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Abstract

Robotic perception is related to many applications in robotics where sensory data and 
artificial intelligence/machine learning (AI/ML) techniques are involved. Examples of 
such applications are object detection, environment representation, scene understand-
ing, human/pedestrian detection, activity recognition, semantic place classification, 
object modeling, among others. Robotic perception, in the scope of this chapter, encom-
passes the ML algorithms and techniques that empower robots to learn from sensory 
data and, based on learned models, to react and take decisions accordingly. The recent 
developments in machine learning, namely deep-learning approaches, are evident and, 
consequently, robotic perception systems are evolving in a way that new applications 
and tasks are becoming a reality. Recent advances in human-robot interaction, complex 
robotic tasks, intelligent reasoning, and decision-making are, at some extent, the results 
of the notorious evolution and success of ML algorithms. This chapter will cover recent 
and emerging topics and use-cases related to intelligent perception systems in robotics.

Keywords: robotic perception, machine learning, advanced robotics,  
artificial intelligence

1. Introduction

In robotics, perception is understood as a system that endows the robot with the ability to 
perceive, comprehend, and reason about the surrounding environment. The key components 
of a perception system are essentially sensory data processing, data representation (environ-

ment modeling), and ML-based algorithms, as illustrated in Figure 1. Since strong AI is still 

far from being achieved in real-world robotics applications, this chapter is about weak AI, i.e., 
standard machine learning approaches [1].
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Robotic perception is crucial for a robot to make decisions, plan, and operate in real-world 
environments, by means of numerous functionalities and operations from occupancy grid map-
ping to object detection. Some examples of robotic perception subareas, including autonomous 
robot-vehicles, are obstacle detection [2, 3], object recognition [4, 5], semantic place classification 
[6, 7], 3D environment representation [8], gesture and voice recognition [9], activity classifica-
tion [10], terrain classification [11], road detection [12], vehicle detection [13], pedestrian detec-
tion [14], object tracking [3], human detection [15], and environment change detection [16].

Nowadays, most of robotic perception systems use machine learning (ML) techniques, rang-
ing from classical to deep-learning approaches [17]. Machine learning for robotic perception 
can be in the form of unsupervised learning, or supervised classifiers using handcrafted fea-
tures, or deep-learning neural networks (e.g., convolutional neural network (CNN)), or even 
a combination of multiple methods.

Regardless of the ML approach considered, data from sensor(s) are the key ingredient 
in robotic perception. Data can come from a single or multiple sensors, usually mounted 
onboard the robot, but can also come from the infrastructure or from another robot (e.g., 
cameras mounted on UAVs flying nearby). In multiple-sensors perception, either the same 
modality or multimodal, an efficient approach is usually necessary to combine and process 
data from the sensors before an ML method can be employed. Data alignment and calibration 
steps are necessary depending on the nature of the problem and the type of sensors used.

Sensor-based environment representation/mapping is a very important part of a robotic per-
ception system. Mapping here encompasses both the acquisition of a metric model and its 
semantic interpretation, and is therefore a synonym of environment/scene representation. 
This semantic mapping process uses ML at various levels, e.g., reasoning on volumetric occu-
pancy and occlusions, or identifying, describing, and matching optimally the local regions 
from different time-stamps/models, i.e., not only higher level interpretations. However, in 
the majority of applications, the primary role of environment mapping is to model data from 
exteroceptive sensors, mounted onboard the robot, in order to enable reasoning and inference 
regarding the real-world environment where the robot operates.

Robot perception functions, like localization and navigation, are dependent on the environ-
ment where the robot operates. Essentially, a robot is designed to operate in two categories of 

Figure 1. Key modules of a typical robotic perception system: sensory data processing (focusing here on visual and 
range perception); data representations specific for the tasks at hand; algorithms for data analysis and interpretation 
(using AI/ML methods); and planning and execution of actions for robot-environment interaction.
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environments: indoors or outdoors. Therefore, different assumptions can be incorporated in 
the mapping (representation) and perception systems considering indoor or outdoor environ-

ments. Moreover, the sensors used are different depending on the environment, and therefore, 
the sensory data to be processed by a perception system will not be the same for indoors and 
outdoors scenarios. An example to clarify the differences and challenges between a mobile 
robot navigating in an indoor versus outdoor environment is the ground, or terrain, where 
the robot operates. Most of indoor robots assume that the ground is regular and flat which, in 
some manner, facilitates the environment representation models; on the other hand, for field 
(outdoors) robots, the terrain is quite often far from being regular and, as consequence, the 
environment modeling is itself a challenge and, without a proper representation, the subse-

quent perception tasks are negatively affected. Moreover, in outdoors, robotic perception has 
to deal with weather conditions and variations in light intensities and spectra.

Similar scenario-specific differences exist in virtually all use-cases of robotic vision, as exempli-
fied by the 2016 Amazon Picking Challenge participants’ survey [18], requiring complex yet 
robust solutions, and therefore considered one of the most difficult tasks in the pick-and-place 
application domain. Moreover, one of the participating teams from 2016 benchmarked a pose 
estimation method on a warehouse logistics dataset, and found large variations in performance 
depending on clutter level and object type [2]. Thus, perception systems currently require expert 
knowledge in order to select, adapt, extend, and fine-tune the various employed components.

Apart from the increased training data sizes and robustness, the end-to-end training aspect 
of deep-learning (DL) approaches made the development of perception systems easier and 
more accessible for newcomers, as one can obtain the desired results directly from raw data 
in many cases, by providing a large number of training examples. The method selection 
often boils down to obtaining the latest pretrained network from an online repository and 
fine-tuning it to the problem at hand, hiding all the traditional feature detection, description, 
filtering, matching, optimization steps behind a relatively unified framework. Unfortunately, 
at the moment an off-the-shelf DL solution for every problem does not exist, or at least no 
usable pretrained network, making the need for huge amounts of training data apparent. 
Therefore, large datasets are a valuable asset for modern AI/ML. A large number of datasets 
exist for perception tasks as well, with a survey of RGB-D datasets presented by Firman [5] 

(up-to-date list available online: http://www.michaelfirman.co.uk/RGBDdatasets/), and even 
tools for synthetically generating sensor-based datasets, e.g., the work presented by Handa 
et al. [4] which is available online: http://robotvault.bitbucket.org/. However, the danger is to 
overfit to such benchmarks, as the deployment environment of mobile robots is almost sure 
to differ from the one used in teaching the robot to perceive and understand the surrounding 
environment. Thus, the suggestions formulated by Wagstaff [19] still hold true today and 
should be taken to heart by researchers and practitioners.

As pointed out recently by Sünderhauf et al. [17], robotic perception (also designated robotic 
vision in [17]) differs from traditional computer vision perception in the sense that, in robot-
ics, the outputs of a perception system will result in decisions and actions in the real world. 
Therefore, perception is a very important part of a complex, embodied, active, and goal-driven 
robotic system. As exemplified by Sünderhauf et al. [17], robotic perception has to translate 
images (or scans, or point-clouds) into actions, whereas most computer vision applications 
take images and translate the outputs into information.
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2. Environment representation

Among the numerous approaches used in environment representation for mobile robotics, 
and for autonomous robotic-vehicles, the most influential approach is the occupancy grid 
mapping [20]. This 2D mapping is still used in many mobile platforms due to its efficiency, 
probabilistic framework, and fast implementation. Although many approaches use 2D-based 
representations to model the real world, presently 2.5D and 3D representation models are 
becoming more common. The main reasons for using higher dimensional representations 
are essentially twofold: (1) robots are demanded to navigate and make decisions in higher 
complex environments where 2D representations are insufficient; (2) current 3D sensor tech-
nologies are affordable and reliable, and therefore 3D environment representations became 
attainable. Moreover, the recent advances in software tools, like ROS and PCL, and also the 
advent of methods like Octomaps, developed by Hornung et al. [21], have been contributing 
to the increase in 3D-like environment representations.

The advent and proliferation of RGBD sensors has enabled the construction of larger and ever-
more detailed 3D maps. In addition, considerable effort has been made in the semantic labeling 
of these maps, at pixel and voxels levels. Most of the relevant approaches can be split into two 
main trends: methods designed for online and those designed for offline use. Online methods 
process data as it is being acquired by the mobile robot, and generate a semantic map incremen-
tally. These methods are usually coupled with a SLAM framework, which ensures the geomet-
ric consistency of the map. Building maps of the environment is a crucial part of any robotic 
system and arguably one of the most researched areas in robotics. Early work coupled map-
ping with localization as part of the simultaneous localization and mapping (SLAM) problem 
[22, 23]. More recent work has focused on dealing with or incorporating time-dependencies 
(short or long term) into the underlying structure, using either grid maps as described in [8, 24], 
pose-graph representations in [25], and normal distribution transform (NDT) [16, 26].

As presented by Hermans et al. [27], RGBD data are processed by a random forest-based clas-
sifier and predict semantic labels; these labels are further regularized through the conditional 
random field (CRF) method proposed by Krahenbuhl and Koltun [28]. Similarly, McCormac 
et al. [29] use the elastic fusion SLAM algorithm proposed by Whelan et al. [30] to fuse CNN 
predictions about the scene in a geometrically consistent map. In the work of Sünderhauf et al. 
[6], a CNN is used to incrementally build a semantic map, with the aim of extending the num-

ber of classes supported by the CNN by complementing it with a series of one-vs-all classifiers 
which can be trained online. A number of semantic mapping approaches are designed to 
operate offline, taking as input a complete map of the environment. In the methods described 
by Ambrus et al. [31, 32] and Armeni et al. [33], large-scale point clouds of indoor buildings are 
processed, and then, after segmenting the input data, the method’s outputs are in the form of 
a set of “rooms.” Ambrus et al. [31, 32] use a 2D cell-complex graph-cut approach to compute 
the segmentation with the main limitation that only single floor buildings can be processed, 
while Armeni et al. [33] process multifloor structures by detecting the spaces between the 
walls, ceilings, etc., with the limitation that the building walls have to be axis-aligned (i.e., the 
Manhattan world assumption). Similarly, in the work proposed by Mura et al. [34], a large 
point cloud of an indoor structure is processed by making use of a 3D cell-complex structure 
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and outputting a mesh containing the semantic segmentation of the input data. However, the 
main limitation in [34] is that the approach requires knowledge of the positions from which 
the environment was scanned when the input data were collected.

The recent work presented by Brucker et al. [7] builds on the segmentation of Ambrus et al. 
[31, 32] and explores ways of fusing different types of information, such as presence of objects 
and cues of the types of rooms to obtain a semantic segmentation of the environment. The aim 
of the work presented by Brucker et al. [7] is to obtain an intuitive and human-like labeling 
of the environment while at the same time preserving as many of the semantic features as 
possible. Also, Brucker et al. [7] use a conditional random field (CRF) or the fusion of various 
heterogeneous data sources and inference is done using Gibbs sampling technique.

Processing sensory data and storing it in a representation of the environment (i.e., a map of 
the environment) has been and continues to be an active area in robotics research, includ-
ing autonomous driving system (or autonomous robotic-vehicles). The approaches covered 
range from metric representations (2D or 3D) to higher semantic or topological maps, and all 
serve specific purposes key to the successful operation of a mobile robot, such as localization, 
navigation, object detection, manipulation, etc. Moreover, the ability to construct a geometri-
cally accurate map further annotated with semantic information also can be used in other 
applications such as building management or architecture, or can be further fed back into a 
robotic system, increasing the awareness of its surroundings and thus improving its ability 
to perform certain tasks in human-populated environments (e.g., finding a cup is more likely 
to be successful if the robot knows a priori which room is the kitchen and how to get there).

3. Artificial intelligence and machine learning applied on  
robotics perception

Once a robot is (self) localized, it can proceed with the execution of its task. In the case of autono-
mous mobile manipulators, this involves localizing the objects of interest in the operating envi-
ronment and grasping them. In a typical setup, the robot navigates to the region of interest, 
observes the current scene to build a 3D map for collision-free grasp planning and for localizing 
target objects. The target could be a table or container where something has to be put down, or 
an object to be picked up. Especially in the latter case, estimating all 6 degrees of freedom of an 
object is necessary. Subsequently, a motion and a grasp are computed and executed. There are 
cases where a tighter integration of perception and manipulation is required, e.g., for high-pre-
cision manipulation, where approaches like visual servoing are employed. However, in every 
application, there is a potential improvement for treating perception and manipulation together.

Perception and manipulation are complementary ways to understand and interact with 
the environment and according to the common coding theory, as developed and presented 
by Sperry [35], they are also inextricably linked in the brain. The importance of a tight link 
between perception and action for artificial agents has been recognized by Turing [36], who 
suggested to equip computers “with the best sense organs that money can buy” and let them 
learn from gathered experiences until they pass his famous test as described in [37].
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The argument for embodied learning and grounding of new information evolved, considering 
the works of Steels and Brooks [38] and Vernon [39], and more recently in [40], robot perception 
involves planning and interactive segmentation. In this regard, perception and action recipro-
cally inform each other, in order to obtain the best results for locating objects. In this context, 
the localization problem involves segmenting objects, but also knowing their position and 
orientation relative to the robot in order to facilitate manipulation. The problem of object pose 
estimation, an important prerequisite for model-based robotic grasping, uses in most of the 
cases precomputed grasp points as described by Ferrari and Canny [41]. We can categorize this 
topic in either template/descriptor-based approaches or alternatively local feature/patch-based 
approaches. In both cases, an ever-recurring approach is that bottom-up data-driven hypothe-
sis generation is followed and verified by top-down concept-driven models. Such mechanisms 
are assumed, as addressed by Frisby and Stone [42], to be like our human vision system.

The approaches presented in ([43–45] make use of color histograms, color gradients, depth 
or normal orientations from discrete object views, i.e., they are examples of vision-/camera-
based perception for robots. Vision-based perception systems typically suffer from occlusions, 
aspect ratio influence, and from problems arising due to the discretization of the 3D or 6D 
search space. Conversely, in the works of [46–48], they predict the object pose through voting 
or a PnP algorithm [49]. The performance usually decreases if the considered object lacks tex-
ture and if the background is heavily cluttered. In the works listed above, learning algorithms 
based on classical ML methods and deep-learning (e.g., CNN) have been employed.

The importance of mobile manipulation and perception areas has been signaled by the (not 
only academic) interest spurred by events like the Amazon Robotics (formerly Picking) 
Challenge and the workshop series at the recent major computer vision conferences asso-
ciated with the SIXD Challenge (http://cmp.felk.cvut.cz/sixd/workshop_2018/). However, 
current solutions are either heavily tailored to a specific application, requiring specific engi-
neering during deployment, or their generality makes them too slow or imprecise to fulfill 
the tight time-constraints of industrial applications. While deep learning holds the potential 
to both improve accuracy (i.e., classification or recognition performance) and also to increase 
execution speed, more work on transfer learning, in the sense of generalization improvement, 
is required to apply models learned in real-world and also in unseen (new) environment. 
Domain adaptation and domain randomization (i.e., image augmentations) seem to be impor-
tant directions to pursue, and should be explored not only for vision/camera cases, but also 
for LiDAR-based perception cases.

Usually, in traditional mobile robot manipulation use-cases, the navigation and manipulation 
capabilities of a robot can be exploited to let the robot gather data about objects autonomously. 
This can involve, for instance, observing an object of interest from multiple viewpoints in 
order to allow a better object model estimation, or even in-hand modeling. In the case of 
perception for mobile robots and autonomous (robot) vehicles, such options are not avail-
able; thus, its perception systems have to be trained offline. However, besides AI/ML-based 
algorithms and higher level perception, for autonomous driving applications, environment 
representation (including multisensor fusion) is of primary concern [50, 51].

The development of advanced perception for (full) autonomous driving has been a sub-
ject of interest since the 1980s, having a period of strong development due to the DARPA 
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Challenges (2004, 2005, and 2007) and the European ELROB challenges (since 2006), and more 
recently, it has regained considerable interest from automotive and robotics industries and 
academia. Research in self-driving cars, also referred as autonomous robot-cars, is closely 
related to mobile robotics and many important works in this field have been published 
in well-known conferences and journals devoted to robotics. Autonomous driving systems 
(ADS) comprise, basically, perception (including sensor-fusion and environment modeling/
representation), localization, and navigation (path planning, trajectory following, control) 
and, more recently, cooperation (V2X-based communication technologies). However, the 
cornerstone of ADS is the perception system because it is involved in most of the essen-
tial and necessary tasks for safe driving such as the “segmentation,” detection/recognition, 
of: road, lane-markings, pedestrians, and other vulnerable road users (e.g., cyclists), other 
vehicles, traffic signals, crosswalks, and the numerous other types of objects and obstacles 
that can be found on the roads. In addition to the sensors (e.g., cameras, LIDAR, Radar, 
“new” solid-state LiDAR technology) and the models used in ADS, the common denomina-
tor in a perception system consists of AI/ML algorithms, where deep learning is the leading 
technique for semantic segmentation and object detection [50].

One of current trends in autonomous vehicles and robotics is the promising idea of incorpo-
rating cooperative information, from connected environment/infrastructure, into the decision 
loop of the robotic perception system. The rationale is to improve robustness and safety by 
providing complementary information to the perception system, for example: the position 
and identification of a given object or obstacle on the road could be reported (e.g., broadcasted 
through a communication network) in advance to an autonomous car, moments before the 
object/obstacle are within the onboard sensor’s field/range of view.

4. Case studies

4.1. The Strands project

The EU FP7 Strands project [52] is formed by a consortium of six universities and two indus-
trial partners. The aim of the project is to develop the next generation of intelligent mobile 
robots, capable of operating alongside humans for extended periods of time. While research 
into mobile robotic technology has been very active over the last few decades, robotic systems 
that can operate robustly, for extended periods of time, in human-populated environments 
remain a rarity. Strands aims to fill this gap and to provide robots that are intelligent, robust, 
and can provide useful functions in real-world security and care scenarios. Importantly, the 
extended operation times imply that the robotic systems developed have to be able to cope 
with an ever-increasing amount of data, as well as to be able to deal with the complex and 
unstructured real world (Figure 2).

Figure 3 shows a high level overview of the Strands system (with more details in [52]): the 
mobile robot navigates autonomously between a number of predefined waypoints. A task 
scheduling mechanism dictates when the robot should visit which waypoints, depending on 
the tasks the robot has to accomplish on any given day. The perception system consists, at the 
lowest level, of a module which builds local metric maps at the waypoints visited by the robot. 
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Figure 3. The Strands system—Overview.

These local maps are updated over time, as the robot revisits the same locations in the environ-
ment, and they are further used to segment out the dynamic objects from the static scene. The 
dynamic segmentations are used as cues for higher level behaviors, such as triggering a data 
acquisition and object modeling step, whereby the robot navigates around the detected object 
to collect additional data which are fused into a canonical model of the object [53]. The data can 

Figure 2. The Strands project (image from http://strands.acin.tuwien.ac.at/).
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further be used to generate a textured mesh through which a convolutional neural network 
can be trained which can successfully recognize the object in future observations [31, 32]. The 
dynamics detected in the environment can be used to detect patterns, either through spectral 
analysis (i.e., by applying a Fourier transform on the raw detection data), as described in [54], 
or as part of a multitarget tracking system based on a Rao-Blackwellized particle filter.

In addition to the detection and modeling of objects, the Strands perception system also focuses 
on the detection of people. Beyer et al. [55] present a method to continuously estimate the 
head-pose of people, while in [15] laser and RGB-D are combined to reliably detect humans 
and to allow human-aware navigation approaches which make the robot more socially accept-
able. Beyer et al. [56] propose a CNN-based system which uses laser scanner data to detect 
objects; the usefulness of the approach is demonstrated in the case scenario, where it is used to 
detect wheelchairs and walkers.

Robust perception algorithms that can operate reliably for extended periods of time are one 
of the cornerstones of the Strands system. However, any algorithm deployed on the robot 
has to be not only robust, but also able to scale as the robot makes more observations and 
collects more information about the world. One of the key parts that would enable the suc-
cessful operation of such a robotic system is a perception stack that is able to continuously 
integrate observations about the world, extract relevant parts as well as build models that 
understand and are able to predict what the environment will look like in the future. This 
spatio-temporal understanding is crucial, as it allows a mobile robot to compress the data 
acquired during months of autonomous operation into models that can be used to refine the 
robot’s operation over time. Modeling periodicities in the environment and integrating them 
into a planning pipeline is further investigated by Fentanes et al. [57], while Santos et al. 
[58] build spatio-temporal models of the environment and use them for exploration through 
an information-theoretic approach which predicts the potential gain of observing particular 
areas of the world at different points in time.

4.2. The RobDREAM project

Advanced robots operating in complex and dynamic environments require intelligent per-
ception algorithms to navigate collision-free, analyze scenes, recognize relevant objects, and 
manipulate them. Nowadays, the perception of mobile manipulation systems often fails if 
the context changes due to a variation, e.g., in the lightning conditions, the utilized objects, 
the manipulation area, or the environment. Then, a robotic expert is needed who needs to 
adjust the parameters of the perception algorithm and the utilized sensor or even select a better 
method or sensor. Thus, a high-level cognitive ability that is required for operating alongside 
humans is to continuously improve performance based on introspection. This adaptability to 
changing situations requires different aspects of machine learning, e.g., storing experiences for 
life-long learning, generating annotated datasets for supervised learning through user interac-
tion, Bayesian optimization to avoid brute-force search in high-dimensional data, and a unified 
representation of data and meta-data to facilitate knowledge transfer.

The RobDREAM consortium automated and integrated different aspects of these. Specifically, 
in the EU’s H2020 RobDREAM project, a mobile manipulator was used to showcase the 
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intuitive programming and simplified setup of robotic applications enabled by automatically 
tuning task execution pipelines according to user-defined performance criteria.

As illustrated in Figure 4, this was achieved by a semantically annotated logging of percep-
tual episodic memories that can be queried intuitively in order to analyze the performance of 
the system in different contexts. Then, a ground truth annotation tool can be used by the user 
to mark satisfying results, or correct unsatisfying ones, where the suggestions and interactive 
capabilities of the system reduced the cognitive load of this often complicated task (espe-
cially when it comes to 6 DoF pose annotations), as shown in user studies involving computer 
vision expert and nonexpert users alike.

These annotations are then used by a Bayesian optimization framework to tune the off-
the-shelf pipeline to the specific scenarios the robot encounters, thereby incrementally 
improving the performance of the system. The project did not focus only on perception, 
but on other key technologies for mobile manipulation as well. Bayesian optimization and 
other techniques were used to adapt the navigation, manipulation, and grasping capa-
bilities independently of each other and the perception ones. However, the combinatorial 
complexity of the joint parameter space of all the involved steps was too much even for 
such intelligent meta-learners. The final industrially relevant use-case demo featured the 
kitting and mounting of electric cabinet board elements, for which a pose-annotated data-
base was built using two RBD-D cameras and released to the public (http://www.dlr.de/
rm/thr-dataset).

4.3. The SPENCER project

When deploying robots in scenarios where they need to share the environment and inter-
act with a large number of people, it is increasingly important that their functionalities 
are “socially aware.” This means that they respect the personal space (and also privacy) of 
encountered persons, does not navigate s.t. to cut up cues or groups, etc. Such functionalities 
go beyond the usual focus of robotics research groups, while academics focusing on user 
experience typically do not have the means to develop radically new robots. However, the 
EU’s FP7 program funded such an interdisciplinary project, called SPENCER, driven by an 
end-user in the aviation industry.

Figure 4. Schematics of the RobDREAM approach (image based on deliverables of http://robdream.eu/).
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Since around 80% of passenger traffic at different hubs, including Schiphol in Amsterdam, is 
comprised of passengers who are transferring from one flight to the other, KLM is interested 
in an efficient management of their movements. For example, when transfer times are short, 
and finding one’s way in a big airport is difficult due to language and alphabet barriers, 
people are at risk to losing their connection. In such, and similar cases, robotic assistants that 
can be deployed and booked flexibly can possibly help alleviate some of the problem. This 
use-case was explored by the SPENCER demonstrator for smart passengers’ flow manage-
ment and mobile information provider, but similar solutions are required in other domains 
as well (Figure 5).

Figure 5. Concept and results of the SPENCER project (images from http://www.spencer.eu/).
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The SPENCER consortium integrated the developed technologies onto a robot platform 
whose task consists in picking up short-transfer time passenger groups at their gate of arrival, 
identifying them with an onboard boarding pass reader, guiding them to the Schengen barrier 
and instructing them to use the priority track [59]. Additionally, the platform was equipped 
with a KLM information kiosk and provides services to passengers in need of help.

In crowded environments such as airports, generating short and safe paths for mobile robots 
is still difficult. Thus, social scene understanding and long-term prediction of human motion 
in crowds is not sufficiently solved but highly relevant for all robots that need to quickly 
navigate in human environments, possibly under temporal constraints. Social scene under-
standing means, in part, that a reliable tracking and prediction of people’s motion with low 
uncertainty is available, and that is particularly hard if there are too many occlusions and 
too many fast changes of motion direction. Classical path planning approaches often result 
in an overconstrained or overly cautious robot that either fails to produce a feasible and 
safe path in the crowd, or plans a large and suboptimal detour to avoid people in the scene.

4.4. The AUTOCITS project

The AUTOCITS (https://www.autocits.eu/) project will carry out a comprehensive assessment 
of cooperative systems and autonomous driving by deploying real-world Pilots, and will 
study and review regulations related to automated and autonomous driving. AUTOCITS, 
cofinanced by the European Union through the Connecting Europe Facility (CEF) Program, 
aims to facilitate the deployment of autonomous vehicles in European roads, and to use 
connected/cooperative intelligent transport systems (C-ITS) services to share information 
between autonomous vehicles and infrastructure, by means of V2V and V2I communica-
tion technology, to improve safety and to facilitate the coexistence of autonomous cars in 
real-world traffic conditions. The AUTOCITS Pilots, involving connected and autonomous 
vehicles (including autonomous shuttles, i.e., low-speed robot-vehicles), will be deployed 
in three major European cities in “the Atlantic Corridor of the European Network”: Lisbon 
(Portugal), Madrid (Spain), and Paris (France).

A number of technologies are involved in AUTOCITS, ranging from the onboard and road-
side units (OBU, RSU) to the autonomous driving systems that equip the cars. Today, the 
autonomous and/or automated driving technology we see on the roads belongs to the levels 
3 or 4 (with respect to the SAE’s levels of automation in vehicles). In AUTOCITS, the Pilot’s 
deployment will be of level 3 to 4. In this context, it is important to say that level 5 cars (i.e., 
100% self-driving or full-automated cars: the driving wheels would be unnecessary) operat-
ing in real-world roads and streets are still far from reality.

We can say that the perception system is in charge of all tasks related to object and event 
detection and response (OEDR). Therefore, a perception system—including of course its soft-
ware modules—is responsible for sensing, understanding, and reasoning about the autono-
mous car’s surroundings. Within a connected and cooperative environment, connected cars 
would leverage and complement onboard sensor data by using information from vehicular 
communication systems (i.e., V2X technology): information from other connected vehicles, 
from infrastructure, and road users (and vice-versa).

Applications of Mobile Robots122



5. Conclusions and remarks

So just how capable is current perception and AI, and how close did/can it get to human-level 
performance? Szeliski [60] in his introductory book to computer vision argued that tradi-
tional vision struggled to reach the performance of a 2-year old child, but today’s CNNs reach 
super-human classification performance on restricted domains (e.g., in the ImageNet Large 
Scale Visual Recognition Challenge: http://www.image-net.org/challenges/LSVRC/).

The recent surge and interest in deep-learning methods for perception has greatly improved 
performance in a variety of tasks such as object detection, recognition, semantic segmentation, 
etc. One of the main reasons for these advancements is that working on perception systems 
lends itself easily to offline experimentation on publicly available datasets, and comparison to 
other methods via standard benchmarks and competitions.

Machine learning (ML) and deep learning (DL), the latter has been one of the most used 
keywords in some conferences in robotics recently, are consolidated topics embraced by 
the robotics community nowadays. While one can interpret the filters of CNNs as Gabor 
filters and assume to be analogous to functions of the visual cortex, currently, deep learn-

ing is a purely nonsymbolic approach to AI/ML, and thus not expected to produce “strong” 
AI/ML. However, even at the current level, its usefulness is undeniable, and perhaps, 
the most eloquent example comes from the world of autonomous driving which brings 
together the robotics and the computer vision community. A number of other robotics-
related products are starting to be commercially available for increasingly complex tasks 
such as visual question and answering systems, video captioning and activity recognition, 
large-scale human detection and tracking in videos, or anomaly detection in images for 
factory automation.
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