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Abstract

Single-phase motors are widely used in household applications. Shaded-pole and split-
phase capacitor-start single-phase induction motors are very popular for their ruggedness
and their comparatively low cost. Recently, line-start single-phasemotors are gaining market
shares. However, their superior efficiency and torque density are counterbalanced by the
higher cost of the rotor construction due to the magnets. This chapter compares the main
structures of single-phase line-start motors, presenting their lumped parameter models and
the finite element analysis. The equivalent circuits of the single-phase induction motor and
of the line-start permanent magnet are derived. Different rotor structures for single-phase
line-start permanent magnet (PM)motors are compared. The finite element method (FEM) is
used to compare the characteristics of the motors. Motors with the same stator have been
tested. No-load and load tests have been performed and compared to the FEM simulations
and to the analytical model. Finally, the performances of line-start PM motors are compared
to the shaded-pole induction motors in terms of torque density and efficiency.

Keywords: single-phase line-start permanent magnet motors, shaded-pole induction
motor, performance analysis, permanent magnets, energy efficiency

1. Introduction

Energy saving is an important aspect of sustainable development in modern society. In this

field, electrical machines play a fundamental role in industrial, commercial and residential

applications. It is well known that the energy consumed by electrical machines represents the

largest part of the total consumption of electricity in the industrial sector. Higher efficiency can

lead to the significant reduction of fossil fuel consumption and also of the environmental

impact of human activities. For this reason, nowadays and worldwide, all products for indus-

try or residential applications are classified on the basis of their energy efficiency.
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Single-phase induction motors are used in household applications due to their robust and

simple construction and to their capability for being attached directly to the single-phase grid

without using power converters [1, 2]. Split-phase and shaded-pole single-phase induction

motors (SPIM) represent today the most common single-phase general purpose motors. As

SPIM are inherently not self-starting when directly connected to the grid, they use an auxiliary

winding to improve the starting capability. The most significant characteristics of the SPIM are

as follows: robust and relatively cheap construction and capability to withstand large over-

loads. In comparison with three-phase induction motors [3] and to other machine types, SPIMs

have a much lower efficiency due to their higher copper and core losses [4].

The motors used in domestic appliances often have a small-rated power, less than 2 kW and

run at a constant speed [5].

In this power range, the smaller the motor, the lower the efficiency of the machine. This is

mainly due to the fact that both the iron loss and the copper loss are significant in comparison

with the rated power. In fact, the stator core of small motors is generally not annealed; the air-

gap length is relatively large and the resistance of the stator windings is comparatively large.

Permanent magnet synchronous motors (PMSMs) provide higher efficiency and high-torque

density, although they need an inverter for normal operation [6]. Due to dramatic improve-

ments in the magnetic and thermal properties of permanent magnet (PM), materials over the

past 40 years, alongside with considerable cost reduction, PM synchronous motors have

gained popularity both in the inverter-fed and in the line-start categories [7, 8].

Due to their simple structure and direct connection to the grid, single-phase line-start PM

motors (SPLSPMM) represent a good alternative to the induction motor as they produce

significant energy savings in the long term. SPLSPMMs are structurally similar to single-

phase induction motors with the addition of permanent magnets glued or embedded in the

rotor. Line-start PMmotors have higher efficiency than SPIMs and operate at near unity power

factor [9]. Also, they can be supplied by a three-phase supply source and may be provided

with a rotor cage [10, 11]. This motor type is suitable for use in devices such as drain pumps

and electric fans [12]. Line-start PM motors start like induction motors and run synchronously

like any other type of synchronous motor.

Compared to the widespread induction motors, PM motors with direct online starting ability

have higher efficiency, high power factor, low sensitivity towards voltage variations and com-

pact size. They also have the additional advantage of achieving higher power density, besides

the capacity to operate at synchronous speed [13, 14].

In particular, the SPLSPMM can be used instead of conventional induction motors for applica-

tions like pumps, air conditioners and fans [15]. However, the PM synchronous motor working

at line frequency has a major drawback during the starting transient as the stator iron bore

must be accurately profiled to increase the starting torque and improve the ability to synchro-

nise with a load attached to its shaft.

During motor start-up, the acceleration torque of the SPLSPMM motor is the average cage

torque (if the cage is present) minus the load torque. The permanent magnets on the rotor also

generate a braking torque which decreases the starting torque and reduces the ability of the

rotor to synchronise. The optimisation of the design of these motors improves the output

torque as well as their overall efficiency.
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The technical literature has dealt with this issue, and different works have investigated how to

improve the efficiency of SPLSPMM [16, 17].

Even if the superiority of SPLSPMMs with regard to SPIM is well known, SPIMs are still

widely used in many different home appliances.

This chapter analyses the main structures of single-phase motors and compares different rotor

structures suitable for SPLSPMM, characterised by different magnet arrangements.

One shaded-pole induction motor (as in Figure 1) used in home appliances is compared to

different structures of low-cost single-phase line-start PM motor (SPLSPMM) [18, 19] to

numerically assess its performance improvement.

The lumped parameter models of the single-phase induction motor and of the single-phase

line-start PM motor are presented [20, 21] alongside with their equivalent circuits.

The equivalent circuit of the SPLSPMM is very similar to that of the SPIM. Thanks to this,

the SPLSPMMcan be easily considered as a particular case of a SPIMwith the presence of perma-

nent magnets in the rotor; this leads to an easier comparison of their overall performances.

A comparison of the rotor structures is therefore made through FEM analysis. The optimal

solution is experimentally tested.

The study aims at numerically assessing the performances of SPLSPMM and its efficiency in

comparison with the shaded-pole SPIM with the same volume and weight [22]. The motors

compared basically share the same structure.

The comparison is made by using the finite element method (FEM), the analytical model and

the experiments.

Section 4 shows the mathematical model of the motor under test and Section 5 shows the

design procedure. The results of the experimental comparison are given in Section 6.

2. Efficiency of single-phase motors

Single-phase shaded-pole induction motors are widely used, but their efficiency is low. Their

low performances are due to their intrinsic characteristics. The need for sustainability has led

to international regulations on energy efficiency. The IEC 60034-30-1 standard, which was

published in March 2014 classifies the motors into four levels of energy efficiency (IE1–IE4).

Figure 1. Line-start prototype rotor (right), stator (centre), shaded-pole rotor (left).

Single-Phase Motors for Household Applications
http://dx.doi.org/10.5772/intechopen.79203

151



The IEC 60034-30-1 standard applies both to single- and three-phase motors. The classification

is different for motors with different number of pole pairs. The European Union has trans-

posed the IEC 60034-30-1 standard, introducing a timeline for energy efficiency of all motors

produced in the power range 0.75–375 kW. Since 2017, all the manufactured electric motors

must have efficiency at least equal to the IE3 class (or IE2 if the motor is supplied by an

inverter). It is expected that the range is extended in the future. Optimising the motors of

everyday use could save huge quantities of energy and keep the competitiveness of industries.

In the literature, many studies are aimed at improving the output characteristics of induction

motors [23, 24]. Single-phase line-start induction motors are of two main types:

• split-phase induction motors;

• shaded-pole induction motors.

The first use an auxiliary wining provided with an external impedance. The value of the

impedance is chosen by taking different aspects into consideration:

• Reverse field cancellation: A capacitor is chosen in order to cancel, as far as possible, the

inverse torque present in the machine, to obtain a circular field at the air gap and eliminate

the alternative torques with double pulsation with respect to the supply. This technique,

however, allows to optimise the performances at one operating speed;

• Minimisation of the reverse torque/direct torque ratio: The external impedance is chosen to

maximise the performance in a wide speed range;

• Maximisation of electromagnetic torque.

• Maximisation of the torque/current consumption ratio;

To achieve the same objectives, the shaded-pole induction motors use an auxiliary winding

which is generally short-circuited and spatially lagging from the main winding. The imped-

ance of the auxiliary winding introduces the necessary time-lag.

3. Line-start permanent magnet motors

Line-start permanent magnet synchronous motors are structurally similar to single-phase induc-

tion motors, except for the permanent magnets located on the rotor. The efficiency of SPLSPMM

is higher in comparison to conventional SPIM, and furthermore, they can operate with a close to

unity power factor. SPLSPMM are mainly used for household applications, such as refrigerators,

compressors or extractor hoods/fans. However, these advantages lead to an increase in produc-

tion costs. As the cost of high-energy permanent magnets is decreasing, it is possible to expect

SPLSPMM gained a wider share of the market, to meet the regulations on energy efficiency.

SPLSPMM combine the advantages of permanent magnet motors to those of the cage rotor.

The squirrel cage provides the asynchronous start capability, while the action of the magnets

disturbs the transient phase. Another advantage of cage-rotor SPLSPMM is that they can be

attached directly to the grid.
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At steady state, the motor operates at synchronous speed. At synchronous speed, the currents

can be reduced. In fact, in an induction machine, the torque is obtained at the price of the speed

difference between the main flux and the rotor. This phenomenon generates Joule losses in the

rotor bars and to a lesser extent rotor core loss. Furthermore, the magnetising current required to

generate the magnetic field, determines additional losses in the stator. In synchronous machines,

the magnetic field is produced by the armature winding and by the excitation, with the majority

of the magnetic flux produced by the excitation, while a smaller amount of the reactive power is

absorbed by the grid during operation. Moreover, in the case, the excitation field is obtained

using permanent magnets; there are no copper losses in the rotor and virtually no core loss.

The main limitations of line-start machines (similar to those of SPIM) are that the air-gap field

is elliptic and the starting capabilities are limited. Fortunately, the most limitations can be

solved by suitably shaping the magnetic circuit.

The mathematical models of the SPIM and of the SPLSPMM are based on the decomposition of

the main fluxes into direct and quadrature components [25–28].

In this chapter, the mathematical model of the shaded-pole induction machine and of the line-

start permanent magnet single-phase machine is presented. The performances of both motor

types are compared. The model uses the space vectors [23] to describe the distribution of the

induction in the air gap.

3.1. The equivalent circuit of the single-phase induction motor

Single-phase induction motors are widely used in low-power applications (up to a few kW). The

construction of these machines is similar to the three-phase version, with one single-phase stator

winding and one rotor cage. However, they achieve a lower power density. The stator winding,

which generally occupies the two-thirds of the stator periphery is supplied with a sinusoidal

voltage, which causes a sinusoidal MMF, too. The magnetic field distribution in the air gap has a

fixed position while its amplitude varies sinusoidally as the current.

3.1.1. MMF and torque generated by the main winding

The air-gap magnetic field generated by a single-phase winding is:

ð1Þ

where p is the number of pole pairs, and α is the angular coordinate in the stator reference.

If in Eq. 1 is set:

ð2Þ

with N number of turns per pole pair; ξ the winding factor; δ the width of the air gap; μo the

permeability of vacuum.

Considering the case of a sinusoidal supply:

ð3Þ

Using Eq. (1), one has:
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ð4Þ

which represents an electromagnetic wave varying its amplitude with time. Eq. (4) can be

easily rewritten by using trigonometric assumptions:

ð5Þ

This means that the magnetic field of a single-phase winding can be achieved as the sum of

two different fields with the same amplitude and with different verse of rotation (Figure 2).

These two fields produce the same effect on the rotor. The field rotating in the same direction

as the rotor is called direct field while the other reverse field. Similarly, the electromechanical

torque (T) can be considered as the sum of the direct torque Td, caused by the direct field and of

the reverse torque Ti, caused by the reverse field. Obviously, the values of these torques

depend on the speed of the rotor. Td and Ti are equal if the speed is zero, that is, the slip is

equal to one (because at zero slip the magnetic fields having equal amplitudes, rotate with

same speed but opposite directions). In all other operating points the values of torque are

different.

Hence, two slips can be defined, one direct and one reverse:

ð6Þ

ð7Þ

In order to study the SPIM, a simplification can be introduced by considering the motor as the

union of two three-phase machines. The system can be studied with the technique of the

superposition of the effects.

The main drawback of the pure single-phase induction machine is that is not self-starting,

because at the starting point the resulting torque is null. When the rotor rotates, a non-zero net

torque arises.

3.1.2. Reverse field cancellation

In order to solve the problemof cancelling the reverse field produced by the primarywinding of the

single-phase inductionmotor, different techniques can be applied. Generally, this is done by adding

Figure 2. Field rotation directions.
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an auxiliary winding with a magnetic axis displaced γ electric radians from the main winding and

supplying the twowindings with currents mutually displaced in time of an angle φ (Figure 3).

The auxiliary winding produces the additional field Ba:

ð8Þ

If γ is positive, then the auxiliary winding is lagging. If the auxiliary winding is supplied with

a current lagging φ behind the current in the main winding in Eq. 5, the flux density distribu-

tion becomes:

ð9Þ

The resultant flux density in the air gap is achieved summing Eq. (9) to Eq. (5) and consists of

two rotating fields, one in the direct direction:

ð10Þ

and the other one in the reverse direction:

ð11Þ

To ideally cancel the reverse field, two conditions must be considered:

1. The MMF amplitudes of the primary and auxiliary fields must be equal:

2. The following relationship between the geometrical and the time phase lags must hold:

Finally, the maximum direct field amplitude is achieved if:

ð12Þ

Figure 3. Simplified circuit diagram of a split-phase induction motor.
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In the case, the two conditions for reverse flux cancellation are achieved, the resultant flux

density in the air gap is achieved by summing Eq. (9) to Eq. (5):

ð13Þ

Eq. (13) represents one field rotating in one direction, like in a three-phase machine. Obviously,

the perfect cancellation may be achieved only at one working point, for example, at start-up or

at nominal load.

In split-phase machines, condition 2 is achieved by displacing the auxiliary winding of γ = π/2

that means φ = �π/2. The minus sign means that the auxiliary current leads the main current.

Therefore, the split-phase SPIM includes two stator windings: one main winding and one

auxiliary winding, displaced of 90�. If the auxiliary winding is used for starting, it can be

excluded when the machine reaches a fixed operating condition.

The current lag of π/2 is produced by introducing a capacitor in series to the auxiliary winding.

This is necessary to provide the self-starting capability and to improve its performance, so that

the phase displacement between the currents circulating in the two stator windings, creates an

imbalance between the direct torque and the reverse torque. This phase shift is possible because

the ohmic-capacitive nature of one of the winding (due to the presence of the capacitor).

Since the auxiliary winding can be disconnected over a fixed speed, capacitor-start induction

machine can be divided into permanent capacitor topology (Figure 4) and starter capacitor

topology (Figure 5).

Figure 4. Permanent capacitor induction motor.

Figure 5. Capacitor-start single-phase induction motor.
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For the capacitor-start motor, the value of the capacity is selected to achieve the desired

starting performance, while for the permanent capacitor motors, it is generally the result of

a trade-off between performances under different load conditions.

In shaded-pole SPIMS, the auxiliary winding is, instead, composed of two short-circuited

windings wound around the pole shoes. The angle ψ is varied by varying the number of the

short-circuited turns until the desired performance is reached.

3.2. Analysis of the single-phase induction motor

Based on the air-gap flux density distribution in Section 3.1.2, it is possible to compute the EMF

induced in the stator and rotor windings. Afterwards, the electromagnetic torque is obtained

and finally the equivalent circuit is derived.

3.2.1. Resultant air-gap flux density

The air-gap flux density is the sum of the flux density distribution of the stator windings and of

the cage:

ð14Þ

where Bstator and Bcage can be derived from Eqs. (10) and (11):

ð15Þ

where Ifs and Ifr are the direct and the reverse component of the stator currents system,

respectively. If the cancellation of the reverse flux is not perfect, the amplitudes of these current

components are different. The same is for the cage.

At sinusoidal steady state, the main harmonic of the air-gap flux density is:

ð16Þ

3.2.2. Stator back EMFs

The EMF of one stator winding can be obtained by summing the EMF of each coil.

ð17Þ

where D is the diameter of the machine; zνi is the number of conductors in slot.
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The EMF induced in the stator windings can be evaluated as:

ð18Þ

where the following equation was assumed:

3.3. Rotor back EMFs

The EMFs in the rotor bars are obtained in the same way as before.

ð19Þ

The EMF induced in each rotor bar is the sum of two sinusoidal components with pulsation

(ω + p
ωr) e (ω � p

ωr):

ð20Þ

3.4. Electromagnetic torque expression

The electromechanical torque can be evaluated as:

ð21Þ

with B(α, t) the distribution of the induction in the air gap andΘr (α, t) the rotor current density:

ð22Þ

where ∆Fr (α, t) is the MMF caused only by the rotor currents:

ð23Þ

Eq. 22 becomes:

ð24Þ

By substituting Eq. 24 and Eq. 16 in Eq. 21 and finally solving, the expression of the electro-

magnetic torque is obtained:

ð25Þ

where the following equation was assumed: If = Ifs + rIfr and Ib = Ibs + rIbr.
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Therefore, the electromagnetic torque in a single-phase inductionmotor is the sum of three terms:

1. Direct electromagnetic torque:

2. Reverse electromagnetic torque:

3. Electromagnetic torque with pulsation 2ω:

3.5. Mathematical model

The mathematical model of the SPIM is obtained by considering the fundamental harmonic of

the air-gap flux density distribution.

The impedances of the two circuits (Figure 6), including the external impedance are: Z1 = R1 +

jX1 and Zt2 = R2 + Rc + j(X2 + Xc).

The currents I1 and I2 can be expressed as a function the direct and reverse components of the

stator currents:

ð26Þ

ð27Þ

The equations referred to the various nets of the equivalent circuits are:

where

ð28Þ

Figure 6. Grid connection of a capacitor-start single-phase induction motor.

Single-Phase Motors for Household Applications
http://dx.doi.org/10.5772/intechopen.79203

159



where

The expression of the electromagnetic torque is finally recalled.

ð29Þ

3.6. The equivalent circuit of the single-phase induction motor

The equations, which define the mathematical model of the single-phase induction motor with an

auxiliary winding and external impedance, can be graphically translated into equivalent circuits.

Referring to the model Eqs. (28) after some manipulations, one can write:

ð30Þ

4. The line-start permanent magnet synchronous motor

The model of the line-start PM machine is derived hereafter on the basis of the model of the

shaded-pole machine without any auxiliary winding.

4.1. Stator winding flux density distribution in the air gap

In a single-phase machine with p pole pairs, the magnetic field in the air gap is fixed in space

and variable in time due to the structure of the motor and its winding. The armature winding

is therefore unable to create a rotating field in time and space. The first harmonic of the stator

magnetic field can be written as:

ð31Þ

where K is

ð32Þ

with f form factor, which is
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ð33Þ

in the case of rectangular magnetomotive force (MMF). The equation of the stator winding flux

density is:

ð34Þ

This field can be divided into two components, namely, the direct and the reverse field.

4.2. Total air-gap flux density of SPLSPMMs

The air-gap flux density of line-start single-phase PM synchronous motors is the sum of two

contributions: the stator winding flux density and the permanent magnet flux density distri-

bution Bpm. In some cases, an incomplete squirrel cage may be added to improve the starting

performance and a further flux density distribution Bc is added:

Bp α; tð Þ ¼ Bs þ Bc þ Bpm (35)

with:

ð36Þ

ð37Þ

ð38Þ

At sinusoidal steady state and ωr rotor speed, one has:

ð39Þ

where Ifs and Ibs represent the forward and backward components of the stator current. Each

flux density component gives rise to a contribution to the back EMF.

The more accurate model of a SPLSPMM is that of Ref. [14], which is based on [1]. The model

analyses a SPLSPMM with an asymmetrical stator winding, an auxiliary winding and PMs on

the rotor causing braking and pulsating torques. The model is based on a combination of

symmetrical components and d-q axis theory. For a motor without an auxiliary winding, the

Vq symmetrical component is zero, while Vd ¼ 2Vm. At synchronous steady state, the forward

voltage is synchronised with the rotor, and the model can be simplified using the average of

the apparent d-axis impedance, while the q-axis part is unnecessary. The resulting d-axis

component model at steady state is represented as the equivalent circuit of Figure 7 for a SPIM

and Figure 8 for a SPLSPMM.
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5. Selection of the optimum configuration

5.1. Machine specifications and no-load field simulation

Different machine configurations have been numerically compared with the help of the finite

element method (FEM). All configurations share the same stator core, which is the same as the

core of the SPIM used as a benchmark, while the number, the type and the shape of rotor

magnets are different. An incomplete cage is present on the rotor to improve the starting

capability of the motor.

Table 1 shows the main dimensions and specifications of the considered motors. The winding

is made of 1723 turns with a 0.2 mm copper wire, the material used for the cage is aluminium.

Figure 7. Equivalent circuit of a single-phase induction machine.

Figure 8. Equivalent circuits of a single-phase SPLSPMM machine, where Z1 is the stator impedance; Xmd is the d-axis

magnetisation reactance referred to the stator (main) winding; RI

r
is the rotor resistance referred to the stator winding; XI

r

is the rotor leakage reactance referred to the stator winding; BEMF is the equivalent back EMF caused by the presence of

the magnets; Z2 is the average of the apparent d-axis impedance Z2 = [Z1 + jXmd] + [jXmd//(Rrl/2 + jXrl)] [14].
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The first configuration is directly derived from the shaded-pole induction motor and includes

two surface-mounted NdFeB magnets. The FEM motor model with the flux density contour is

shown in Figure 9(a). The volume of the magnets required by this structure is considerable and

also the manufacturing cost is larger than that of the following solutions; therefore, it will be

included here only for the sake of completeness. The incomplete cage is used to ensure starting

in all configurations.

The second configuration is similar to the first, it is made of two NdFeB magnets but instead of

being surface mounted they are buried inside the rotor. The FEM motor model with the flux

density contour is in Figure 9(b).

The third configuration is based on the second and includes two further inset NdFeB magnets

to increase the field in the d-axis of the rotor. The FEM motor model with the flux density

contour is in Figure 9(c).

In order to further investigate the role of the middle magnets, a fourth configuration is

proposed. It is the same as the third, although the two middle magnets are closer to the air

gap. The FEM motor model with the flux density contour is in Figure 9(d).

Finally, a low-cost configuration is presented. It is the same as the third configuration; it is

equipped with two ceramic middle magnets instead of the inset NdFeB magnets. The FEM

motor model with the flux density contour of this configuration is in Figure 9(e).

5.2. Flux linkage

The flux linkage is numerically calculated for each of the above structures. The flux linkages of

the different configurations are shown in Figure 10.

It can be seen that, while the first configuration produces the highest flux linkage, there is no

significant difference among the other configurations. Based on cost considerations, configu-

rations 2 and 4 must be preferred.

The configuration chosen is shown in Figure 1 and in Figure 9(b), with two Grade 32 NdFeB

magnets embedded in the rotor. This configuration offers the maximum flux density with the

lowest increase in the cost of manufacturing the machine. Furthermore, this configuration is

the easiest to produce.

Element Dimension

Stator height 67.6 mm

Stator width 84.6 mm

Rotor diameter 34.24 mm

Air gap 0.4 mm

Lamination length 19 mm

Poles 2

Turns 1723

Table 1. Prototypes main dimensions and specifications.
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The back EMF can be calculated from the flux linkages as:

ð40Þ

Figure 9. No load FEM simulations. (a) FEM simulation result of the first rotor configuration with two surface NdFeB

magnets (model 1). (b) FEM simulation result of the second rotor configuration with two inset NdFeB magnets (model 2).

(c) Third rotor configuration with with four NdFeB (position 1) simulation result (model 3). (d) Configuration with four

NdFeB magnets (position 2) simulation result (model 4). (e) Configuration with two NdFeB magnets and two ceramic

magnets (position 1) simulation result (model 5).

Figure 10. Flux linkages of the different structures for different rotor positions.
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Using Eq. (40), the back EMF is computed over a complete rotation of the rotor and its RMS

value is extracted. On the other hand, the trends for the predicted back EMF are shown in

Figure 11. The RMS value of the back EMF versus the speed (for the different solutions) is

shown in Figure 12. One can notice that the trend is, as expected, approximately linear. These

values are compared to the experimental results in Section 6 (for the chosen solution).

6. Experimental tests

To compare the SPLSPMM’s performances with the SPIM’s, the SPLSPMM has been supplied

with a single-phase inverter implementing a V/Hz ramp.

6.1. Parameter identification of SPLSPMMs

In order to obtain the machine model parameters and study its performances, both no-load

and load tests have been performed. The test bench is shown in Figure 13.

The equivalent circuit parameters, derived from tests, are shown in Table 2, while Figure 14

shows the trend of the magnetisation reactance as a function of the voltage (which has been

implemented in the mathematical model).

Figure 12. Back EMFs for different rotor speed different solutions.

Figure 11. Predicted back EMFs versus rotor position model 1, 2, 3, 4, 5.
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For the open circuit test, the machine is coupled to an induction machine and the terminals of the

motor under test (MUT) are open. The terminal voltages are measured at different values of the

speed. The trend of the back EMFs RMS amplitudes is approximately linear as shown in Figure 15.

From the same figure, it is possible to verify that the analytically predicted trend is very close to

the experimental results. The slight differences are caused by the manufacturing process (which

may have degraded the magnet superficially) and by the mathematical approximations.

Figure 13. Test bench.

Parameter Value

Rs 76.37 Ω

Xs 40.21 Ω

R
I

r
10.19 Ω

X
I

r
20.10 Ω

Xmd 113.34 Ω

Table 2. Equivalent circuit parameters.

Figure 14. Magnetisation reactance as a function of voltage.
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The value and waveform shape of the back EMF at 2710 rpm (45.2 Hz) are shown in Figure 16.

Considering the same operating point, a FEA simulation is performed, and the behaviour of

the machine is shown in Figure 11.

The predicted and the experimental voltage RMS values are the same and the shapes of the

back EMFs are approximately the same, except for the larger ripple presented by the experi-

mental data, which is due to the rotor cage slotting.

In Table 3, the rated operating point of the shaded-pole machine is compared with two operating

points of the prototype. Considering a fixed frequency of 50 Hz and a variable voltage, the

maximum torque is delivered when the motor is supplied with 230 V, while the maximum

efficiency is achieved when supplied with 190 V. More results are shown in Section 6.2.

The data shown in Table 3 demonstrate that only with a slightly different rotor configuration

of the machine, the performances improved considerably. This means that the motor can be

used both in a completely different field and in similar applications, as in the case we are

considering, with significantly better performances.

Figure 15. Back EMFs comparison.

Figure 16. Measured back EMFs versus rotor position.
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6.2. Characterisation of the SPIM

The SPIM has one stator winding (main winding) and one short-circuited winding, while the

rotor is of the squirrel-cage type. The single-phase induction motor without its auxiliary

winding is not self-starting. When the motor is connected to a single-phase supply, the main

winding carries the alternating current, which produces a pulsating magnetic field. To gener-

ate torque, an auxiliary winding is needed.

The SPIM used shares the same magnetic circuit as the SPLSPMM. The induction machine is

supplied with its rated voltage and frequency, hence 230 V and 50 Hz, and the load torque is

increased with steps between 0 and the maximum torque.

In order to have an idea of the performances of the shaded-pole motor here are some data.

The maximum torque achievable by the motor in these conditions is 1.26 kg cm at 2076 rpm.

The supply current of the motor is 0.82 A in this operating point. The input power is 107 W

and the output power is 27 W, hence the efficiency in this point is 25.23%. The maximum

SPIM efficiency of 28.16% is achieved at 2350 rpm, with an input current of 0.78 A and an

output torque of 1.14 kg cm. The same test has been performed with different values of

supply voltage between 180 V and 240 V. The highest value of torque, in these conditions, is

delivered at 240 V and it is 1.23 kg cm, while the highest efficiency of 27.03% is obtained at

210 V.

6.3. Characterisation of the SPLSPMM

The SPLSPMM has been supplied by a single-phase inverter implementing a V/f law. The test

has been performed with different values of the supply voltage ranging between 180 and 230

V. The torque trend versus the input current is shown in Figure 17. At 230 V and 3000 rpm the

achieved torque is 2.91 kg cm with an input current of 0.92 A. The torque has been experimen-

tally evaluated and compared with the analytical torque achieved using the equivalent circuit

(Figure 18). Figure 19 shows the trend of the efficiency of the SPLSPMM versus the input

current at different voltages and frequencies. The maximum efficiency is 62.44% with 0.75 A,

2.49 kg cm at 3000 rpm. The highest torque value is delivered at 220 Vand it is 2.6 kg cm, while

the most efficient point is obtained at 190 V with 73.59%.

Quantity Shaded-pole machine

(rated values)

Prototype maximum

torque O.P.

Prototype maximum

efficiency O.P.

Current [A] 0.214 0.92 0.75

Voltage [V] 230 230 190

Electric power [W] 68 148 123

Rated speed [RPM] 2600 3000 3000

Power [W] 27 76.8 89.6

Rated frequency [Hz] 50 50 50

Efficiency [%] 12.00 62.44 73.59

Table 3. Motors characteristics.
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6.4. Comparison between the SPLSPMM and the SPIM

To assess the performances of the two motor types, the SPLSPMM and the SPIM have been

tested in the same operating conditions. The performance comparison is made by connecting

the two motors to a sinusoidal power supply at 50 Hz frequency and variable voltage. The

efficiency characteristic and the torques are compared in Figures 20 and 21.

The two figures highlight the supremacy of the SPLSPMM in terms of torque density and

efficiency. The superiority is mainly due to the mechanism of torque production of the

Figure 18. SPLSPMM torque trend comparison between experimental results and mathematical model.

Figure 17. The SPLSPMM’s trend of the torque with the input current by V/f inverter supply.

Figure 19. The SPLSPMM’s efficiency at different frequencies.

Single-Phase Motors for Household Applications
http://dx.doi.org/10.5772/intechopen.79203

169



SPLSPMM. At fixed torque, the current of the SPLSPMM is lower, reducing the Joule loss in

the stator winding. Moreover, the loss component in the rotor cage is reduced and the absence

of the auxiliary winding (shaded pole) further reduces the Joule losses. The increase in iron

losses due to magnets is not significant. Hence, as was imaginable, thanks to a simple change

in the rotor structure, the overall performances get better.

7. Conclusion

This chapter has proposed a mathematical and experimental analysis of a SPLSPMM. Different

structures of SPLSPMMs have been simulated with FEM and compared. A prototype has been

built, analysed and tested.

Starting from the mathematical model of the single-phase shaded-pole motor, an equivalent

circuit has been proposed for the SPLSPMM. The equivalent circuit has taken into account the

presence of both magnets and rotor cage.

The experimental results include no-load and load tests carried out at different voltages and

frequencies. The results show a significant performance improvement of the SPLSPMM in

comparison to the classical SPIM. The maximum efficiency of the SPLSPMM is higher than

70%, while the efficiency of the SPIM is not higher than 30%.

Figure 20. Efficiency comparison.

Figure 21. Torque comparison.
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Nomenclature

α stator reference angular coordinate

N number of turns

ω grid pulsation

φ angle between the stator and rotor reference

p number of pole pairs

Kw winding factor

μ0 vacuum magnetic permeability

δ air-gap width

Bpd direct field

Bpi reverse field

Ifs direct component of the stator currents

Ifr direct component of the rotor currents

Ibs reverse component of the stator currents

Ibr reverse component of the rotor currents

BM residual magnet induction

β initial angle in rotor reference

ωr rated motor speed

r stator-to-rotor winding turns ratio

φ flux linkage

θ rotor mechanical angle
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