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Abstract

The motivation for developing light-emitting devices on an indirect transition semicon-
ductor such as silicon has been widely discussed for Si/SiO

2
 nanostructures. In this chapter, 

we report on the fabrication of Si/SiO
2
 quantum-confined amorphous nanostructured films 

and their optical properties. The Si/SiO
2
 nanostructures comprising amorphous Si, SiO

2
, and 

Si/SiO
2
 multilayers are grown using ultrahigh vacuum radio frequency magnetron sputter-

ing. Optical absorption coefficients of the Si/SiO
2
 nanostructures are evaluated with regard 

to tentative integrated Si thicknesses. Optical energy band gaps of the Si/SiO
2
 multilayer 

films are in accordance with the effective mass theory and described as E
0
 = 1.61 + 0.75d−2 eV  

at the Si layer-integrated thicknesses ranging from 0.5 to 6 nm. Quantum confinement 
effects in the Si/SiO

2
 nanostructures are inferred from optical transmittance and reflectance 

spectra. The rapid-thermal-annealed Si/SiO
2
 multilayer films demonstrate the intensified 

photoluminescence at ~1.45 eV due to the formation of nanocrystalline silicon. The tem-
perature dependence of the nanocrystalline luminescence intensity shows the nonmonoto-
nous behavior which is interpreted invoking the Kapoor model.

Keywords: amorphous Si/SiO
2
, quantum confinement, nanocrystals, optical properties, 

absorption coefficient, photoluminescence, the Kapoor model

1. Introduction

Silicon, the principal semiconducting material, inherits the indirect optical transitions from 
its band structure. The research efforts are put forth on realization of light emission effects 
in silicon-based Si/SiO

2
 nanostructured devices exploring hydrogenated amorphous Si [1–9], 

porous Si [10–12], Si quantum dots [13–19], amorphous Si quantum wells (QWs) [20–24], 
crystalline and nanocrystalline Si QWs [25–28], and Er-doped QWs [29–31]. The fabrication of  
Si/SiO

2
 QWs has been an attractive area in process technology of Si-based light-emitting devices 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



in last few decades. Various techniques are developed to synthesize the Si/SiO
2
 nanostructured 

films—molecular beam epitaxy (MBE) [32–37], plasma-enhanced chemical vapor deposition 
(PECVD) [38–49], magnetron sputtering [50–65], electrochemical dissolution in electrolytes, 
ion implantation, and others. In this chapter, we investigate the growth of amorphous Si/SiO

2
  

QWs employing an ultrahigh vacuum (UHV) radio frequency (RF) magnetron sputtering 
(MS) system. This method is simple and easy to use in a manual operation. The Si/SiO

2
 QW 

films are fabricated on sapphire and silicon wafers at room temperature to enable the atomic 
precision of the film growth via minimization of atomic movements during and after the 
depositions. Morphology, crystallinity, atomic bonding, and structures of the Si/SiO

2
 films 

are evaluated by means of focused-ion-beam scanning electron microscopy (FIB-SEM), X-ray 
diffraction (XRD), and high-resolution X-ray photoelectron spectroscopy (XPS). The Si/SiO

2
 

films are distinguished with the layer number (the period), the Si thickness (the QW thick-

ness), and the SiO
2
 thickness (the barrier thickness). The first identification of the quantum 

confinement effects is made speculating on the optical energy band gap determined from the 
optical absorption and reflectance measurements taking into account the energy band gaps 
of silicon and fused quartz as ~1.1 and ~7.8 eV, respectively. To minimize the experimental 
uncertainty, the Si/SiO

2
 films are deposited at room temperature. At the raised temperature 

conditions, the uncertainty remains the atomic diffusion, reactions, and oxidation at the Si/SiO
2
  

interface. On the other hand, the deposited Si and SiO
2
 layers are expected as in amorphous 

conditions. At first, we restricted the Si/SiO
2
 nanostructured layer films to be amorphous. 

Photoluminescence (PL) is used to characterize the as-grown and annealed materials. The 
thermal annealing is expected to improve the photoluminescence characteristics.

2. Experiment

2.1. Si/SiO
2
 layer films preparation

Si/SiO
2
 QWs films are synthesized in an ultrahigh vacuum (UHV; 3 × 10−8 Pa) RF MS system at 

a very small deposition rate (from 0.005 to 0.5 nm/s). The schematics of the UHV RF magnetron 
sputtering systems are shown in Figure 1. The ultrahigh vacuum chamber is equipped with 
two AJA A300 UHV RF magnetron sputtering guns connected to argon and oxygen gas lines, 
sputter ion guns, and 5 N Si and 5 N fused quartz SiO

2
 targets. Preparation temperatures are 

controlled at the substrate holder. Transparent substrates are used for optical measurements; 
crystalline and amorphous substrates are used to test the influence of substrate crystallinity 
on the film growth. All depositions are operated at room temperature on both transparent 
sapphire A and opaque Si (100) substrates. The polished sapphire substrates are etched in 
dilute HF and put into the UHV chamber. The base pressure of the chamber is 10−7 Pa, and 
the sputtering gun pressure during the plasma operation in argon is 2 × 10−1 Pa. The depo-

sition process is a repetition of Si and SiO
2
 depositions separated by an interval time. The 

deposition parameters of the quantum-well structures are the well layer thickness, the barrier 
layer thickness, and the number of periodicity. The thickness of each layer is controlled by the 
deposition speed and the sputtering time. Basic deposition speeds are 0.05 nm/s for Si and 
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0.021 nm/s for SiO
2
 at an argon pressure of 0.2 Pa. Minimization of the atomic diffusion and the 

oxidation during the depositions are the main concerns. The Si/SiO
2
 nanostructure films are 

made of 1–50 periods consisting of 0.5–15 nm thick Si QWs and 0.5–6 nm thick SiO
2
 barriers. 

The 10-layer Si/SiO
2
 nanostructured layers are formed with the total thickness of 10–200 Å. 

Figure 2 is the SEM cross-sectional view of a 20-layer Si/SiO
2
 nanostructure comprising 2.0 nm 

Si and 2.1 nm SiO
2
. It shows 20 pairs of the white thin SiO

2
 layers and dark Si layers.

Figure 1. A schematic drawing of the ultrahigh vacuum radio frequency magnetron sputtering. Sputtering targets can 
be changed at each deposition program.

Figure 2. A cross-sectional view of an SEM photograph for an as-deposited 20-layer amorphous Si/SiO
2
 film deposited 

on a fused quartz substrate.
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2.1.1. Crystallinity

The XRD spectra (CuKα source) of 180-nm thick Si single layer and 150-nm thick SiO
2
 single 

layer prepared on the sapphire substrates at room temperature do not show the crystallinity 
of the samples. Both spectra reveal the noncrystalline characteristics of Si and SiO

2
 films.

2.1.2. Density-of-states structures

Atomic constitutions of each layer are evaluated with XPS on binding energy of Si2p and 
O1s electrons. The bulk Si2p core-level binding energy for Si(111) is ~99.3 eV and the bulk 
Si2p oxide binding energy value for SiO

2
 is ~103.7 eV referring to Keister [66]. PHI 500 Versa 

Probe II scanning XPS microprobe is designed to take out a 10-degree signal, enable slow 
speed (0.01 nm/s SiO

2
) area etching, and equipped with a monochromatic AlKα X-ray source. 

The depth profiles are characterized by using a low-energy argon ion gun to avoid selective 
etching. The binding energy dependence of the core densities of states at each etched depth 
suggests periodic distributions of each atomic composition. This analytical technique has 
particular applicability to the evaluation of the density of states with atomic contributions. 
Figure 3(a) is the plot of the density of states from 97 to 107 eV as the parameters of depth. 
The profiles of two peaks (a) 98.9 eV Si 2p spectra (Si0) (element: un-oxidized) and the 103.2 eV 
Si 2p (oxidized) (Si4+) are shown. In Figure 3(b), 532.6 eV O1s single peaks are shown. The 
spectra (a) 103.2 eV and (b) 532.5 eV exhibit maxima at the same depth and spectrum (a) has 
a minimum at the bottom of (b). Figure 3(a), at the depth of 0.54 nm, 103.2 eV intensity peaks 
and 98.9 eV show a minimum. The density-of-states depth profiles explain the presence of the 
Si/SiO

2
-layered amorphous nanostructure fabricated using the UHV RF magnetron sputter-

ing method at the atomic scale precision.

2.2. Optical properties of Si/SiO
2
 layer films

Optical transmittance spectra and reflectance spectra are measured with the help of JASCO 
V-670 visible and ultraviolet optical photometer at room temperature. Optical properties of an 

Figure 3. The density-of-states intensity of nanostructure Si/SiO
2
 amorphous films. (a) Si2p 99.1 eV (elemental Si) and Si 

2p 103.3 eV (oxidized Si) and (b) O1s 532.6 eV.
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amorphous Si/SiO
2
 nanostructure film show the higher optical transmittance and wide optical 

window effects. Unique optical properties are a candidate for solar windows in solar cells or 
filters of ultraviolet light. The parameters characterizing the Si/SO

2
 film structures are the well 

layer thickness, the barrier layer thickness, and the number of periodicity. Figure 4 displays 
the optical reflectance and transmittance spectra of amorphous Si/SiO

2
-nanostructured layer 

films of various period numbers. The well thickness of the samples changes from 2 to 24 nm, 
while the barrier thickness is fixed at 4.8 nm. As the period’s number of layers increases, the 
optical reflection decreases and the optical transmittance increases markedly, although the 
onset energy of transmittance and the absorption edge wavelength show the constant values. 
The increasing period number enhances optical transmittance and decreases optical reflec-

tance. The spectra are saturating at 8–12 barrier layers. Increasing the period number does not 
change the absorption edge energy. Nanostructure effects observed on the 12-layer Si/SiO

2
  

film as the optical transmittance and reflectance effects are saturating. Figure 5 exhibits the 
optical reflectance (a) and transmittance spectra (b) of Si/SiO

2
 films as a function of the Si well 

thickness at the constant 12-period numbers and the constant barrier thickness of 4.8 nm. 
The increasing Si well thickness increases the reflectance and decreases the transmittance as 
expected. Also, the absorption edge energy shows the constant values. Figure 6 shows the 
barrier thicknesses dependence of optical reflectance (a) and optical transmittance (b) spectra 
for the constant 12-layer period and 2 nm well thicknesses. The increasing barrier thicknesses 
diminish the optical reflectance and enhance the optical transmittance.

2.2.1. Absorption coefficient

Absorption coefficients α (λ) are used as the index of intrinsic properties of thin film materials. 
Absorption coefficient α (λ) at a wave length λ is evaluated from Eq. (1) for the sample thick-

ness d with the optical transmittance T(λ) and reflectance R(λ). On the Si/SiO
2
 nanostructure 

multilayer films, the integrated thickness of the Si layer, the reduced film thickness in Eq. (2) 
is used as the tentative thicknesses.

  T =   
  (1 − R)    2  exp (− αd) 

  ____________  
1 −  R   2  exp (− 2αd)      (1)

  d =  ∑ 
i=0

  
n

     d  
i
    (2)

    (αhν)    1/2  = β (hν −  E  
0
  )  α > 103  (3)

Figure 7 shows the dependence of the absorption coefficients on the Si well thickness of 
12-layer Si/SiO

2
 films. The photon energy dependences of absorption coefficient show a sharp 

rise in the energy of absorption edges above 1000/cm. The dependence of the absorption edge 
energies on the Si well layer thickness is measured from 0.5 to 6 nm at the SiO

2
 barrier layer 

fixed at 2.4 nm. In Figure 8, (αhν)1/2 vs. photon energy is plotted. The absorption coefficients of 
amorphous films are related in Eq. (3) known as an amorphous plot to obtain the absorption 
edge energy.
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2.2.2. Quantum confinement

In Figure 9, the absorption edge energy is plotted vs. the tentative well thicknesses in a Si/SiO
2
 

multilayer structure and compared with the effective-mass theoretical estimations. Two types 
of the absorption edge energy evaluated from Figures 7 and 8 are indicated. The absorption 
edge energy becomes larger as the QW thickness gets smaller. The blue shifts of the absorp-

tion energy are impressive in Figure 9. The absorption edge energy values E
0
 are evaluated 

for each well thickness following the effective-mass theory, Eq. (4) [9]. The Si layer thickness 
dependency of absorption edge energy is in accordance with the effective-mass theory for 
thicknesses 0.5 < d < 6 nm in Eq. (4). Therefore, a good agreement is obtained with the effective 
mass theory assuming infinite potential barriers [34]. The thickness variation of the absorp-

tion edge energy shown in Figure 9 demonstrates a remarkable blue shift of the spectra as the 
Si layer thickness decreases. This shift can only be caused by the Si layer because the SiO

2
 bar-

rier layer thickness is a constant value of 4.8 nm. This absorption edge energy is in accordance 
with E

0
 (eV) = 1.61 + 0.75 d−2 (eV).

   E  
0
   = Eg +    ħ   2   π   2   n   2  ______ 

2  m  
0
    d   2 

   (  1 ___  m  
e
     +   1 ___  m  

h
    )  =  E  

g
   +   0.75 ____ 

 d   2 
    (eV)   (d : nm,  m  

e    = 1,  m  
h 
  = 1)   (4)

Figure 5. Optical properties of 12-layer Si/SiO
2
 films of different QW thicknesses. The barrier thickness is 4.8 nm. (a) 

Optical reflectance spectra, (b) optical transmittance spectra.

Figure 4. Optical properties of amorphous Si/SiO
2
 multilayer films at the constant barrier thickness and the constant 

integrated well thicknesses as a function of the layer number. (a) Optical reflectance spectra, (b) optical transmittance spectra.
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Although quantum confinement is obtained from the optical absorption measurements, the 
recombination mechanism is still indistinct. To elucidate the latter, we investigate PL spectra 
of the Si/SiO

2
 multilayer nanostructures.

2.3. Thermal annealing of Si/SiO
2
 layer films

Since the as-deposited samples show very weak photoluminescence, two experimental efforts 
are made to improve the PL intensity. The first is the increasing the well number of Si/SiO

2
 films 

layered with 0.5–15 nm (Si) QWs from 10 to 50 periods. The second is the thermal annealing of 
Si/SiO

2
 films in nitrogen. In our work, RTA in nitrogen was performed at 700 and 1100°C for 

30 min. Figure 10 shows the cross-sectional view of an RTA treated Si/SiO
2
 film. Apparently, 

the Si QW layers are changed revealing partially dark spots and eroded SiO
2
 barrier layers.

Figure 11 shows the XRD spectra of a 10-layer Si/SiO
2
 film on a sapphire substrate which is 

rapid-thermal annealed at 700 and 1100°C. The crystallization is clearly identified at 700°C by 
the splitting the (111), (220), and (311) Braggs peaks indicating that the amorphous Si layers 
are crystallized as the nanocrystal Si.

Figure 7. Absorption coefficient spectra for a 12-layer Si/SiO
2
 film with a 2.4-nm SiO

2
 barrier for different thicknesses of 

the Si well layer.

Figure 6. Optical properties of a 12-layer Si/SiO
2
 film at a constant QW thickness of 2 nm for different barrier thicknesses. 

(a) Optical reflectance, (b) optical transmittance.
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2.3.1. Photoluminescence of Si/SiO
2
 layer films

Photoluminescence spectra of as-deposited amorphous 10 layers Si/SiO
2
 films are excited at 

325 nm by a He-Cd laser. The highest energy peaks at 2.35, 2.05, 1.81 eV, with subpeak at 
1.45 eV are observed. The improved PL is observed upon crystallization of Si after subject-
ing the 50-layer Si/SiO

2
 multilayer nanostructures to RTA at 700 and 1100°C as shown in 

Figure 12. The spectra show a broadband peak and shoulders. The main peak energies are 
1.62, 1.68, and 1.45 eV. In Figure 13, photoluminescence spectra of Si/SiO

2
 QWs annealed at 

1100°C for 30 min in nitrogen are shown for the QW thickness ranging from 1.2 to 2.5 nm. The 
intensity becomes higher for the thinner QWs.

Figure 13 presents the well thickness dependence of PL spectra taken on the 50-layer Si/SiO
2
 

structure upon RTA in nitrogen at 1100°C. The strongest PL is observed for the thinnest Si QW 
(1.2 nm), fading as the QW thickness increases. Figure 14 displays the temperature depen-

dences of photoluminescence spectra. Among the three temperatures, the 80 K spectrum is the 

Figure 8. An enlarged view of absorption coefficient spectra displayed in Figure 7. The extrapolation gives the optical 
band gap energy.

Figure 9. The absorption edge energy as a function of the QW thickness at the constant 2.4-nm SiO
2
 barrier thickness in 

a Si/SiO
2
 multilayer structure.
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most intense, followed by the room temperature, and the 4 K photoluminescence. The Kapoor 
model, where two different recombination mechanisms are operative in different tempera-

ture ranges, can explain this nonmonotonous temperature dependence of PL. The Kapoor’s 
Eq. (5) consists of an Arrhenius-type term T

r
 and a Berthelot term TB. Rolver explained the 

effects as an interplay of thermal activation of excitons into optically active states and hopping 
occupation of dark states.

  I (T)  =   
 I  

0
  
 ______________  

1 +  v  
o
   exp [ (  

T
 __ 

 T  B  
   +   

 T  
r
  
 __ 

T
  ) ] 

    (5)

Figure 10. A cross-sectional view of SEM on an amorphous Si/SiO
2
 film rapid thermal annealed at 1100°C in nitrogen.

Figure 11. XRD spectra of a Si/SiO
2
 multilayer nanostructure grown on a sapphire substrate and rapid-thermal annealed 

at 700 or 1100°C.
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Figure 13. PL spectra of the 50 L Si/SiO
2
 of different QW thicknesses (1.2, 1.3, 1.5, and 2.5 nm) annealed at 1100°C.

Figure 14. Temperature-dependent PL spectra. Intensity increases from 4 to 293 K and 80 K.

Figure 12. PL spectra of Si/SiO
2
 QWs and annealing effects on the photoluminescence intensity of the 50-layer Si/SiO

2
 

(1.2 nm Si and 2.4 nm SiO
2
) structures at room temperature.
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2.3.2. The Kapoor model

The temperature dependence of the photoluminescence intensity peaks observed at 80, 4, and 
293 K are analyzed using the Kapoor empirical models [45, 67]. The simulation of the Si/SiO

2
 

sample comprising 50 quantum wells (1.2 nm well width) annealed at 1100°C for 30 min in nitro-

gen is performed following Eq. (5). Figure 15 presents the result, which evidences a reasonable 
agreement between the experimental and simulated results using T

r
 = 70 K, TB = 80 K, and υ

0
 = 0.1.

3. Summary

Amorphous nanostructured Si/SiO
2
 films are smartly fabricated using a UHV RF magnetron 

sputtering system at room temperature. Absorption coefficients are evaluated considering the 
tentative well Si thickness and energy band gap energy of the Si/SiO

2
 layers. The photon energy 

dependence of absorption coefficient on the quantum well thickness is simulated taking into 
account the quantum-confined properties. The choice of the Si layer thicknesses interfacing the 
SiO

2
 barrier layer of the constant thickness (4.8 nm) mainly determines the blue shift of the absorp-

tion energy. Assuming the infinite potential SiO
2
 barriers, the effective-mass theory provides 

the fitted absorption coefficient edge energy in accordance with E (eV) = 1.61 + 0.75 d−2 (eV) for 
one-dimensionally confined amorphous Si (d: nm). The amorphous Si/SiO

2
 nanostructure films 

show the quantum confinement. Thermal annealing of the Si/SiO
2
 films affects the improvement 

of photoluminescence intensity. Anomalous temperature dependence of photoluminescence is 
attempted to be explained based on the Kapoor model. Future work is expected to resolve many 
more research questions.
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