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Abstract

Intracellular signal transduction is the most important research topic in cell biology, and
for many years, model research by system biology based on network theory has long been
in progress. This article reviews cell signaling from the viewpoint of information thermo-
dynamics and describes a method for quantitatively describing signaling. In particular,
a theoretical basis for evaluating the efficiency of intracellular signal transduction is
presented in which information transmission in intracellular signal transduction is maxi-
mized by using entropy coding and the fluctuation theorem. An important conclusion is
obtained: the average entropy production rate is constant through the signal cascade.

Keywords: information thermodynamics, fluctuation theorem, average entropy
generation rate, entropy coding

1. Introduction

The analysis of intracellular signal transduction is one of the most important research topics in cell

molecular biology. Determining the mechanisms for communicating intracellular information in

the steady state, responding to changes in the external environment, and converting the change to

express genetic information are a significant problem. The presented quantitative analysis may

enable a comparison of signal transduction and evaluation of efficiency and should help realize the

quantitative reproducibility of data for cell molecular biology and precise theoretical construction.

Gene expression cascade has been extensively studied for network study [1]. A correlation

analysis of the expression pattern of a given gene is expected to give useful information for

clinical diagnosis [2, 3]. Along with this evolution, protein-protein network theory has

developed greatly in graph theory and phase analysis [4, 5]. Taschendorff et al. applied
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signaling entropy defined by correlation and transition probabilities between the proteins of

interest for omics data analysis [5]. Chemokines and immunological networks are also an

important theme of network research [6]. Meanwhile, considering specific reaction kinetics

and thermodynamic analysis in individual reactions, there have been few studies discussing

signal transduction, for example, limited to chemotaxis models of Escherichia coli [7], and

several theoretical researches about mitogen-activated protein kinase (MAPK) cascade and

bistability or ultra-sensitivity and feedback controllability of the cascade have been reported

[8–13]. In addition, information thermodynamics of MAPK cascade has been recently

reported [14–16]. This article reviews these recent studies from information thermodynamics

in relation to fluctuation theorem.

2. Modeling cell signaling

2.1. Signaling cascade model

Intracellular signal transduction is carried out by a chain network of intracellular biochem-

ical reactions. The network is operated by protein-protein interaction [4, 17–23]. The cell

signal cascade considered here is an interesting next chain reaction mechanism: what was

originally a substrate of a biochemical reaction becomes an enzyme in the next step and is a

signal molecule in each step. This can be interpreted as if signal conversion is occurring

rather than changing. It is possible to model this with a chemical reaction equation. The

signaling step in the above cascades may be described as follows:

Xmj
∗ þ Xmjþ1 þ ATP ! Xmj

∗ þ Xmjþ1
∗ þ ADP

Xmjþ1
∗ ! Xmjþ1 þ Pi 1 ≤m ≤M; 1 ≤ j ≤nð Þ

(1)

ATP, ADP, and Pi represent adenosine triphosphate, adenosine diphosphate, and inorganic

phosphate, respectively. Among signal pathways, the most well-known signal pathway is the

MAPK cascade. As a ligand, the epidermal growth factor (EGF) stimulates a single cell via EGF

receptor (EGFR) for sequential phosphorylation of c-Raf, MAP kinase-extracellular signal-

regulated kinase, and kinase-extracellular signal-regulated kinase (ERK), as shown in Figure 1.

This cascade can transmit signal from the cell membrane to the nucleus (Figure 1):

EGFþ EGFR $ EGFR∗,EGFR∗ þ Ras $ EGFR∗ þ Ras∗ X1ð Þ,

Ras∗ þ c-Raf $ c-Raf∗ X2ð Þ þ Ras∗,

c-Raf∗ þMEK $ c-Raf∗ þMEK∗ X3ð Þ,

MEK∗ þ ERK $ MEKþ ERK∗ X4ð Þ

(2)

2.2. Encoding of signal events

It is possible to apply information theory by considering information source coding of signal

molecules. Xj and Xj* represent the signal molecules. The symbol * indicates an activated state,
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and mutual conversion is possible between these two. In an actual reaction, it takes a suffi-

ciently longer time to change from the activate state to the inactive state than it is changed from

the inactive state to the active state. As shown in Eq. (1), a signal series that the activating

signal molecule of step j-1 activates j molecule is established. Following the order in which the

concentration fluctuation of each signal molecule becomes significantly larger than fluctuation

at the steady state,

X1X2X1*X3… or X2X3X2*X1… and so on.

If the probability that a signal molecule appears in one signal event is proportional to the

concentration, then

pj ¼ Xj=X (3)

pj
∗
¼ Xj

∗=X (4)

with

Xn

j¼1

pj þ pj
∗
¼ 1 (5)

Figure 1. Schematic example of a signal transduction pathway. Adenosine triphosphate (ATP) represents externally

supplied ATP, while the external stimulus represents the binding of a growth factor or other chemokines to a receptor.

Abbreviations: ADP, adenosine diphosphate; DNA, deoxyribonucleic acid; mRNA, messenger ribonucleic acid.
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This gives τ the duration of the overall signal event, and the total number of signal events

occurring during that time is taken as the total number of signal molecules X. The total signal

event number Ψ in a given reaction event can be described as follows:

ð6Þ

The entropy of the signal event can be defined logarithmically. The logarithm of Ψ is approx-

imated according to Starling’s Equation [10]:

ð7Þ

Here, we used Eqs. (1) and (2). This right-hand side is in the form of well-known mixed

entropy. Each step of the signal pathway is considered to be a mixed state of two kinds of

signal molecules.

2.3. Definition of code length

Here, the signal length for the time series formed by cellular signaling molecules is defined

according to the theory of information source coding (Figure 2). τ + j is the duration of the state

in which the phosphorylated molecule is in an increasing state, and τ � j is negative with

respect to the increase in the non-phosphorylated molecule (the decline phase of the phosphor-

ylated molecule). A positive value is assigned for τ + j, and a negative value is assigned for τ � j

giving consideration of the direction of signal transduction. For example, even if a signal is

transmitted in the positive direction, if the same amount of signal is transmitted in the opposite

direction, the signal becomes a net zero. To evaluate such a signal amount, the direction needs

to be considered. In order to capture this, positive and negative signs are assigned to time.

The definition of one total code length, i.e., total length of the given signal event, the following

is given:

τm ¼
X

n

j¼1

Xmjτmj–Xmj
∗

τ�mj

� �

(8)

Then, (3) and (4) can be used to obtain

τm ¼ X
X

n

j¼1

pmjτmj–pmj
∗
τ�mj

� �

(9)

Here, the average entropy production rate is defined during the phosphorylation or activation

of signaling molecule using an arbitrary parameter sj:

Cell Signalling - Thermodynamics and Molecular Control4



ð10Þ

2.4. Entropy coding

In order to maximize the number of signal events in a given duration, the relationship between

the appearance probability (4) and the code length (9) should be calculated. The Lagrange

undetermined constant method is adopted for this. If the constraint conditions are given by (5),

(7), and (9), the function G can be defined as follows [16]:

G pm1; pm2;⋯pmn; pm1
∗
; pm2

∗
;⋯pmn

∗
;X

� �

¼ Sm � αm

X

n

j¼1

pmj þ pmj
∗

� �

� βmτm

¼ Sm � αm

X

n

j¼1

pmj þ pmj
∗

� �

� βmX
X

n

j¼1

pmjτmj � pmj
∗τ�mj

� �

(11)

If the partial derivative of G on the right side is taken with the occurrence probability and the

total number of signal molecules, respectively, then

Figure 2. A common time course of the jth steps in the cascade. The vertical axis represents the ratio of the signaling active

molecule concentration, Xj*, to that in the steady state, Xj*
st. The horizontal axis denotes the duration (min or time unit). τj and

τ�j denote the duration of the jth step. Line Xj* = Xj*st denotes the Xj* concentration at the initial steady state before the signal

event.
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∂G

∂pmj

¼ �X log pmj þ βmτmj

� �

� αm � X (12)

∂G

∂pmj
∗
¼ �X log pmj

∗
� βmτ�mj

� �

� αm � X (13)

∂G

∂X
¼ �

X

n

j¼1

pmj log pmj þ

X

n

j¼1

pmj
∗ log pmj

∗

0

@

1

A� βm

X

n

j¼1

τmjpmj �

X

n

j¼1

τ�mjpmj
∗

0

@

1

A (14)

If the right sides of Eqs. (12), (13), and (14) are set equal to zero, then

� log pmj ¼ βmτmj τjm > 0
� �

(15)

� log pmj
∗
¼ �βmτ�mj τ�mj < 0

� �

(16)

and

αm ¼ �X (17)

This produces a simple result. Here, (15) and (16) are called entropy coding [16].

3. Information thermodynamics of cell signal transduction

3.1. Application of binary code theory

In practice, the signal transduction system can be classified according to two types of signaling

molecules: the activated type is phosphorylated at each step of the reaction chain, and the

inactive type is non-phosphorylated.

In terms of the change, the objective was to evaluate information transmission between each

signal transmission step in the cascade. Increasing the active form induces the chemical poten-

tial caused by the mixed entropy change of each step in the signaling cascade and allows for

biological signaling. j step component is extracted from Eq. (3)

sj ≜ � kBX pj log pj þ pj
∗ log pj

∗
h i

(18)

Consider the entropy flow between the steps. For example, when a cell system is stimulated by

the external environment or the state of a receptor at the boundary fluctuates (e.g., activation

type) because of a change of the external environment, the signal cascades up to step j (i.e.,

transmitted). In this case, because the signal is not transmitted to step j + 1, the concentration

fluctuation of Xj or Xj * differs between steps j and j + 1, and an entropy flow can occur.

Cell Signalling - Thermodynamics and Molecular Control6



When the signal event starts and the signal is transmitted to the j step, fluctuation is observed

in the j step as follows:

sj ¼ �kBX pj þ dpj

� �

log pj þ dpj

� �

þ pj
∗
þ dpj

∗

� �

log pj
∗
þ dpj

∗

� �h i

(19)

The signal has not yet reached the j + 1 step; hence, the entropy of the jth molecule remains:

sjþ1 ¼ �kBX pj log pj þ pj
∗ log pj

∗

h i

(20)

We can calculate the entropy current:

Δsj ¼ sj � sjþ1 ¼ kBX
∂sj

∂pj
∗
Δpj

∗
þ

∂sj

∂pj
Δpj

 !

¼ ΔXj
∗pj

0 log
pj

pj
∗

(21)

Here, the logarithm of the ratio of the inactive signal molecule to the active signal molecule

appeared. This form often appears. Assuming that there is no new generation of signal

molecules

dpj þ dpj
∗

¼ 0 (22)

Here, we defined the entropy current per one signal molecule, cj:

cj ¼ Δsj=ΔXj
∗

¼ pj
0 log

pj

pj
∗

(23)

3.2. Fluctuation and signal transduction

Even in the steady state, signal events represented by this code sequence are occurring. When

there is minor change in the extracellular environment, the amount of binding complex

between the receptor on the cell membrane surface and stimulant ligand increases. This

fluctuation increases the phosphorylated form of another signal molecule next to the complex

and increases the fluctuation of the active type signal molecule through a chain reaction. Based

on the signaling in the steady state, the increase in fluctuation indicates a signal response. In

this manner, cell signaling can be distinguished as in the steady state or a fluctuation response

to a change in the external environment.

3.3. Adaptation of fluctuation theorem to analysis of signal transduction

We defined transitional probability p (j + 1|j), which is the probability of step (j + 1) given step j,

and p (j|j + 1), which is the transitional probability of step j given j + 1 step during τj. The

logarithm of ratio p (j + 1|j) / p (j|j + 1) is divided by τj � τ�j and taking the limit, the AEPR

from the j to the j + 1 field satisfies the steady fluctuation theorem (FT) [24]:
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lim
τj�τ�j!∞

1

τj � τ�j
log

p jþ 1jjð Þ

p jjjþ 1ð Þ
¼ ζj (24)

with

ð25Þ

ð26Þ

where sj is an arbitrary parameter representing the progression of a reaction event. This

fluctuation theorem leads to various nonequilibrium relations among cumulates of the current.

We have an equation below using signal current density [16, 24]:

lim
τj�τ�j!∞

1

τj � τ�j
log

p jþ 1jjð Þ

p jjjþ 1ð Þ
¼

cj

kBT τj � τ�j

� �ΔXj
∗ (27)

Substituting the right side in Eq. (23) into the right side of Eq. (27), we had an important

result [16]:

lim
τj�τ�j!∞

1

τj � τ�j
log

p jþ 1jjð Þ

p jjjþ 1ð Þ
¼ lim

τj�τ�j!∞

1

τj � τ�j
log

pj

pj
∗

(28)

By substituting Eqs. (15) and (16) obtained by entropy coding on the right side of Eq. (28),

using τ j << | τ � j | in contrast to Eq. (27) obtains:

ð29Þ

ð30Þ

Subsequently, Eqs. (24), (29), and (30) provide

ð31Þ

Accordingly, entropy coding is given using Eqs. (30) and (31):

ð32Þ

ð33Þ

are obtained. In conclusion, the AEPR is conserved during the whole cascade of signal trans-

duction [16].

Cell Signalling - Thermodynamics and Molecular Control8



4. Conclusion

Here, each signal step is handled as actual biochemical reactions based on kinetics and ther-

modynamics. Signal transduction is interpreted based on encoding theory and fluctuation

theorem. Regarding the relationship between information and entropy in thermodynamic

mechanisms [25–27], information thermodynamics has seen remarkable developments in

recent years, and information theory and thermodynamics are easier to understand when they

are integrated. In particular, the theoretical results based on analysis of the Szilard engine

model [28] have made it possible to compute the mutual information [29, 30] and the amount

of work that can be extracted from a system by free energy changes [15]. Thus, information

thermodynamics may be the theoretical basis of the signal transduction.
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Appendices and nomenclature

MAPK mitogen-activated protein kinase

EGF epidermal growth factor

EGFR EGF receptor

ERK extracellular signal-regulated kinase

ATP adenosine triphosphate

ADP adenosine diphosphate

DNA deoxyribonucleic acid

mRNA messenger ribonucleic acid

FT fluctuation theorem

AEPR average entropy production rate
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