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Abstract

Thermal inertia is a parameter that characterizes a property of soil that is defined as the
square root of the product of the volumetric heat capacity and thermal conductivity. Both
properties increase as soil moisture increases. Therefore, soil moisture can be inversely
determined using thermal inertia if a relationship between the parameters is obtained in
advance. In this chapter, methods for estimating surface soil moisture using thermal
inertia are comprehensively reviewed, with emphases on the followings: How thermal
inertia is retrieved accurately from a surface heat balance model, and how it is accurately
converted to surface soil moisture. In addition, the advantages and disadvantages of the
thermal inertia methods are discussed and compared to microwave-based methods, such
as spatial resolution and the sky conditions. Precise and accurate data from earth observ-
ing satellites are indispensable for estimating the spatial distribution of thermal inertia at a
high resolution. On the other hand, data assimilation methods are rapidly developing,
which may be competitive with thermal inertia methods. Finally, applications of thermal
inertia methods are described and discussed for future explorations, such as dust emission
in relation to soil moisture, and estimating regional water budgets by combining other
satellite data.

Keywords: thermal inertia, soil moisture, thermal-infrared band, land surface
temperature, earth observing satellite, surface heat balance, force-restore model, Fourier
series expansion, microwave-based method

1. Introduction: thermal inertia of unsaturated soil

Thermal inertia P is one of the parameters used to characterize the thermal properties of soil

and is defined as the square root of the product of the volumetric heat capacity C and thermal

conductivity λ, which is given as

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



P ¼
ffiffiffiffiffiffiffi

Cλ
p

: (1)

Thermal inertia appears in the formulation of the ground heat flux when it is formulated with

a unique variable known as the land surface temperature (LST), and one does not have to

consider the vertical profile of the soil temperature.

In terms of the relation between soil thermal properties and soil moisture, both the volumetric

heat capacity C, which is the product of specific heat c and the bulk density r of the soil, and

the thermal conductivity λ increase as the soil moisture increases. Accordingly, thermal inertia

P also increases as soil moisture increases. Therefore, soil moisture can be estimated inversely

if the thermal inertia value is known (Figure 1). The volumetric heat capacity is a moderate

linear function of soil moisture [1]. By contrast, thermal conductivity has a strong nonlinearity

with soil moisture, making it difficult to parameterize thermal conductivity and hence thermal

inertia.

Thermal inertia is effective when the time series of the surface temperature is available, but the

vertical profile of the soil temperature is not available. The differential equation for heat

diffusion is given as

∂T z; tð Þ
∂t

¼ λ

C

∂
2
T z; tð Þ
∂z2

, (2)

where T z; tð Þ is the soil temperature at depth z and time t, which is the difference from a

constant value at an infinite depth. This equation is solved to reproduce the daily and yearly

Figure 1. Schematic of the relationship between volumetric heat capacity, thermal conductivity, and thermal inertia in

terms of soil moisture.
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periodic cycles of soil temperature, under the boundary conditions that the temperature

change is sinusoidal at the surface and constant at an infinite depth. The basic solution is as

follows using the complex number expression:

T z; tð Þ ¼ Aexp � z

d

� �

� exp i ωt� z

d

� �h i

, (3)

if the surface boundary condition is T 0; tð Þ ¼ A � exp iωt½ �. In Eq. (3), A is the amplitude of a

periodic change with an angular velocity ω, d is the scale depth at which the amplitude is e�1 of

the surface value, and i is the imaginary number
ffiffiffiffiffiffiffi

�1
p

. The scale depth d is formulated as

d ¼
ffiffiffiffiffiffiffi

2λ

ωC

r

: (4)

Eq. (3) is rewritten as follows using the real number expression:

T z; tð Þ ¼ Aexp � z

d

� �

� cos ωt� z

d

h i

, (5)

if the surface boundary condition is T 0; tð Þ ¼ A � cosωt.

The conductive heat flux in soil at depth z and time t, G z; tð Þ, is defined as

G z; tð Þ ¼ �λ
∂T z; tð Þ

∂z
, (6)

where the vertical profile of soil temperature is obviously required to calculate the soil heat

flux. However, when the soil temperature solution (3) or (5) is applied to the soil heat flux

Eq. (6) and then z is set to zero, it only uses the time series of surface temperature as follows:

G 0; tð Þ ¼
ffiffiffiffiffiffiffi

Cλ

2ω

r

∂T 0; tð Þ
∂t

þ ωT 0; tð Þ
� �

: (7)

In deriving Eq. (7), the following relation derived from Eq. (3),

∂T z; tð Þ
∂t

¼ iωT z; tð Þ, (8)

is used. Eq. (7) is known as the force-restore method (FRM) for calculating the surface soil heat

flux [2]. In Eq. (7), the numerator of the parameter is defined as thermal inertia P, which is

given as

P ¼
ffiffiffiffiffiffiffi

Cλ
p

¼
ffiffiffiffiffiffiffiffi

crλ
p

: (9)

The above derivation describes thermal inertia being effective for quantifying soil thermal

properties when only the LST is known, which leads to the analysis of the land surface

processes using satellite LSTs. The above procedure leads to the studies proposed by Matsu-

shima and co-researchers, which are described in Section 2.
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Considerable effort has been made to estimate the thermal inertia of the Earth’s surface mainly

using LSTdata from satellites. Most of this effort has been concentrated on retrieving daily values

of thermal inertia due to the availability of daily maximum and minimum LSTs observed from

polar orbiting or geostationary satellites. Models using these types of satellite LSTs are based on

the Earth’s surface energy balance principle, which includes not only the radiation budget but

also turbulent heat flux. A Fourier series expansion was introduced to solve Eq. (1) under the

above Earth’s surface boundary conditions using the solution of the real number expression,

Eq. (5). Models have been improved from those using only the two daily extreme LSTs [3–8] to

those using LSTs that are irrespective of time in a diurnal change [9, 10] and other significant

studies that follow a series of important proposals by Xue and Cracknell [11–14], which are also

described in Section 2 when compared with studies by Matsushima and co-researchers.

This chapter reviews former and state-of-the-art methods for estimating soil moisture by

exploring the relationship between thermal inertia and soil moisture. Section 2 reviews past

developments of methods for thermal inertia retrieval from land surface models. Section 3

describes how thermal inertia is experimentally observed, and how it is retrieved from land

surface models in terms of the Xue and Cracknell-based models and the Matsushima models.

Section 4 describes several semi-empirical parameterizations of thermal inertia in terms of soil

moisture. Section 5 describes applications of thermal inertia for analyzing hydrometeorologi-

cal phenomena around the Earth’s surface and also discusses further exploration of thermal

inertia itself and its applications. Section 6 presents conclusions.

2. Thermal inertia retrieval from energy balance models

Thermal inertia retrieval from an energy balance model of the Earth’s surface began with a

geological context in which different rocks or minerals respond differently to the incident solar

radiation. Then, researchers’ interests moved to the thermal inertia change according to soil

moisture, which was coincident with the use of data obtained by sun-synchronous polar

orbiting satellites that gave diurnal cycle of LSTs. Retrieval thermal inertia solely according to

the soil moisture of the Earth’s surface was developed during the last five decades. Most of the

proposed methods employed the Fourier series of the LST diurnal variation, which was

incorporated in a heat balance model of the Earth’s surface.

A comprehensive model for retrieving thermal inertia using the energy balance model for the

Earth’s surface boundary conditions and the Fourier series for the diurnal change of the

surface temperature was proposed by Price [3–5]. Price [6] made the terms of the turbulent

heat flux (sensible and latent heat) simpler than previous studies to focus on retrieving thermal

inertia. These studies used satellite LST measurements twice a day as the daily maximum and

minimum LSTs, corresponding to daytime and nighttime, respectively, and substituted the

LSTs into the first component (24-h period) of the Fourier series to calculate thermal inertia.

Namely, they approximated the time-differential term of Eq. (7) as ∂T 0;tð Þ
∂t

! ΔT 0;tð Þ
Δt

, where

ΔT 0; tð Þ is the difference between daily maximum and minimum LSTs, and Δt is the time

difference of the two measurements.

Soil Moisture12



Based on a series of studies performed by Price [3–6], Xue and Cracknell [11–14] proposed

improved methods, which showed that data from satellites were good enough to accurately

retrieve thermal inertia as well as using the time of the maximum LST. These models used the

first- and second-order harmonics of the diurnal change (24- and 12-h periods) to fit the LST

change considering the phase differences of both components to insolation. Thermal inertia

was obtained from analytical but relatively complicated formulations. Based on the series of

models proposed by Xue and Cracknell (hereinafter the XCmodel), several improved methods

were proposed in terms of the timing of satellite measurements, actual timing of the diurnal

maximum and minimum LSTs, and difference in LST change between daytime and nighttime.

The details of the above schemes are described in Section 3.2.

Other than the above methods, Matsushima [15] applied the FRM to the surface heat balance

model to retrieve thermal inertia. The FRM is also based on a sinusoidal boundary condition at

the surface and the heat diffusion equation, which is essentially the same as the models based

on the XC model. The Matsushima model [15] employed an FRM that was designed not only

to mostly respond to the diurnal change but also to more rapid changes according to the

temporal resolution of input the variables (insolation, air temperature, etc.). A change of the

LST over a period of approximately a few hours was fairly reproduced by the FRM that had a

characteristic period of 24 h, as illustrated in [16]. Similar results were found in other studies

[2, 17], or higher-frequency nonsinusoidal forcing did not significantly affect the LST predic-

tion [18]. This means that the FRM can reproduce temporal changes that have a wide range of

LST frequencies via its relatively simple formulation. Using this method, the timing of satellite

LST measurements was arbitrary in principle, irrespective of the daily maximum and mini-

mum, but was more accurate for thermal inertia retrieval that the LSTs measured both in the

daytime and in the nighttime, as shown in [19]. The accuracy of thermal inertia retrieval is

improved if the coefficients of the atmospheric turbulent heat flux are set differently in the

daytime and nighttime, as illustrated in [16]. The details are described in Section 3.2 when

compared with the XC model.

3. Thermal inertia retrieval according to the spatial and temporal

resolutions

3.1. A simple method using in-situ field measurements on a local scale

A simple method for estimating thermal inertia using simply measured surface radiative

temperatures can be performed based on a finite difference form of Eq. (7), which is given as

G 0ð Þ ¼

ffiffiffiffiffiffi

P

2ω

r

ΔT 0ð Þ

Δt
þ ωT 0ð Þ

� �

, (10)

where ΔT 0ð Þ is a significant increase in LST during a relatively short-time span Δt (e.g.,

30 min), T 0ð Þ is the temporal average of the LSTdifference from the soil temperature at infinite

depths during the time span (practically, the daily average surface or air temperatures can be

Thermal Inertia-Based Method for Estimating Soil Moisture
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used instead of the temperature at an infinite depth), and G 0ð Þ is soil heat flux at the surface

averaged over the time span Δt. Matsushima et al. [20] estimated the thermal inertia of asphalt

pavement based on Eq. (10) using data from T 0ð Þ measured by a portable radiative thermom-

eter approximately 1 m above the surface as well as a copper-constantan thermal couple on the

surface and G 0ð Þ measured by a heat flux plate on the asphalt surface over 30 min under a

summer daytime clear sky, assuming that the daily average thermocouple temperature was the

temperature at an infinite depth. The results of the thermal inertia were 1140 J m�2 K�1 s�1/2

and 1350 m�2 K�1 s�1/2 using the LSTs measured by the portable radiative thermometer

and the thermocouple, respectively. The values agree well with the standard value of

1220 m�2 K�1 s�1/2 in the literature [21] (actually, this value is based on the volumetric heat

capacity and thermal conductivity, calculated using the definition of thermal inertia Eq. (1)).

The above result shows that thermal inertia can be estimated at a local scale using simple

measurement equipment and also shows the feasibility of thermal inertia estimation using

airborne and satellite thermal-infrared thermometry.

3.2. Model methods using multiple satellite data

Earth observing satellites are divided into polar-orbiting and geostationary. Both types have

thermal-infrared bands to estimate LST. The temporal resolution of the geostationary satellites

is superior to that of the polar-orbiting ones. By contrast, the spatial resolution and tempera-

ture accuracy of the geostationary satellites have been improving but are not yet superior to

those of the polar-orbiting one [22, 23]. Therefore, in this section, models using polar-orbiting

satellites are described and discussed.

Most of the models proposed so far for estimating thermal inertia were based on the model

proposed by Xue and Cracknell [13] (XC model). This model is based on solving the thermal

diffusion equation using the Fourier series expansion, which is described in Section 1. This

model uses the first 24-h period and the second 12-h period Fourier harmonics of the sinusoi-

dal components to reproduce the diurnal variation of LSTs. However, the two components

were not always enough to reproduce an actual diurnal LST change. In these cases, the phase

differences from the diurnal change of the insolation of respective components have to be

adjusted. Measured values in thermal-infrared bands were used to calculate the LSTs. The

LSTs are almost the daily maximum and minimum, which are suitable for accurately estimat-

ing thermal inertia. Various improvements were proposed based on the XC model. Among

these improvements, a method using four satellite LSTs during a diurnal cycle irrespective of

the daily maximum and minimum successfully retrieved thermal inertia [9]. Schemes for the

phase and amplitude adjustments were also introduced. The phase adjustment was applied to

the time-difference between the actual timing of the maximum and minimum LSTs and the

overpass timings of the satellite measurements. This adjustment scheme was to have the

satellite overpass timing approach the daily maximum or minimum LSTs using a cosine

function for the phase difference when their estimated times were given [24]. On the other

hand, an adjustment that decayed the LST amplitude after sunset was applied during night-

time due to the LST change being smaller than that in the daytime to avoid overestimating

nighttime cooling [25]. These adjustments allowed arbitrary and many timings of the satellite

Soil Moisture14



LSTs to be incorporated into the models for thermal inertia retrieval. The formulations for

estimating thermal inertia were analytical but relatively complicated to describe and grasp.

Moreover, various approximations were adopted to avoid the implicit formulations that

required iterative calculations to retrieve thermal inertia. The input data required are according

to individual models but are almost limited to the satellite LSTs, and some parameters with

regard to the insolation are also required to specialize in retrieving thermal inertia from other

parameters regarding the land surface processes. Models that simply address turbulent heat

flux were proposed assuming that turbulent heat flux is proportional to the temperature

difference between surface and atmosphere [26], or was ingeniously neglected [27]. Maltese

et al. [10] proposed an XC-based model that only used the first Fourier component, which was

enough to accurately retrieve thermal inertia using three LSTs during a diurnal cycle.

In contrast to the XC-based models, a series of models proposed by Matsushima and co-

researchers (the most recent one is [16], hereafter referred to as M2018) was essentially based

on the sinusoidal solution of the thermal diffusion equation. However, they adopted the FRM

to avoid complicated analytical formulations for estimating thermal inertia while maintaining

linearity. The FRM requires time integration to calculate the surface temperature as shown

in Eq. (7). The characteristic frequency ω was set to the diurnal change (= 2π=86400(s�1)) in

M2018. Hence, the FRM appeared to be able to only reproduce the sinusoidal changes whose

frequencies were near the characteristic frequency. However, shorter period changes were

reproduced according to the input data changes shown in Figure 4 of M2018 because the

force term (the time derivative term) was more temporally sensitive than the restore term (the

product of the frequency and temperature difference from the daily average). The boundary

conditions at the surface, the left side of Eq. (7), are also required. The boundary conditions are

converted to the budget of net radiation, and sensible and latent heat at the surface using the

heat balance equation. This requirement for the surface boundary conditions is as same as that

of the XC-based models. M2018 was not specialized at retrieving thermal inertia, but other

parameters with regard to the sensible and the latent heat flux, including the diurnal time

series of insolation, air temperature, specific humidity, and wind speed, were required as input

data. Also, the surface albedo and leaf area index were used as parameters, and the LSTs for

the model optimization are described below. The above types of data were required, but all

were readily available from satellite and meteorological data archives through the Internet,

that is, a special observation was not needed. Instead of requiring many types of input data,

the M2018 formulation was relatively simple and did not require phase and amplitude adjust-

ments. The shift in values of the bulk transfer coefficients for the sensible and latent heat flux in

the daytime and nighttime was required only to improve the accuracy of thermal inertia

retrieval, which was approximately equivalent to the amplitude adjustment in the XC-based

model by Schädlich et al. [25]. The time integration did not require an implicit scheme, but an

optimization algorithm was required to retrieve thermal inertia and the other parameters at

the same time. The optimization algorithm (the downhill simplex method that was employed

in M2018) took time to retrieve parameters; hence, the M2018 had no advantage for the world-

wide spatial scale and the temporal scale of several decades. In M2018, daily values of thermal

inertia-derived soil moisture were estimated with a 3-km spatial resolution at 2 ∘

� 2 ∘ in

latitude and longitude using the 1-km spatial resolution of Moderate Resolution Imaging

Thermal Inertia-Based Method for Estimating Soil Moisture
http://dx.doi.org/10.5772/intechopen.80252

15



Spectroradiometer (MODIS) LST (MOD11_L2 and MYD11_L2). Thermal inertia retrieval at a

2-km resolution was, therefore, possible in principle [28].

Comparisons of the differences between the XC-based models and M2018 model are provided

in Table 1.

4. How soil moisture is derived from thermal inertia

4.1. Combination of C � θ and λ� θ relations

One of the principal methods for deriving the relationship between thermal inertia P and soil

moisture (volumetric water content in most cases) θ uses the definition of thermal inertia

P ¼
ffiffiffiffiffiffiffiffi

crλ
p

¼
ffiffiffiffiffiffiffi

Cλ
p

. Specifically, the effective models for using soil moisture to determine the

volumetric heat capacity and thermal conductivity, respectively, proposed by de Vries [29] were

used in several thermal inertia models [7, 8]. The volumetric heat capacity is formulated as

C ¼ Cwθþ Cm 1� θ∗ð Þ, (11)

where Cw and Cm are the volumetric heat capacities of water and minerals, respectively, and θ∗

is the soil moisture at saturation, in other words, the porosity of the soil, and the thermal

conductivity λ is formulated as

Items XC-based models M2018 [16]

Basic equation Differential equation of heat diffusion

Boundary

conditions

Sinusoidal function at the Earth0s surface constant at infinite depth

Model Fourier series expansion Two-source energy balance (TSEB) model

based on force-restore model (FRM)

Solution Fourier series components (first component only

[10] or both first and second components [11–14]

according to models)

Time integration of the respective surface

temperatures of the two sources

Input data and

parameters

LSTs parameters in terms of insolation parameters

in terms of turbulent heat flux (according to the

models)

LSTs insolation air temperature, specific

humidity, wind speed albedo, and the leaf

area index of the surface

Thermal inertia

retrieval

Analytical solution Model optimization (with other parameters

regarding turbulent heat)

Number of diurnal

LST measurements

Two (without timing adjustment for maximum and

minimum [11–14]); two (with timing adjustment

[24]); three or more [9, 10]

Arbitrarily determined (at least two—one in

the daytime and the other in the nighttime—

are suitable) [19]

Phase adjustment

of LST

Needed in most models Adjusted through time integration

incorporating input time series

Table 1. Comparison of the differences between the XC-based models and M2018 model.
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λ ¼
X

N

i¼0

KiXiλi=
X

N

i¼0

KiXi, (12)

where N is the number of types of granules and particles that make up the soil, including the

minerals, organic matter, water, and air inside the soil. Each component has a thermal conduc-

tivity λi and a volume fraction Xi, and Ki is a weighting factor that is the ratio of the average

temperature gradient in the granules of the i-th component to the average temperature gradi-

ent in the medium. See Appendix for details on the formulation of Ki. Minacapilli et al. [30]

combined the linear relation of the volumetric heat capacity proposed by de Vries [29] and an

empirical parameterization for thermal conductivity proposed by Lu et al. [31] to derive

thermal inertia. The proposed models for the thermal conductivity of unsaturated soil have

been expanded, and the details are provided in a review by Dong et al. [32].

Ma and Xue [33] proposed an empirical parameterization that often appears in the literature.

This parameterization calculates thermal inertia for a given soil moisture (gravimetric soil

water content) when the soil (mineral) density and water density are known.

Noilhan and Planton [34] derived the relationship between thermal inertia and soil moisture in

another way. This method was basically a combination of thermal inertia, the relationship

between soil moisture and matric potential of soil, and a parameterization of the thermal

conductivity as a function of the matric potential proposed by McCumber and Pielke [35]. In

their paper, they showed the relationship between soil moisture and soil thermal coefficient Cs,

which was defined in their paper, but was able to be rearranged to according to the relation-

ship between M2018 thermal inertia and soil moisture, which is formulated as

Cs ¼
2

P
ffiffiffiffiffiffiffiffi

τ=π
p , (13)

and

Cs ¼ Cs,∗

θ∗

max θ;θwð Þ

� � 2ln 10=bð Þ

, (14)

where τ ¼ 2π=ω, and subscripts * and w denote the saturation and wilting points, respectively.

Substituting Eq. (13) into Eq. (14), after several calculations, yields

θ ¼ sP 2ln 10=bð Þ (15)

where

s ¼ θ∗

Cs,∗

2

ffiffiffiffi

τ

π

r
� � 2ln 10=bð Þ

(16)

The constant s depends on the parameters b, θ∗, and Cs,∗, of the Clapp and Hornberger

parameterization [36]. In particular, parameter b is related to 11 categories of soil types

Thermal Inertia-Based Method for Estimating Soil Moisture
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determined by the United States Department of Agriculture (USDA), and parameter b is a

predictive parameter of the clay ratio in soil [37].

4.2. Analogous to Johansen’s thermal conductivity model

Johansen [38] proposed a model for determining thermal conductivity as a function of soil

moisture. The concept of the model is that thermal conductivity is formulated as a universal

function of soil moisture and that the function shape is determined by parameters of the

formulation. The parameters are determined according to the soil type, such as sand, loam,

silt, and clay. The generalized form of the parameterization is given as

λ ¼ λdry þ λ∗ � λdry

	 


Kp (17)

where the subscript dry denotes zero soil moisture, and Kp is the universal Kersten function.

The formulation is defined as a function of soil moisture from zero to the saturation point

(porosity). Then, the problem is reduced to determine the specific formulation and its param-

eter values. The specific form of the Kersten function is a power function, and the curve shape

depends on the power according to the soil type, which has strong nonlinearity in most cases.

Murray and Verhoef [39] applied the above Johansen type model to thermal inertia parame-

terization as follows:

P ¼ Pdry þ P∗ � Pdry

	 


Kp (18)

To calculate the thermal inertia value, parameters Pdry and P∗ have to be determined, and the

formulation of Kp is given as the parameterization proposed by Lu et al. [31] in [39], as

Kp ¼ exp γ 1� Sγ�δ
r

	 
� �

, (19)

where γ and δ are the coefficients for optimization according to the soil type, and Sr is the soil

moisture normalized by saturation. Lu et al. [40] proposed a similar parameterization as that in

[39]. Minacapilli et al. [41] tested the performance of the Murray and Verhoef model [39] and

extended the Johansen model concept to the apparent thermal inertia. Recently, Lu et al. [42]

showed that Pdry was parameterized as a function of porosity, in other words, the soil clay

ratio, improving the accuracy of thermal inertia retrieval.

Again, thermal inertia is the square root of the product of volumetric heat capacity and thermal

conductivity, and volumetric heat capacity increases modestly according to soil moisture. By

contrast, thermal conductivity has strong nonlinearity compared to soil moisture. Therefore,

thermal inertia can be formulated as a nonlinear function, and even, the square root operates the

product Cλ. Lu et al. [40] applied the formulation to thermal inertia and determined the param-

eter values according to three soil types. The minimum and maximum thermal inertia values

range over soil moisture from zero to saturation. If some amount of error is added to the retrieved

value of thermal inertia from a model calculation or laboratory experiment, the value may be less

than the minimum, and hence, soil moisture cannot be calculated due to Kp being negative.

Soil Moisture18



5. Applications and discussion for future exploration

5.1. Advantages and disadvantages compared to microwave-based methods

Thermal inertia-derived soil moisture can be estimated by combining methods as described in

Sections 3 and 4. An advantage of the thermal inertia method that uses satellite data is that the

spatial resolution is a couple of kilometers, which is much more precise than that of the

microwave-based method, which has the spatial resolution of several tens of kilometers.

However, there are also disadvantages, such as the precision and accuracy of thermal inertia

retrieval being affected by the sky conditions, especially clouds, which are the weakest point in

using the thermal-infrared bands. A recent study showed that the microwave brightness

temperatures complemented the thermal-infrared derived LST, but instead of this, the spatial

resolution of the thermal-infrared LST had to be sacrificed [43]. Another disadvantage is that

the thermal inertia of a surface covered with dense vegetation is difficult to retrieve. Soil

moisture retrieval using the microwave bands also has the same problem. Thermal inertia

retrieval over a surface covered with sparse vegetation has been achieved in many studies in

which M2018 is categorized in the two-source energy balance (TSEB) concept [44, 45]. In

M2018, the vegetation canopy is modeled according to its surface temperature, the three

parameters that should be optimized, and the leaf area index, which is given as satellite data.

The effectiveness of the TSEB model is not only to retrieve thermal inertia but also possibly to

accurately calculate heat flux with regard to the surface heat balance. The denser the vegeta-

tion, the less accurate the thermal inertia retrieval. It should be noted that the thermal inertia-

derived soil moisture is calculated through a simple TSEB model as well as the surface heat

flux, including evapotranspiration.

According to the above advantages and disadvantages, soil moisture derivation for a surface is

more effective in arid and semi-arid regions where clear sky conditions overwhelm other

conditions and where there are spatial soil moisture contrasts, for example, between an oasis

and other land cover, as well as significant temporal changes, for example, from just after to

approximately 1 week after a rainfall.

The optimization scheme for the thermal inertia retrieval is crucial to save calculation time.

M2018 uses the downhill simplex method [46], which is generally suitable for optimizing less

than approximately five parameters. It takes approximately 20–40 s to retrieve seven parame-

ters including the thermal inertia of one grid in M2018 using a workstation. The downhill

simplex method has the advantage of not diverging in the optimizing process, but the algo-

rithm is not simple and requires a long time to complete. A more efficient optimization scheme

needs to be explored.

5.2. Assimilation with microwave-based data

Data assimilation procedures are downscaled schemes of microwave-based soil moisture,

which has a scale of several tens of kilometers, to one to a couple of kilometers. These schemes

have recently been improved [47–50] using visible, near-infrared, and thermal-infrared satellite

data, which have more precise spatial resolution than microwaves. These procedures can be
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competitive with thermal inertia procedures to derive surface soil moisture. However, one

weak point with regard to microwave-based soil moisture (soil moisture active passive:

SMAP) was noted, and it was a dry down process occurred after an antecedent rainfall that

was too rapid for in-situ soil moisture measurement [50]. By contrast, the thermal inertia-

derived soil moisture agreed fairly well with the in-situ soil moisture found in several dry

down processes (M2018). This agreement may be because the sensing depth of the surface

microwave-based soil moisture was shallower than the in-situ measurement and sensitive to

the soil moisture itself [51], whereas the representative depth scale of the FRM is not as

sensitive to soil moisture and almost agrees with the in-situ measuring depth (M2018). Regard-

ing the spatial resolution of the satellite sensors, an Earth observing satellite with a more

precise spatial resolution in the visible, near-infrared, and thermal-infrared bands, the Global

Change Observation Mission-Climate (GCOM-C), was recently launched in 2017 by the Japan

Aerospace Exploration Agency (JAXA), and the data will be available for general use within 1

year. Its LST spatial resolution is 500 m, twice than that of the MODIS resolution, which will

benefit both data assimilation and thermal inertia procedures. Another GCOM-C type satellite

will hopefully be able to be operated like MODIS. On the other hand, microwave-based soil

moisture can be obtained almost every day regardless of the sky conditions (leading to partial

lack of data in some regions due to the satellite orbit). There are trade-offs that have between

the above described advantages and disadvantages of the respective procedures.

The Global Satellite Mapping of Precipitation (GSMaP) [52] operated by JAXA is a system that

measures the spatio-temporal distribution of precipitation at the Earth’s surface on a 0.1�-

spatial scale and a 1-hour temporal scale, and the latest data are added every hour. In arid

and semi-arid regions far from rivers, short-term discharge and infiltration should be negligi-

ble, accordingly the water budget is calculated using the thermal inertia-derived soil moisture

and GSMaP precipitation. Currently, there is not adequate accuracy for both variables to

calculate a water budget, but it is worth tackling this issue to estimate regional water cycles

and resources.

5.3. Dust emission

Dust emissions in arid and semi-arid regions have posed serious problems such as soil nutri-

tion loss, crop and vegetation damage, and air quality deterioration. Dust emissions, for

example, from Northeast Asia, influence not only individual arid or semi-arid regions but also

regions across national boundaries and seas because some dust is raised by strong atmospheric

convection and carried by strong westerly winds [53]. Dust emission from the Saharan Desert

often harms the surrounding regions including regions far from Africa [53]. Wind erosion from

agricultural land often causes local and regional problems according to tillage practices [54].

To predict these dust emissions in advance, monitoring and prediction of the surface soil

moisture distribution over an area where dust emission occurrences are concentrated are

important. Scheidt et al. [24] examined the spatial distribution of thermal inertia for five soil

types in a desert of approximately 20 km using eight couples of the daytime and nighttime

thermal-infrared surface temperatures observed by the Advanced Spaceborne Thermal Emis-

sion and Reflection (ASTER) and MODIS and then estimated the threshold wind speed based
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on the estimated thermal inertia values after Fécan [55]. The threshold wind speed or friction

velocity for dust emissions according to surface soil moisture was examined using carefully

designed wind tunnel experiments with multiple soil types, and the threshold friction velocity

was found to be related to the soil matric potential and not aligned with the gravimetric soil

moisture for the examined soil types [55–58]. The matric potential is not as readily available as

the soil moisture, otherwise the function connecting the two variables is known in advance.

Considering that it should be difficult to obtain the relationship between thermal inertia and

matric potential, and practical relationships between thermal inertia-derived soil moisture and

threshold wind speed with regard to individual soil types are required.

In the region where the Earth’s surface and subsurface are seasonally frozen, dust emissions

begin to occur (early spring) when only the surface is melted and dry but not the subsurface

just beneath a thin surface layer. The thermal inertia at the representative depth is still affected

by the frozen soil, but the surface radiative temperature is highly positive in degrees Celsius

due to the dried surface, which is suitable for dust emission (in other words, high erodibility)

if the wind is necessarily strong. The temperature difference was up to at most 20�C

(unpublished result). Dust emission is likely to occur in early spring when the meteorological

conditions are likely to be windy; however, an empirical relationship between thermal inertia-

derived soil moisture and threshold wind speed using observations during spring to early

autumn [28] is difficult to apply because thermal inertia is likely to be underestimated in early

spring possibly due to the large difference between the surface and the subsurface tempera-

tures. There is no common formulation for thermal inertia-derived soil moisture with regard to

the threshold wind speed in early spring or other seasons.

5.4. Water budget and management

Monitoring the spatial distribution of surface soil moisture over a wide agricultural area is

required for optimal water management. An example presented by Minecapllia et al. [30]

showed the spatial distribution of thermal inertia over a small-scale cultivated field using

airborne thermal images taken in the daytime and nighttime.

Root zone soil moisture has been examined in several studies [50, 59], using a thermal inertia

procedure with the FRM applied to the soil water transport and data assimilation procedures,

respectively. All of the studies noted that the initial values of the root zone soil moisture were

significant for reducing the simulation error. It was noted that the FRM applied to soil mois-

ture was not straight-forward like the soil temperature because of the nonlinearity in soil water

transport that representatively appeared in the Richards equation [34, 59]. Various processes of

water transport in soil such as infiltration, redistribution, and vapor transport should be

improved [60].

The precise spatial resolution of satellite LST is better used for coinciding topography or land

use on approximately a 1-km scale. Overlaying or assimilating thermal inertia-derived soil

moisture over a common scale of topography or land use in the range of a watershed should

contribute to the water budget estimation (discharge, infiltration, and evapotranspiration)

when precipitation is known. If agricultural land use is resolved at a 1-km resolution, it is
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practically suitable for estimating thermal inertia and its applications using M2018 with

GCOM-C LST.

6. Conclusions

A vast number of studies have been proposed for estimating soil moisture, and thermal inertia-

based methods have been improving for the last five decades. These methods are based on the

thermal diffusion equation combined with sinusoidal function boundary conditions at the

Earth’s surface and are constant at an infinite depth. There are two solutions for retrieving

thermal inertia of which both use satellite thermal-infrared-based LST. One uses the Fourier

series expansion, and the other employs the force-restore method. There are advantages and

disadvantages in their formulation, calculation procedures, time, and adjustment schemes;

however, both solutions are essentially the same in principle. The parameterization for conve-

rting thermal inertia to soil moisture is also important. Two ways to perform this parameteri-

zation have been proposed. One uses the relationships of soil moisture to the volumetric heat

capacity and thermal conductivity, and the other is analogous to the Johansen type thermal

conductivity model. The individual studies proposed so far combined a method for retrieving

thermal inertia and parameterization for converting it to soil moisture. The accuracy of esti-

mating surface soil moisture for individual studies was not significantly different. The current

and future applications of thermal inertia-derived soil moisture are discussed. The thermal

inertia approach will be competitive with the assimilation method combining microwave-

based soil moisture and satellite data from the other wavelength bands (visible, near-infrared,

and thermal-infrared). There are advantages and disadvantages to both approaches in regard

to spatial resolution, sky conditions, and the dry down process. Issues to be tackled remain for

dust emission processes, especially in relation to soil moisture. Regional water budgeting and

management can be applied to arid land water resource and agricultural practice considering

the fusion of other satellite data such as GSMaP precipitation.
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Appendix

Details of the weighting factor Ki formulation in Section 3.

Details of the formulation of Ki are given as
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Ki ¼
1

3

X

3

j¼1

1þ
λi

λ0
� 1

� �

gij

� �

�1
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where λ0 is the conductivity of the medium and gij is a shape factor that takes into account the

shape and orientation of the granules. Since
P3

j¼1 gij ¼ 1 and a spheroidal shape is assumed

gi1 ¼ gi2
	 


, the above equation reduces to:
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