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Abstract

This chapter discusses radio-pathological correlation with recent imaging advances such 
as machine learning (ML) with the use of technical methods such as mammography and 
histopathology. Although criteria for diagnostic categories for radiology and pathology 
are well established, manual detection and grading, respectively, are tedious and sub-
jective processes and thus suffer from inter-observer and intra-observer variations. Two 
most popular techniques that use ML, computer aided detection (CADe) and computer 
aided diagnosis (CADx), are presented. CADe is a rejection model based on SVM algo-
rithm which is used to reduce the False Positive (FP) of the output of the Chan-Vese 
segmentation algorithm that was initialized by the marker controller watershed (MCWS) 
algorithm. CADx method applies the ensemble framework, consisting of four-base SVM 
(RBF) classifiers, where each base classifier is a specialist and is trained to use the selected 
features of a particular tissue component. In general, both proposed methods offer alter-
native decision-making ability and are able to assist the medical expert in giving second 
opinion on more precise nodule detection. Hence, it reduces FP rate that causes over 
segmentation and improves the performance for detection and diagnosis of the breast 
cancer and is able to create a platform that integrates diagnostic reporting system.

Keywords: computer-aided detection, computer-aided diagnosis, support vector 
machine, false positive, grading
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1. Introduction

Breast cancer is one of the most dangerous and common reproductive cancers that affect 
mostly women. The oldest documented cases of breast cancer were in Egypt in 3000 BC [1]. 

Breast tumor is an abnormal growth of tissues in the breast, and it may be felt as a lump 

or nipple discharge or change of skin texture around the nipple region. Cancers are abnor-

mal cells that divide uncontrollably and are able to invade other tissues. Cancer cells have 

the ability to spread to other parts of the body through the blood and lymphatic systems 

[1]. It is the leading cause of death among middle aged and older women [1]. According to 

cancer statistics, breast cancer is the second most common and the leading cause of cancer 

deaths among women, second only to lung cancer [1]. Around 1 in 36 (3%) women dies due 

to breast cancer [2]. It has become a major health issue in the past 50 years, and its incidence 

has increased in recent years [1]; in Malaysia, breast cancer is the most frequent type of cancer 

among women. It has an incidence rate of about 26% (more than 4400 women) among cancer 

affecting women. Around 40% of the women who suffered from breast cancer in Malaysia 
have died (IARC). Hence, determining the right decision from a right diagnosis is crucial.

In today’s world with the advent of personalized medicine, it increases the workload and 

complexity of the doctors in cancer diagnosis. Radiologic and pathology are the key players 

in making decision for cancer diagnosis. Based on the radiology diagnosis, the results will be 

submitted to pathology for further diagnosis. Pathology and radiology form the core of cancer 
diagnosis, yet based on our observation at our studied hospital and under current process of 

diagnostic medicine, the communication among them remained on papers. That paper contains 

their respective report of the case on the same patient. This scenario is in parallel with what 

James et al. [3] had highlighted in their paper. The working flows of both specialties remain ad 
hoc and occur in separate “silos,” with no direct linkage between their case accessioning and/or 

reporting systems, even when both departments belong to the same host institution. Since both 

radiologists’ and pathologists’ data are essential to make correct diagnoses and appropriate 

patient management and treatment decisions, the isolation of radiology and pathology work 

flows can be detrimental to the quality and outcomes of patient care. These detrimental effects 
underscore the need for pathology and radiology work flow integration and for systems that 
facilitate the synthesis of all data produced by both specialties. With the enormous technologi-

cal advances currently occurring in both fields, the opportunity has emerged to develop an inte-

grated diagnostic reporting system that supports both specialties and, therefore, improves the 

overall quality of patient care. In this chapter, we are focusing on breast cancer diagnostic for 

data collected from UKMMC. Hence, breast radio-pathological correlation is essential. The cov-

ered topics would include radio-pathological correlation with recent imaging advances such as 

machine learning with use of technical methods such as mammography and histopathology.

As a standard, the current diagnostic screening consists of a mammography to identify suspi-

cious regions of the breast, followed by a biopsy of potentially cancerous areas. A breast biopsy 

is a diagnostic procedure that can determine if the suspicious area is malignant or benign [4–6]. 

Although criteria for diagnostic categories of radiologic and pathology are well established, 

manually detection and grading respectively is a tedious and subjective process and thus suffers 
from inter-observer and intra-observer variations. Early detection via mammography increases 
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breast cancer treatment options and the survival rate. However, mammography is not perfect. 

Detection of suspicious abnormalities is a repetitive and fatiguing task. For every thousand 

cases analyzed by a radiologist, only three to four are cancerous, and thus an abnormality may 

be overlooked. As a result, radiologists fail to detect 10–30% of cancers. Approximately two 

thirds of these false-negative results are due to missed lesions that are evident retrospectively. 

Due to the considerable amount of overlap in the appearance of malignant and benign abnor-

malities, mammography has a positive predictive value (PPV) of less than 35%, where the PPV 

is defined as the percentage of lesions subjected to biopsy that were found to be cancer. Thus, a 
high proportion of biopsies are performed on benign lesions. Avoiding benign biopsies would 

spare women anxiety, discomfort, and expense [7]. As mentioned earlier, with the advent of 

personalized medicine, the process becomes more complex. Not only that, the emerging of 4th 

Industrial Revolution (4IR) technology allowed huge amount of data to be captured, and this 

contributes to the complexity of the radiology and pathology workload. To address these chal-

lenges, many researchers are leveraging artificial intelligence to improve medical diagnostics. 
Machine learning is a sub discipline in the field of artificial intelligence (AI) that explores the 
study and design of algorithms that can learn from data [8].

2. Machine learning

ML comprises a broad class of statistical analysis algorithms that iteratively improve in response 

to training data to build models for autonomous predictions. In other words, computer program 

performance improves automatically with experience [9]. ML algorithm’s aim is to develop a 

mathematical model that fits the data. It comprises of two types of learning which are super-

vised and unsupervised. Supervised learning algorithm required the data to be labeled for 

training purposes. For example, in training a set of medical images to identify a specific breast 
tumor type, the label would be tumor pathologic results or genomic information. These labels, 

also known as ground truth, can be as specific or general as needed to answer the question. 
The ML algorithm is exposed to enough of these labeled data to allow them to move into a 

model designed to answer the question of interest. Because of the large number of well-labeled 

images required to train models, curating these data sets is often laborious and expensive [10]. 

Unsupervised ML clusters the data that have similar characteristics, and the unlabeled data are 

exposed to the algorithm with the goal of generating labels that will meaningfully organize the 

data. This is typically done by identifying useful clusters of data based on one or more dimen-

sions. Compared with supervised techniques, unsupervised learning sometimes requires much 

larger training data sets. Unsupervised learning is useful in identifying meaningful clustering 

labels that can then be used in supervised training to develop a useful ML algorithm. This blend 

of supervised and unsupervised learning is known as semi-supervised.

ML algorithms are to analyze any data set to extract data-driven model, prediction rule, or 

decision rule from the data set. Generally, in order to ensure the ML behave intelligently with-

out human intervention, the system learns or extracts knowledge such as rules or patterns 
from a collection of input data or past experience. So the steps involved can be described as 

firstly, the system must acquire features from data. Elaboration of features is well explained in 
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our previous work [11, 12]. Feature selection is very important as it contains information that 

can be used to train the system to identify specific patterns. The pixels are rich with qualitative 
abstractions or values of the input. Second step is analyzing all these features for detecting 

and classifying possible pattern or abnormality. Finally, the step is involving a ML algorithm 
to determine a best suitable model to represent the behavior or the pattern of the data [13].

Various machine learning algorithms are now used to develop high-performance medical 

image processing systems such as computer-aided detection (CADe) system that detects 

clinically significant objects from medical images and computer-aided diagnosis (CADx) 
system that quantifies malignancy of manually or automatically detected clinical objects [14]. 

Therefore, CADe for mass in mammogram detects the suspicious region in the mammogram 

then tries to reduce the false positive and finally classifies this region to a mass or nonmass. In 
CADx for mass in a mammogram, most researchers use a region of interest (ROI) that contains 

the mass as an input to the CADx. Then, CADx tries to classify it into benign or malignant 

and gives the appropriate recommendation to do biopsy or follow-up screening [15]. Recent 

studies have shown that CAD systems, when used as an aid, have improved radiologists’ 

accuracy of detection of breast cancer and also pathology decision [1, 7, 16]. It is worthwhile 

to distinguish ML from traditional computer-aided detection (CAD) algorithms. Traditional 

CAD algorithms are mathematical models that identify the presence or absence of image fea-

tures known to be associated with a disease state. One of the examples is a microcalcification 
on a mammogram. Traditional CAD allows the developer to identify a feature explicitly and 

attempts to determine the presence or absence of that feature within a set of images. In con-

trast, ML techniques focus on a particular labeled outcome (ductal adenocarcinoma), and in 

the process of training, clusters of nodes evolve into algorithms for identifying features. The 

power and promise of the ML approach over traditional CAD is that useful features can exist 

Figure 1. CADe vs. CADx. Source: Sampat et al. [7].
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that are not currently known or are beyond the limit of human detection [10]. Figure 1 shows 

the difference between CADe and CADx.

In Figure 1, ML algorithm is implemented at the segmentation, feature extraction, and classi-

fication steps. One of the most popular and powerful ML algorithm for all the steps is support 
vector machine (SVM). SVMs are useful for taking a large number of features and discriminat-

ing inputs into one of two classes. SVMs, once trained, show the line or border that provides 

the greatest margin of separation. This concept can be extrapolated to a larger number of 

features (or dimensions), whereby the line of separation becomes an irregular plane known as 

a hyperplane. Because of the large number of features that can be combined mathematically, 

SVMs have been found useful for image processing. This chapter is focusing on SVMs for 

both CADe for radiology and CADx for pathology diagnostics.

3. Computer-aided detection

Digital medical image recognition (DMIR) might give a promising solution. DMIR is consid-

ered as an essential aspect of artificial intelligence. DMIR techniques aim to extract specific 
information from medical images to assist doctors in diagnosing certain diseases and follow 

their progress. Many image processing techniques have been utilized in DMIR, such as seg-

mentation, object detection, and classification. DMIR is concerned with numerous imaging 
modalities in the field of diagnosis including computed tomography (CT), digital mammog-

raphy, magnetic resonance imaging (MRI), and microscopic histopathological images [16, 17].  

Depending on the type of breast tissue, breast mass appears different in a mammogram. 
While it appears as solid block in dense breast, it appears as a roundish pie in a fatty 
breast. The mass may be alone or with microcalcifications [1]. In some cases, healthy breasts 

are also diagnosed as suspicious of cancer by the radiologist, and unfortunately, unnecessary 

biopsy is performed on them. Knowing that there are many possibilities of masses in breast 

cancer, detecting these features and localizing them are important. In general, localizing 

the mass is important in computer-aided detection, where it searches for the location in the 

mammogram images and segments it. Refs. [1, 18] examine the most important approaches 

used for mass segmentation in mammogram. In general, localizing the mass is important in 

computer-aided detection where it searches for the location in the mammogram images and 

do segmentation. Cheng et al. [18] examine the most important approaches used for mass 

segmentation in mammogram. Image segmentation using thresholding is the simplest way 

to isolate the object from its background when the image has a distinct gray level distribu-

tion. Segmentation separates the regions by assuming that the region that have gray levels 

below a specific value, called the threshold, as a background and the region with gray levels 
higher than the threshold as the object or vice versa. Identifying the threshold value is the 

key point in this algorithm. By selecting a representable threshold, object extraction will 

be more accurate. Mostly, image histogram is used to identify the threshold value. Mass 

localization method is discussed in this chapter. This section is based on our previous work 

on SVM rejection model for breast cancer. This method is a rejection model based on SVM 

algorithm used to reduce the FP of the output of the Chan-Vese segmentation algorithm that 

was initialized by the MCWS algorithm.
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Abnormal findings on screening mammograms lead to recall for further assessment, which 
includes additional imaging procedures and if considered necessary fine needle aspiration 
cytology, core needle biopsy, or surgical biopsy. Women recalled for further assessment 

without having a breast cancer diagnosed are considered to have had a FP screening result. 

FP results are a concern of mammographic screening as they might cause distress, anxiety, 

and other psychological problems to the women [19, 20]. It also implies additional hospital 

visits and diagnostic tests, as well as additional costs [21, 22]. The rates of FP screening results 

depend on the screening performance and organization, such as the screening interval, single 

versus double reading, participation patterns, sensitivity of the radiologists performance, 
equipment, and characteristics related to the screening population [22–26]. From image 

segmentation perspective, the FP is an over-segment result where the noncancerous pixel 

is segmented as a cancer pixel. The FP rate is considered a challenge in localizing masses in 

mammogram images. Hence, in this section, a rejection model is proposed by using SVM.

The goal of the rejection model which is based on SVM is the reduction of FP rate in seg-

menting mammogram through the Chan-Vese method, which is initialized by the MCWS 

algorithm. The MCWS algorithm is utilized for segmentation of a mammogram image. 

The segmentation is subsequently refined through the Chan-Vese method, followed by the 
development of the proposed SVM rejection model with different window size as well as 
its application in eliminating incorrect segmented nodules MCWS algorithm. SVM rejection 

model consists of three important stages: (i) initial segmentation, (ii) segmentation using 

Chan-Vese, and (iii) refined segmentation using SVM rejection model. First, the source image 
is cropped to remove any unnecessary parts in an image. Based on the high dimensional-

ity in digital mammogram images, the image is then resized to speed up the subsequent 

processes. Second, completing the pre-processing stage, the SVM rejection model is built to 

reduce the FP rate. Presegmentation and postsegmentation enhancement for Chan-Vese level 

set algorithm is then proposed to localize masse in the mammogram. The key to achieve a 

good segmentation result using Chan-Vese is the initial contour. Instead of getting the initial 
contour from the expert, here, MCWS algorithm is used to obtain the initial contour, as well 

as to eliminate the noise. This makes the proposed method fully automated and reduces the 

time of interference. Lastly, localization of mass in mammogram, Chan-Vese active contour-

based algorithm was used. Chan-Vese can find and maximize the convergence ranges, as 
well as treat the topological change. This ensures that Chan-Vese performs well in image 

segmentation. Support vector machine is a learning machine algorithm expounded by Cortes 

and Vapnik [15] at the AT&T Bell Laboratories that strives to address the issues pertaining to 

a two-group classification. The underlying working principle of this algorithm is to search 
for the optimal hyperplane that sets positive classes (+1) apart from negative classes (−1). In 

this context, the two classes are the nodules and the nonnodules of breast images, of which 

the provided training data were used for the SVM to build a model in predicting the target 

values of the two test data attributes. In this work, the radial basis function (RBF) kernel is 
employed in complementary with the SVM. The two best parameters, C and γ, are prerequi-

sites for the generation of an accurate breast nodule and nonnodule classification by the RBF 
kernel. The SVM rejection model has three phases: extracting teacher image, training, and 

testing as shown in Figure 2. The grid has been used as a straightforward search on the train-

ing data to find the best parameters, and the reason for using the grid search instead of other 
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search algorithms is because of its short computation time. Additionally, the grid search can 

be easily parallelized because it is independent. The search spaces used in this research are 

{2⁻5, 210}. It is important to note that this study used the strategy of dividing the data set into 

Figure 2. The process of SVM rejection model.
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two parts, of which one is considered unknown. The prediction accuracy obtained from the 

unknown set will reflect on the classification performance of the independent data set. This 
procedure is known as cross validation. Its goal is to divide the training set into v subsets 

of equal size. One subset will be tested using the classifier trained on the remaining subsets. 
Subsequently, each instance of the training set will be predicted once. This is to ensure that 

the cross-validation accuracy is the percentage of data that have been correctly classified. 
The training data (teacher images) for the rejection model were manually extracted from the  

mammogram images by analyzing the false positives (FP) and true positives (TP) of the 

Chan-Vese segmentation result. After the teacher images were extracted, they were resized 

using the same factor for the original image. Next, depending on the window size that con-

sidered the number of inputs to SVM rejection model, the teacher image was resized. Based 

on the experiment, either a window size of (7 × 7), (9 × 9), (11 × 11), or (13 × 13) was taken 

into consideration. After that, the image was transferred to a vector and then written into the 
training data file. This file contained two variables, x and y. The first variable x is a matrix 
containing rows of window pixel values for the teacher images. Each row represented one 

image. The length of the rows depended on the window size. The number of rows in this 

variable depended on the number of teacher images. The other variable y is a vector con-

taining the class for each image. The class may be “1” for nodule images or “0” for non-

nodule images. Before proceeding with the SVM rejection training, training data were used 

to obtain the best values for parameters C, γ. As previously mentioned, the grid search was 

used as a straightforward search on the training data to obtain these values. Cross validation 

was also applied to spill the training data 10-fold into training and testing. Depending on the 

best accuracy value returned by SVM, the best C and best γ values were chosen. The SVM 

rejection model was built using the selected C and γ values and the training data set.

Based on model in Figure 2, each row in the training data (x
i
) represents an observation, and 

each column represents features. Class labels (y
i
) represent the class label for the correspond-

ing row in the training data.

3.1. Results and evaluation

About 170 mammogram images from 109 patients were collected from the UKM Medical 

Centre (UKMMC). Table 1 and Figure 3 show training and testing data that have been used in 

the experiment. The teacher images extracted from the training data based on the segmenta-

tion result contained 35 nodule images and 35 nonnodule images extracted from the training 

data set. The SVM rejection model was run 10 times with a standard deviation of 0.0001, and 

the results showed the effectiveness of using the rejection model compared with the ground 

Training data Testing data

Nodule Nonnodule Nodule Nonnodule

Number of images 11 17 46 96

Total number of images 28 142

Table 1. Data set for training and testing.
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truth. As mentioned earlier, the grid search was used as a straightforward search on the train-

ing data to determine the best parameters C, γ. Table 2 shows values of C, γ using various 

window sizes (7 × 7), (9 × 9), (11 × 11), and (13 × 13).

Accuracy denotes the proportion of the correct result and it can be calculated as shown in the 

following Eqs. (1)–(7), where TP is true positives, TN is true negatives, FP is false positives 

(type 1 error), and FN is false negatives (type 2 error). In mass localization, the concept of the 

confusion matrix that is in Table 2 represents the correctly segmented nodule and nonnodule 

with the miss segment. TP and TN are the correctly localized nodule and nonnodule, respec-

tively, while FP is the incorrectly segmented nonnodule as a nodule and FN is incorrectly 

segmented nodule as a nonnodule.

Figure 3. Hierarchy of UKMMC data set.

Result (predicted)

Nodule pixel Nonnodule pixel

Ground truth (actual)

Nodule pixel TP FN

Nonnodule pixel FP TN

Table 2. Confusion matrix.
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Specificity is also known as TN rate, and it represents the ability of the method to identify the 
nonnodule and avoiding false positives.

Sensitivity, which is also known as TP rate or recall, represents the ability to identify the 

nodule and avoid false negatives.

The FP rate shows the nonnodule pixel, which is segmented as nodule. It is an over seg-

mented pixel. The FN rate shows the nodule pixel, which is segmented as nonnodule. It is the 

miss segmented.

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

The NRM shows the mismatch between the predicted results and the actual ground truth. 

Our method was evaluated by comparing the segmented images to the ground truth. To 

show the effectiveness of the method, a comparison was done before and after the rejection 
model, as shown in Figure 4. This process was performed first by comparing each pixel in 
the resulting image with the corresponding pixel in the ground truth image. Then, objective 

evaluation was used to evaluate the method by calculating the confusion matrix as in Table 2, 

based on the prediction result and the actual ground truth. Table 3 and Figure 4 show the 

quantitative analysis of the results and sample of the result. The effectiveness of our method 
can be proven by comparing the result before and after using the rejection model. Table 3 

shows the FP rate of the rejection model is inversely proportionate to the window size. On the 

other hand, the specificity rate of the rejection model is linearly proportional to window size.

This section discussed on reducing the FP rate based on SVM machine learning. The SVM 

rejection model was built to reduce the FP rate after segmentation. Our method has three steps 

in the segmentation phase: first, MCWS was used to obtain the initial contour by segmenting 
the mammogram image. Then, the output of MCWS was used as an initial contour to the 

Chan-Vese algorithm. Finally, the rejection model based on SVM was used in order to reduce 

the FP rate. The SVM rejection model has three steps in the following order: extracting teacher 

images, training the rejection model, and testing the model. The FP rate reduction by means 

of SVM machine learning been put forth, wherein the FP rate, upon segmentation, had been 

reduced by the developed SVM rejection model. The segmentation of the mass in mammogram 
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images as well as the extraction of the initial contour was performed through MCWS, of which 

the proposed method comprises. The Chan-Vese algorithm is employed as the initial contour 

to enhance the result of the segmentation. The three steps of the SVM rejection model are in 

Figure 4. Result before and after using SVM model. (a1, b1, c1, and d1) original nonnodule and nodule images. (a2, 

b2, c2, and d2) segmentation result without using SVM rejection model, (a3, b3, c3, and d3) segmentation result after 

reducing the FP rate using SVM rejection model, (a4, b4, c4, and d4) ground truth images,. (a5, b5, c5, and d5) binary 

segmentation result without using SVM rejection model (a6, b6, c6, and d6) binary segmentation result after reducing 

the FP rate using SVM rejection model (a7, b7, c7, and d7) ground truth images.
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the following sequence: extracting teacher images, training the rejection model, and testing the 

model. Credence can be given to the MCWS algorithm in surmounting the challenges associ-

ated with the Chan-Vase algorithm. The Chan-Vese algorithm can be made more autonomous 

and converge faster by using a good initialization generated by MCWS.

Nevertheless, the reliance mammogram segmentation on the divergence and convergence of 

the intensity value of the image pixels is the constraint factor for this algorithm. The tendency 

has been toward segmenting the outlier component as part of the contour component, resulting 

in an incremental FP rate of the selected contour pixels. Accordingly, to overcome this issue, the 

SVM rejection model is geared toward reducing the FP rate. T-test was performed to determine 

the mean difference of two samples, that is, the accuracy before and after using rejection model 
with the best window size, which is (13 × 13). The T-test was applied to determine if there was a 

difference before and after applying the rejection model. The hypothesized mean difference of 
T-test was set to value 0, also named as null hypothesis. That means, assuming that there was 

no difference in the result whether using the rejection model. The alpha was set to value 0.05. 
The concept of T-test states that if the P value is less than the assumed alpha, the null hypoth-

esis is not correct and there is a difference between the mean of the two samples. T-test result 
shows that the proposed method is considered statistically significant with (P = 0.00001 < 0.05). 
Furthermore, the proposed rejection models also showed less standard deviation (0.0001) and 

yields to stability in its performance. In general, this proposed method offers alternative deci-
sion-making ability and is able to assist the medical expert in giving second opinion on more 

precise nodule detection. Hence, it reduces FP rate that causes over segmentation.

4. Computer aided diagnosis for pathology

This section focuses on the histopathological grading step in the breast diagnosis, the proce-

dure used to grade a certain tissue by examining the tissue slide biopsy, which must undergo 

a preparation step prior to the grading.

4.1. Tissue preparation

Breast tissue biopsy is a piece of tumorous tissue taken from the breast to investigate the 

occurrence of cancer. After the biopsy is extracted, it is enclosed in a fixative to prevent 

FP rate SP AC NRM OVERLAP

Without the rejection model 0.196 0.803 0.803 0.099 0.800

With the rejection Model (7 × 7 × 7 × 7) 0.058 0.941 0.938 0.031 0.933

With the rejection model (9 × 9 × 9 × 9) 0.051 0.948 0.944 0.028 0.940

With the rejection model (11 × 11 × 11 × 11) 0.044 0.955 0.950 0.025 0.946

With the rejection model (13 × 13 × 13 × 13) 0.040 0.959 0.954 0.023 0.950

Table 3. Quantitative analysis.
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it from decaying. Then, the tissue is sectioned into fragile slices (e.g., 2–15 μm) using a 

microtome machine, which creates very thin slices. The slices are then arranged on the glass 

slide before being stained. The tissue is stained using certain pigments to reveal the tissue 

components (e.g., lumen, nuclei, cytoplasm, and stroma). This helps the pathologist to view 

the individual tissue component more clearly. This procedure is called cells marker. The 

pathologists use different methods of staining depending on the diagnostic process at hand. 
Among the common staining types, Hematoxylin and Eosin combination H&E is the most 

popular for diagnosis and grading. After staining the tissue slide, the pathologist evaluates 

the tissue slide using the microscope as in UKMMC or through a digital scanner used to 

produce digital pathology images. In UKMMC, a specific type of microscope (Olympus 
BX50 microscope) is used for the diagnosis [16]. This microscope has a camera to capture 

images of the region of interest. The next subsection will explain the image acquisition steps 

involved in the creation of the prostate and breast cancer data sets required for this study. 

Subsequent subsections will present a brief overview of the devices required for the image 

acquisition and image acquisition flow.

4.2. Image acquisition devices

In this study, prostate histological images were captured from tissue slides. All the images 

were viewed using an Olympus BX50 microscope (Olympus Corporation, Japan), and 

images were captured using a DP72 digital camera (Olympus Corporation) and cellSens Life 

Science imaging software, version 1.6 (Olympus Corporation) [16]. The sensitivity of the illu-

mination source and camera’s intensity were kept constant. The microscopes were adjusted 

manually to form clear magnified images, and the cameras were controlled through desk-

top computers to capture color digital images. Before image acquisition, the pathologists in 

UKMMC had selected the ROIs under the microscope. However, this requires substantial 

time and effort from pathologists, and more importantly, a subjective choice of the ROIs 
could introduce biases into the database and harm the generalizability of the developed 

computer CAD system.

4.3. Image acquisition work flow

Prior to acquiring the images, the microscope components, such as the light condenser, dif-

fusing screen, and objective lens, were properly cleaned to remove any dust in the light path, 

which might badly affect the clarity of the acquired image. The focal plane was adjusted 
manually for clear images and was readjusted before every new image was taken. A light 

condenser was used to increase the light intensity for high-resolution image acquisition. To 

acquire an image from an ROI, the pathologist in UKMMC first reviewed the tissue section at 
a low magnification (e.g., 1× or 4×) to locate the ROI at the center of the image’s field of view 
[16]. Usually, fine tuning is needed at higher magnification (40× magnification) to ensure a 
region with a typical Gleason pattern in the ROI is selected. The focal plane was then adjusted 
to produce a sharp image, and the light intensity was tuned so that the largest pixel value was 

slightly lower than the upper limit of the pixel’s dynamic range. When all those adjustments 

were satisfactory, a still image was captured and saved onto the desktop computer as a color 

RGB digital image with a (tiff) extension. This process was repeated for all images that were 
captured for breast pathologists.
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4.4. Self-collected data set from UKMMC

This data set contains self-collected breast tissue region images stained using the H&E pro-

cedure and captured from tissue slides of needle biopsies taken from 32 breast carcinoma 

cases. These tissue region images were digitized at 40× magnification, yielding high resolu-

tion images (4140 × 3096 pixels) in (tiff) format. The diagnosis assigned to each region image 
is based on the Bloom–Richardson grading system [16]. Each image was annotated as low 

grade (Grade 1) or high grade (Grade 3) by three expert pathologists from the HUKM center 

[16]. The total number of collected images is 100. These can be classified into 56 low-grade 
cases and 54 high-grade cases. Figure 5 shows some sample images taken from this data set.

4.5. Ensemble learning of tissue components for histopathology image grading

This section explains the ensemble framework that we used for the classification of breast can-

cer and Gleason grading using the tissue components of the H&E histopathological region 

images. This project has been carried out from our previous work [16]. The framework is based 

on the ensemble learning approach from machine learning and medical tissue components 

(lumen, nuclei, cytoplasm, and stroma), both of which are of semantic meanings to patholo-

gists. The framework extracts a set of textural features for each tissue component, which cre-

ates four independent sub data sets, and the diversity demonstrated by these data sets is then 

used to create an ensemble framework that is able to classify and grade breast cancer. Our 

framework consists of five phases: segmentation of four tissue components, feature extraction, 
feature selection, base classifiers of the framework, and ensemble fusion phase, as per Figure 5.

The typical CAD for breast cancer grading extracts features directly from histopathologi-

cal images. Then, a single classifier is used to train these features to classify unknown pat-
terns (e.g., image). Unlike this typical CAD, our project uses the concept ensemble learning 

(Figures 5 and 6).

Figure 5. Ensemble framework for breast tissue image diagnosis and grading.
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Due to the diversity of the tissue components, four different training data sets are created 
for the corresponding tissue components (lumen, nuclei, cytoplasm, and stroma). Thus, 

the diversity of the tissue components in ensemble learning is utilized to improve prostate 

diagnosis and grading. In this project, the ensemble framework, consisting of four-base SVM 

(RBF) classifiers, where each base classifier is a specialist, is trained to use the selected features 
of a particular tissue component. The decision function of SVM (RBF) with the top selected 

features (Ω) in the training model is defined as per (Eq. (7)):

   (𝑥Ω) = sgn {  (w . 𝑥Ω) }   = sgn {  ∝𝑖 𝑦𝑖 𝑘(𝑥Ω,𝑖, 𝑥Ω) + 𝑏 𝑛𝑖 = 1 }  ,   (7)

where 𝑥Ω is the test sample with only Ω corresponding features, 𝑥Ω, i𝑖 is that of sample 𝑖 in 

the training set (𝑖 = 1, 2, …, 𝑛) with only Ω features, y 
i
∈ {1 𝑏𝑒𝑛𝑖𝑛𝑔, 0 𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 (low 𝐺𝑟𝑎𝑑𝑒 𝑜𝑟

high Grade)} is the class label of the training sample 𝑥Ω, 𝑖, and 𝑘 is the kernel function that is 

used to calculate the inner product between the Φ 𝑥Ω, 𝑖 and Φ(𝑥Ω) in the transformed space 

Figure 6. Two types of tissue classes of interest for the breast grading problem: (a) Grade 1 (low grade) tissue and (b) 

Grade 3 (high grade) tissue.
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using nonlinear mapping Φ. The product rule Eq. (8) is utilized to produce the final decision 
for the proposed ensemble framework to combine the prediction outputs of all four base 

classifiers. The product rule is preferred in the ensemble when the single classifiers posterior 
probabilities are correctly estimated [16]. The final prediction (𝑥) for the test image (𝑥) based 

on product rule is computed using (Eq. (8))

  class (x)  =  max  
j=1

  c=2  ∏  ∏ 
t=1

  
t=4

     p  
j
  t  (x)   (8)

4.6. Results and evaluation

In the ensemble framework, the stages of feature selection and classification are executed 50 
times for each classification task. In each run, the data set of each base classifier (i.e., tissue 
component) is randomly divided into 50% training and 50% testing) after normalizing, as 

per [16]. It should be pointed out that in each run of the ensemble framework, similar num-

bers of selected features are used with all base classifiers. The base classifiers utilize the SVM 
with Radial-Basis-Function (RBF) kernel, while the SVM-RFE utilizes the linear SVM. To 

deploy RBF, one needs to set an appropriate value of the cost penalty, c, and gamma, γ. The 

grid search tool is one of the most common methods to identify suitable values for c and γ [1, 

16]. The SVM implementation is utilized by the LibSVM toolbox [1, 16], while the C and γ in 

the SVM are estimated using a grid search with different internal threefold cross-validations 
on the training data set only from {2–20, 220}. In this data set, the low vs. high grades classifica-

tion task is dealt with, which is the most well-known task in state-of-the-art breast cancer 

analyses [1]. The results reported by this data set are shown in Table 4. As shown in Table 4, 

the proposed ensemble framework can effectively classify the low vs. high grades breast 
images. The AUC of low vs. high grade reached an average of 90.7%, which was greater than 

both the naïve and typical CAD. Moreover, when comparing the structure-method, the pro-

posed method was far more superior. In using the proposed ensemble CAD, classification 
performance in the context of AUC can be substantially improved by 15% for the structure-

based method. The results in Figure 5 show that the ensemble framework was significantly 
quite accurate (90.8%) compared to the accuracy of each individual tissue components in 

the low vs. high grades in breast histopathology images. This framework has also been 

Classification task

Breast UKM

Measure Proposed ensemble 

framework

Naïve 

approach

Typical 

CAD [22]

Significant of ensemble 
with

Naive Typical CAD 

[22]

Low vs. high grade AUC 90.7 ± 5.0 89.9 ± 4.8 89.8 ± 3.9 — —

Accuracy 90.8 ± 5.0 89.9 ± 4.8 89.8 ± 3.9 — —

Sensitivity 87.11 ± 8.4 87.1 ± 8.8 88.5 ± 7.7 — —

Specificity 94.3 ± 5.3 92.7 ± 6.3 91.1 ± 6.9 — —

Table 4. The performance of the proposed ensemble framework on breast histopathology images data set.

Breast Cancer and Surgery72



validated using prostate and colon data set. Results proved that the ensemble framework 

can be utilized with other types of histopathology images if the main tissue components are 

visible in the image [7].

5. Discussion and conclusion

This chapter discusses how machine learning, particularly SVM can improve the performance 

for detection and diagnosing of breast cancer. SVM for now is one of the most powerful 

machine learning techniques that is able to model the human understanding of classifying 

data. It can find the relationship between data and segregates them accordingly. Using pixel 
values in mammogram images, SVM helps to improve the mass detection and segmentation 

of Chan-Vese algorithms by classifying correctly the false positive pixels. As a result, a sharper 

mass was detected with better estimation of its shapes and sizes. Hence, radiologist can give 
better diagnosis and biopsy location. Then, images of cell structure or tissue textures from the 
biopsy sample were examine by the pathologist. These pathology slides were analyzed under 

the pathologist sharp eyes to locate and identify any abnormal pattern of tissue texture or 
architecture. The process is tiring and subjective to the pathologist experience in interpreting 

the tissue condition. Thus, inter-observer and intra-observer variations exist. However, the 

proposed SVM algorithm can identify the different tissue component and model the pattern 
of relationship between these components spatially and statistically. The model is then used 

to grade any new pathology slides into its modified Bloom-Richardson grading, according 
to what the SVMs have learned from previous examples. Using the technique, it helps the 

radiologist and pathologist reducing their work load by automating the automation for deci-

sion making, especially for common and mundane cases. Radiologist and pathologist would 

have more time to spend on special or rare cases. The learning curve for young apprentice can 

Figure 7. Single vs. ensemble classification results for low vs. high grade.

Machine Learning Methods for Breast Cancer Diagnostic
http://dx.doi.org/10.5772/intechopen.79446

73



be steeper. The automate grading of breast cancer helps to reduce the variation of inter- and 

intra-observation by the pathologist. In our work, it should be noted that we are not using 

the identical patient data of mammogram and pathology due to some limitation. However, 

in the future it is possible to take the identical patient. Via the automatic decision making we 

are able to create a platform that integrate diagnostic reporting system that supports both 

specialties and, therefore, improves the overall quality of patient care (Figure 7).

However, combining these tissue components’ features resulted in dense feature vectors, 

which suffers from overfitting. The use of the ensemble learning framework that allows 
prediction using several training subsets could help mitigate this problem. These different 
subsets are clearly shown in the proposed ensemble framework. The results indicate that 

proposed ensemble framework significantly outperformed the typical CAD, naïve approach, 
and structure-based method.
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