ionization also 
recombine to release photons and become a composite light. Optical measurement uses pho-

toelectric sensors to detect PD in the light intensity it generated to determine its strength. For 
optical measurement of signal generated by PD in GIS, detection system is less affected by 
outside interference and has higher sensitivity of measurement. It can detect PD in real time 
and identify the position of PD. Therefore, it can be used for on-line monitoring of PD in GIS.

At present, there are mainly two ways to detect the optical signal generated by PD in the GIS 
by optical measurement: one is to directly use the photoelectric sensor to detect the optical 

signal generated by the PD; the other is to insert the optical fiber sensor into the GIS to detect 
the optical signal generated by the PD. The former is more flexible to install, but the detection 
range is smaller, whereas the latter installation is more fixed, but the detection range is larger. 
Different types of insulation defects lead to different optical signals released by the PD, so the 
PD can be identified and diagnosed by using the optical measurement [12].

5.1. Experimental setup

The schematic diagram of the fluorescence optical fiber sensing system used to study the opti-
cal characteristics of the typical defects is shown in Figure 19. The optical fiber sensor system 
mainly comprises an optical sensor unit, optical transmission unit, photoelectric conversion 
unit, power supply module, and electrical signal transmission and acquisition unit [12].

Four types of single-defect models in this paper are respectively put into the device. After the 
preparation, the experimental device is applied with the experimental voltage. Slowly raise the 
test voltage and record the initial discharge voltage of the four single-defect models. Continue to 

Typical Internal Defects of Gas-Insulated Switchgear and Partial Discharge Characteristics
http://dx.doi.org/10.5772/intechopen.79090

121



slowly increase the experimental voltage and collect PD signal of different discharge intensity. 
Because PD signal of every power frequency cycle needs to be collected, a reference voltage signal 
should be introduced before the PD signal is collected to correct the phase of PD. Oscilloscope 
sampling frequency is set to 50 Ms/s, the total acquisition signal length 20 ms, and sampling 
points 1 M. In experiments, the fluorescent fiber sensing system stores signals in a time domain 
waveform. Therefore, PD light pulses must be extracted from the time-domain waveform that 
record the PD signal for each cycle. The method comprises the following steps: set a threshold 
firstly according to noise amplitude and extract a PD light pulse whose amplitude is greater than 
the threshold and record and store the amplitude and corresponding phase of the PD light pulse.

5.2. φ-u-n distribution characteristics of photodetector PDs with different defects

In this chapter, the φ-u-n spectral is used to analyze PD. In φ-u-n space, φ represents the 

phase of PD power frequency, u represents the amplitude of PD light pulse signal, character-

izing the PD discharge level, and n represents the number of discharges. The space surface is 
constructed by dividing the power-frequency phase φ-axis into 256 intervals from 0° to 360° 
and dividing the amplitude of the optical pulse signal from 0 to 0.1 V into 128 small sections 
so that the φ-u plane is divided into 128 × 256 cells; count φ-u plane discharge times within 

each cell, and one can get the space surface. The φ-u-n space surface constructed in this paper 

is based on 200 power-frequency signals. The three-dimensional map of the different defects 
obtained from the collected PD data is shown in Figure 20. There is a significant difference 
between the three-dimensional spectra of the φ-u-n obtained by detecting different internal 
defects in the GIS using the optical method.

For N-type defect, the repetition rate of light pulse is high, the average amplitude is large, the 
range of amplitude variation is small, and the light pulse distribution has obvious phase charac-

teristics and symmetrical about 270° in phase. The reason is that the PD under N-type defect is a 
typical corona discharge which is relatively stable, the intensity of the single discharge is small, 
the light signal generated by the discharge is relatively stable, and the light intensity generated 
by the single discharge is relatively large. Therefore, the average amplitude of the detected light 
pulse is large, and the range of the amplitude is small. The initial discharge voltage of positive 
half cycle of corona discharge is higher than the negative half cycle of power frequency, and the 

Figure 19. Figure of the fluorescent fiber sensor system.
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space charge generated by discharge diffuses rapidly in the gas. The influence of space charge 
on the external electric field is very small. The initial discharge voltage of corona discharge is 
almost equal to the extinction voltage. Therefore, the light pulses are distributed around the 
270° phase of the negative half cycle of the power frequency and symmetrical about 270°.

For G-type defect, the pulse repetition rate is high, the average amplitude is small, the ampli-
tude range is wide, and the light pulse distribution has obvious phase characteristics, which 
are all distributed at the phases of 90 and 270°. Phase width distributed in the 90–180° is greater 
than 0–90°, and 180–270° phase width greater than 270–360°. The reason is that the PD caused 
by the G-type defect between the insulator and the metal conductor is not very stable. The light 
intensity generated by a single discharge is not uniform, but the light intensity generated by 

the discharge is relatively small. Therefore, the average light pulse detected has small ampli-
tude and large amplitude range. As the insulator hinders the spread of the space charge, the 

space charge will cause the distortion of the external electric field so that the initial discharge 
voltage caused by the air gap defect between the insulator and the metal conductor is higher 
than the extinction voltage. Therefore, the light pulse phase width distributed between 90 and 
180° is greater than 0–90° and between 180–270° phase width is greater than 270–360°.

For M-type defect, the pulse repetition rate is low, the average pulse amplitude is small, the 
amplitude range is large, and the light pulse distribution has obvious phase characteristics 

Figure 20. The φ-u-n chart of PD induced by the four types of defects in GIS. (a) N-type, (b) G-type, (c) M-type, and (d) P-type.
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and is distributed around the phase 90 and 270°. Phase width distributed in the 90–180° is 
greater than 0–90° and in the 270–360° phase width is greater than 180–270°. The reason is 
that the PD produced by M-type defect will generate electrical branches on the surface of the 
insulator, which will affect the insulation of the insulator surface. As a result, the PD is not 
very stable, and the light intensity produced by a single discharge is different. However, the 
overall light intensity is relatively small, so the optical measurement method detecting aver-

age amplitude of the light pulse is small, with a wide range of amplitude.

For P-type defect, the pulse repetition rate is low, the average amplitude is large, the range of 
the amplitude changes is large, and the phase distribution of the light pulse is not character-

ized. The reason is that metal particles in the external electric field obtain the induced charge 
and will move under electric force. The movement intensity of the metal particles depends 
on the induced charges, the shape of the particles, the direction of movement of the particles, 
and whether the particles collide with other objects during the movement. PD generated by 
P-type defects is caused by the movement of the metal particles. Therefore, it is very unstable, 
and the phase of PD is also irregular.

6. Conclusion

In this chapter, typical defects in GIS are discussed and physical model is established, then 

different resulting PD is studied. Four typical defects and their respective PD UHF character-

istics, chemical characteristics, and optical characteristics are then obtained by experiments. 

Different figures and data owing to different types of PD are compared with each other so that 
unique features could be further extracted.

As for UHF characteristics, it can be seen visually that waveforms of different defects have 
obvious difference. Then some parameters can be designed to measure the essential dif-
ference, which can be presented as fingerprints. In time domain, statistics parameters are 
selected as features. For example, these parameters include mean, variance, skewness, kur-

tosis, etc. While in frequency domain, these parameters also works. In addition, Shannon 
entropy, wavelet sub-band energy, and absolute value of peaks can also be included. Based on 
these features, methods such as support vector machine can be applied to classify the defects.

For chemical characteristics, it can be concluded that the SF
6
 PD decomposition components 

amount under the four types of insulation defects are obviously different, and so is their 
ratio. So the insulation defect can be identified by detecting PD decomposition component of 
SF

6
. Methods such as artificial neural network can then be set up to classify the defects. The 

concentration and ratio of each decomposition components are the input variables and during 
training process the defect is finally classified.

For optical characteristics, just as UHF characteristics, the spectrals of different defects have 
obvious difference. So some statistics parameters are introduced. Because the optical spectral 
has three dimensions, projection on two-dimension plane is firstly needed, and then param-

eters are extracted. The classification step is like that of UHF or chemical characteristics.
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