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Abstract

This study describes the development of life cycle inventory (LCI) to rare earth elements 
(REEs) based on the secondary sources, conducted according to ISO 14040 (2006) guidelines. 
Monte Carlo (MC) simulation with the Crystal Ball (CB) spreadsheet-based software was 
employed to stochastic modeling of life cycle inventory. The number of simulations was set 
at 10,000. The study scope considered LCI associated with REE concentrate production from 
New Kankberg (Sweden) gold mine tailings production (input gate) to the final delivery of 
rare earth elements (end gate) to reprocessing/beneficiation for rare earth element recovery. 
For the presented case, lognormal distribution has been assigned to scandium (Sc), dyspro-
sium (Dy), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), 
samarium (Sm), europium (Eu), gadolinium (Gd), holmium (Ho), erbium (Er), terbium (Tb), 
thulium (Tm), ytterbium (Yb), and lutetium (Lu). The MC simulation (10,000 trials) for the 
sum of analyzed REEs used for CB is presented in the form of statistics. Sensitivity analysis 
(SA) presented in the form of tornado charts and spider charts was performed. The results 
from this study suggest that uncertainty analysis is a powerful tool that should support and 
aid decision-making and is more trusted than the deterministic approach.

Keywords: rare earth elements (REEs), life cycle inventory (LCI), life cycle assessment 
(LCA), Monte Carlo (MC) simulation, Crystal Ball® (CB), sensitivity analysis (SA), 
uncertainty

1. Introduction

This chapter presents the utility of MC simulation with the Microsoft Excel with a CB exten-

sion software used to LCI modeling under uncertainty based on the public dissemination data 
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from environmentally friendly and efficient methods for extraction of rare earth elements from 
secondary sources (ENVIREE)—ERA-NET ERA-MIN-funded research project [1]. Recently, 

rare earth elements (REEs) have received increased attention due to their importance in many 
high-tech and clean energy applications, although very limited life cycle assessment (LCA) 

studies have been conducted [2].

Life cycle assessment (LCA) is one of the tools that is increasingly being used to examine 

the environmental impact of a product through its entire life cycle [3]. Udo de Haes et al. [4] 

highlighted LCA as a global tool, while a wide range of LCA applications are presented in [5]. 

The increasing application of LCA as a tool for making policy decisions as well as material 

and design choice and need for robust and up-to-date information for such studies is also 

presented in [6, 7].

2. Uncertainty in LCA

Uncertainty is a pervasive topic in LCA and can be defined in various ways [8]. In [9], defini-
tion of uncertainty given by [10] is quoted: “Uncertainty is defined as incomplete or imprecise 
knowledge, which can arise from uncertainty in the data regarding the system, the choice of 

models used to calculate emissions and the choice of scenarios with which to define system 
boundaries, respectively.”

LCA is an analytical tool which needs intensive data: methodological choices, initial assump-

tions, and degree of data uncertainty have a profound effect on validity of LCA results [11], 

and existing quantitative uncertainty methods in LCA require also a huge amount of accurate 

data [12]. Problem of aleatory uncertainty or “lack of knowledge” and epistemic uncertainty 
or “variability” [13] is discussed in [14], when it is highlighted that quantification for the alea-

tory uncertainty is usually performed using the MC. Detailed description of the combination 

of sources of uncertainty (parameter, model, and scenario uncertainties) and methods (deter-

ministic, probabilistic, possibilistic, and simple methods) to address them is presented by [15]. 

According to the [16] discussed municipal solid waste incineration model, it is suggested that 

uncertainty is due to data gap or inaccurate data.

The LCI analysis involved the collection and calculation of data and procedures to quan-

tify the relevant input and output of the product system. Very often large amounts of data 

required for LCI [17, 18] are affected by uncertainty [19, 20]. The main sources of uncertainty 

presented in [21, 22] is quoted in [23, 24]. With respect to parameter uncertainty, the common 

practice in LCA consists in representing uncertainty parameters by single probability distri-

butions, e.g., a normal distribution is characterized by an average and a standard deviation 

[25, 26], while in [8], uncertainty is defined as geometric standard deviation of intermediate 
and elementary exchanges at the unit process level. To obtain a result, different statistical 
methods can be applied. The most well-known sampling method is MC simulation (e.g., 

[18–26]) easily applied to LCA [27], while a most sophisticated method is the Latin hypercube 

(LH) method, where the sampling strategy is not entirely random but utilizes stratified prob-

ability distributions [27]. MC simulation is also recommended in the IPCC 2006 Guidelines 
[28, 29]. Most software for LCA is by now able to deal with uncertainties, in most cases on the 

Lanthanides28



basis of MC simulation [27–29]. LH sampling performs better that random sampling when 
the output is dominated by a few components of the input factor and better that random 
sampling for estimating the mean and the population distribution function [30]. Moreover, 

LH sampling (data compression techniques) can reduce computer time [15] and may reduce 

the required number of simulation [27]. It is important that a sufficient number of replica-

tions be used in a simulation. The number of replications of simulation affects the quality of 
the results. In general, the higher the number of replications, the more accurate will be the 

characterization of the output distribution and estimates of its parameters, such as the mean 

[19, 20]. According to [31], it is suggested that statistical accuracy of the simulation increases 

with an increased number of trials.

As pointed out in, the number of runs will vary from problem to problem, at least 1000 runs 

(see Introduction to LCA with SimaPro [32]) to thousands [23, 24, 30, 33]. In  discussion of sto-

chastic flow shop scheduling metaheuristic model for vessel transits in Panama Canal that 
used 200 runs in MC simulation model, which stated that the change in the 95% confidence 
interval width for makespan was negligible, is presented.

The problem of number of runs in MC-based approaches was also considered by [34], who 

analyzed the fuzzy uncertainty propagation using matrix-based LCI and proposed the number 

of runs between 100 and 10,000. According to [35] in the analysis of the IBM, daily trading vol-

ume stocks used a Poisson distribution via the MC simulations based on 1000 repetitions. Also 
[36] applied 1000 iterations to estimate the uncertainties of life cycle impact assessment (LCIA) 

results introduced by the statistical variability or temporal, geographical, or technological gaps 

in the LCI data. In the same work to estimate the combined uncertainty for IPCC-derived 
greenhouse gas inventory, the MC simulation with 5000 iterations was used [36]. In [36], when 

probabilistic scenarios are analyzed, using Microsoft Excel with CB for MC method for each 

scenario, uncertainty analysis involved 20,000 MC simulations. Finally, [37] presented relative 

results between compact neighborhoods cells in Mexico City involved 100,000 MC simulation.

3. Material and methods

The framework of LCA, structured according to International Organization for Standardization 

ISO 14040 [38] standard, is described in [39].

3.1. Goal and scope of the study

The goal of this study was to provide LCI under uncertainty calculus on the probabilistic MC 

approach for the primary data delivered from the secondary REE recovery process following 

the guidelines in ISO 14040:2006 standard.

3.1.1. Functional unit

The FU, central concept in LCA, is the measure of the performance delivered by the system 

under study [3, 18]. The FU has been defined as 1000 kg of a secondary source to be excavated 
and processed as the input for all subsequent processes.
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3.1.2. Data quality and collection

As noted above, very often LCI required a lot of data [17, 18] that are well correlated to the 

study context [40]. Data quality is discussed widely in literature [17, 23, 40–44]. In [45] analyzed 

uncertainty in a comparative LCA of hand drying systems pointed that data collection is one 

of the limitations in their LCA analysis. The databases presented in this study are affected to 
several uncertainties. According to [41], the basic uncertainty in data quality considerations 

of the inventory of rare earth concentrate processes comes out with data obtained from the 

literature studies. Large uncertainties exist for the infrastructure and also for particle emissions, 

fresh water use, and land use [41]. Another reason for the uncertainties is the nature of the 

chemicals used for the recovery of the REEs from the concentrate after flotation and beneficia-

tion processes (e.g., collector, conditioner, depressant) due to production system characterized 

by diverse practices and technologies [41, 46], as well as various laboratory methods.

The primary data used in the study is obtained from the Deliverable D1.2 Report on the 

physical-chemical properties of available materials for the recovery of REE and Deliverable 

D1.3 chemical and mineralogical data of secondary REE sources [1]. The secondary data used 

in the study is obtained from the following sources:

• The subject literature—scientific publications

• Expert consultations and knowledge of the process

4. Results and discussion

The MC simulations for evaluation parameter uncertainty involve the following steps [47]:

1. Select a distribution to describe possible values of each parameter.

2. Specify properties of each parameters.

3. Generate data from the distribution.

4. Use the generated data as possible values of the parameter in the model to produce output.

The REEs can be grouped into two different categories based on their atomic numbers. REEs 
with atomic numbers 57–63 are classified as light-rare earths (LREEs), and REEs with atomic 
numbers 64–71 are classified as heavy-rare earths (HREEs) [48]. However, the term “rare” 

earth is a misnomer; they are relatively abundant in the Earth’s crust; however, they are typi-

cally dispersed and only rarely occur in concentrated and economically exploitable mineral 

deposits [49].

The literature on the flotation of monazite is rather scarce. The available literature focused on 
the separation of monazite from xenotime, bastnaesite, rutile, and zircon [50] or on the Rhône-

Poulenc liquid-liquid extraction process for separation of the REEs from monazite [51] and 

the Shanghai Yue Long Chemical Plant monazite concentrate treatment in the process similar 
to the Rhône-Poulenc process [11], both described in [49].
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Monazite and xenotime from titania-zircon paleo beach placers in Australia, in the 1980s, were 

the third most important source of REEs in the world [52]. According to [53], in Australia, 

monazite typically has associated radioactivity due to thorium content (by substitution up 

to 30%). Until 1995, rare earth production in Australia was largely a byproduct of processing 

monazite contained in heavy mineral sands [54].

In addition to Australia, monazite deposits in Brazil, India, Malaysia, Thailand, China, Thailand, 

Sri Lanka, South Africa, and the United States constitute the second largest segment [49]. 

Present-day production is from India, Malaysia, Sri Lanka, Thailand, and Brazil [52]. Moreover, 

approximately 500 t of monazite per year was produced from 1952 to 1994 as a byproduct of 

titania-zircon production from Pleistocene sands near Green Cove Springs in Florida [52].

The Carolina monazite belt, from which a total of about 5000 t of monazite was produced 

between 1885 and 1917, has considerable placer reserves that average 0.25 kg/m3 of monazite 

[55]. Bear Valley, Idaho, where monazite- and yttrium-bearing euxenite was mined by dredg-

ing, contains an estimated 10,000 t of REOs along with significant niobium and tantalum, 
on the basis of data from [56]. At Baotou, the largest producer of rare earths in China, the 

bastnesite concentrates contain a small amount of monazite [49].

According to ENVIREE project, flotation tests have been carried out on the flotation tailing from 
New Kankberg to find out if the REEs can be recovered [57]. The results indicate that most of the 

REEs are in monazite. Monazite is the second most important rare earth, after bastnaesite, and is a 

rare earth phosphate mineral that contains various amounts of thorium [50]. Sample from the flo-

tation tailing was delivered to the ENVIREE project. After delivery of samples and their homoge-

nization, they were analyzed. As mentioned above, ICP-MS analysis of samples was investigated, 
in order to test the availability of REE extraction. The results are presented in Table 1 [1].

In this study we concentrate on a set of 16 REEs, denoted as critical [58] (European Commission 

2014), namely, Sc, Dy, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Ho, Er, Tm, Tb, Yb, and Lu. MC, an 
uncertainty propagation method [59], required definition of the mean, type of statistical 
distribution, and standard deviation (SD) for each parameter [59]. In this study, the uncer-

tainty analysis was modeled using probability distributions considered to be lognormal (term 

lognormal distribution) was derived from [60], according to the criteria proposed by [18] that 

“heavy metals is a sum parameter in the form of Pb, equivalents of following heavy metals: 
As, B, Cr, Cu, Hg, Mn, Mo, Ni, Pb and Sb,” and according to the estimations published by [61], 

as well as following the [62, 63] indication, that environmental parameters in LCA studies 

are independent and usually follow the lognormal distribution as do the impact results [59]. 

Other studies showed that the lognormal distribution has been used by [9] for the variabil-

ity assessment by means of bootstrap technique (applied for the computation of the median 

absolute deviation (MAD) for measure of the variability in statistical analysis). As pointed out 

by [62], the lognormal distribution has an upside-down bathtub-shaped hazard rate [64, 65], 

and no negative values are possible [18]. Lognormal distribution always remains positive, 

and it is consistent with the data available in the ecoinvent database and the pedigree matrix 

approach, as suggested by [45]. In addition, it is interesting to note that according to analysis, 

the trace element concentrations in gold processing have been concluded that concentration 

distribution of the elements between the grinding stages and the discharge stages was not uni-

form probably due to the different physical and chemical processes at various stages [64, 65].
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Finally, in this study to address uncertainty in the inventory data, analyzed REEs were fitted 
by lognormal distributions based on the real data summarized in Table 1. The CB lognormal 

distribution tab windows included the lognormal distributions of each of the 16 analyzed 

REEs after defining the geometric mean value (μ
g
) automatically which calculated (matches) 

the standard deviation (σ
g
) and lower as well as upper boundaries of lognormal distribution. 

There is lack of critical details in literature on how experimental data (e.g., σ
g
) with regard to 

probability distributions for the REEs in monazite was calculated. Moreover, lack of expert 

knowledge and transparency makes it extremely difficult for other researches to carry out 
their studies [48]. As noted above, monazite is the second most important rare earth, after 

bastnaesite [48]. The results of the performed simulation (10,000 runs) can be presented in the 

form of frequency charts shown in Figure 5.

4.1. Uncertainty analysis: MC simulation results

The literature includes many studies and papers dealing with the uncertainty analysis. 

According to [66], the uncertainty analysis can vary from a qualitative assessment (where 

parameters are assigned a low, medium, or high level of uncertainty) to a semiquantitative 

assessment in which parameter values are bounded [66].

REEs Distribution type Atomic number μ
g

σ
g

Quality Reference

Scandium (Sc) Lognormal 21 0.41 1.10 0.41 CB® result

Yttrium (Y) Lognormal 39 3.25 1.10 3.27 CB® result

Lanthanum (La) Lognormal 57 12.13 1.10 12.19 CB® result

Cerium (Ce) Lognormal 58 23.86 2.39 23.89 CB® result

Praseodymium (Pr) Lognormal 59 2.39 1.10 2.4 CB® result

Neodymium (Nd) Lognormal 60 9.78 1.10 9.83 CB® result

Samarium (Sm) Lognormal 62 1.74 1.10 1.75 CB® result

Europium (Eu) Lognormal 63 0.45 1.10 0.45 CB® result

Gadolinium (Gd) Lognormal 64 1.27 1.10 1.28 CB® result

Terbium (Tb) Lognormal 65 0.14 1.10 0.14 CB® result

Dysprosium (Dy) Lognormal 66 0.49 1.10 0.49 CB® result

Holmium (Ho) Lognormal 67 0.08 1.10 0.08 CB® result

Erbium (Er) Lognormal 68 0.22 1.10 0.22 CB® result

Thulium (Tm) Lognormal 69 0.03 1.10 0.03 CB® result

Ytterbium (Yb) Lognormal 70 0.17 1.10 0.17 CB® result

Lutetium (Lu) Lognormal 71 0.02 1.10 0.02 CB® result

μ
g
 = geometric mean value; σ

g
 = geometric standard deviation.

Table 1. Overview of the rare earths taken into account in the study (all values in ppm).
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Several studies have presented examples of the utilization of MC simulation in LCA studies; 

however, according to [67], MC and fuzzy set theory have been applied in a limited number of 

LCA studies. According to [25] the LCA data, in general, is full of uncertain numbers, and these 

uncertainties, for instance, are caused by uncertain measurement or uncertainty about how 

representative a data is for the analyzed problem [25]. Bieda [23] depicted that the reliability 

of LCA results may be uncertain, to a certain degree, and this uncertainty can be pointed out 

using MC method. In order to obtain robust conclusions about LCA results, the uncertainty 

needs to be sufficiently accommodated [68], and in order to apply the MC approach, it is 

needed to translate own information about uncertainty into a standard distribution type [32].

In this study each REE is independent (uncorrelated) of the others and comes from the same 

source (i.e., laboratory). Uncorrelated means that deviations for all products (elements) are 

independent [45]. In carring out  the MC simulation used CB (10,000 runs) obtained histograms, 

shown in Figure 1, statistics, as well as percentiles reports presented in Tables 2 and 3, respec-

tively, are present the results obtained by MC simulation for the sum (total) of the Sc, Dy, Y, La, 
Ce, Pr, Nd, Sm, Eu, Gd, Ho, Er, Tm, Tb, Yb, and Lu. The confidence interval is 95%. This means 
that 95% of the results lay within this range [25]. Total forecast value amounted to the geometric 

mean value of the 56.59 ppm contained between 51.20 ppm and 62.58 ppm (see Figure 2). After 

10,000 runs, the standard error of the mean is 0.04. The entire range which expressed the 95% 

confidence interval is from 45.78 ppm to 69.17 ppm. Range width is 23.38 ppm. The number 
displayed in the upper right corner of the histogram showed 9887 data points inside 2.6 SD of 

the mean [19, 20]. Just below the horizontal axis at the extremes of distribution, there are two 

small triangles, called endpoint grabbers [19, 20]. The certainty range (confidence interval) is 
displayed at the lower center of the frequency charts—the area of the histograms covered by 

them is darker [19, 20]. A detailed description of the simulation performed using CB is given in 

[19, 20, 23, 24]. The outcomes of the MC simulation listed in Table 3 indicate that, for example, 

the chance that the total REEs will be less than 56.49 ppm is only 50% [19, 20].

4.2. Sensitivity analysis

The definition of sensitivity analysis (SA) given by [30] is “the study of how the uncertainty 

in the output of model (numerical or otherwise) can be apportioned to different sources of 
uncertainty in the model input.” According to suggestion [45], SA isolates the main drivers of 

impact (and possibilities for improvement) and should be included in complete assessment 

of uncertainty. It is worth pointing out that Kolb [69] noted that theoretical methods are suf-

ficiently advanced, so that it is intellectually dishonest to perform modeling without SA (see 
[30]). According to [70], SA of a result is most often studied parameter by parameter, while 

according to [71], SA helps decision-makers to understand the impact of chosen allocation 

method and boundary setting on LCA results.

The result of this SA with the confidence level of 95%, created on the basis of SRCC and sorted 
in descending order, where positive correlation coefficients indicate that the acceptance of the 
stricter assumptions can be associated with obtaining the higher forecast probability [23, 24], 

for the data presented in Table 1, is shown in Figure 3. Positive coefficient signifies the exis-

tence of positive correlation, whereas the negative coefficient signifies negative correlation 

Life Cycle Inventory (LCI) Approach Used for Rare Earth Elements (REEs) from Monazite Material…
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Figure 1. The frequency chart of the 16 analyzed REEs forecasted with 95% confidence level (source: own work).
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[23, 24], or in other words, positive coefficients indicate that an increase in the assumption 
is associated with an increase in the forecast; negative coefficients imply the reverse [19, 20]. 

The MC simulation results have then been used also to perform the SA, presented in the form 

of tornado charts (see Figures 4 and 6) and spider charts (see Figures 5 and 7). According to 

[72] the concentrate that contains a mix of phosphates (apatite and monazite) can be further 

enriched through magnetic separation thanks to the paramagnetic property of monazite (apa-

tite is nonmagnetic). Magnetic separation leads to the production of a concentrate containing 

17.5% of the initial phosphate content (monazite mainly) and the REE content from 170 ppm 

to 5,000 ppm for Ce (90 ppm to 2,800 ppm for La and 70 to 2,300 ppm for Nd).

Percentile Total (ppm)

0% 45.78

10% 53.00

20% 54.16

30% 55.01

40% 55.78

50% 56.49

60% 57.20

70% 58.02

80% 59.00

90% 60.34

100% 69.17

Table 3. Percentile report of outcomes from the simulation.

Statistics Total (ppm)

Trials 10,000

Mean 56.59

Median 56.49

Mode —

Standard deviation 2.89

Variance 8.36

Skewness 0.21

Kurtosis 3.11

Coeff. of variability 0.05

Range maximum 45.78

Range minimum 69.17

Range width 23.38

Mean std. error 0.03

Table 2. Statistical report of outcomes from the simulation.
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The sensitivity analysis demonstrates that Ce, La, and Ne are the most sensitive parameters and 

will be used for further analysis. The tornado and spider charts have been created on the basis 

of data included in the newly built tables, Tables 4–7, respectively. Tornado chart and spider 

Figure 2. Frequency chart of the total REE forecast expression (95% confidence level), obtained from a MC simulation of 
10,000 runs. Certainty range is from 51.20 pm to 62.58 ppm (source: own work).

Figure 3. Sensitivity analysis with confidence levels of 95% (created by SRCC) (source: own work).

Figure 4. Tornado sensitivity chart of the Ce, La, and Ne scenario based on the percentiles of the variables, testing range 

of 10–90%. Error bars indicate mean standard errors (source: own work).
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Figure 6. Tornado sensitivity chart of the Ce, La, and Ne scenario based on the percentage deviation from the base case 

method, testing range from −10% to +10%, using existing cell values (source: own work).

Figure 5. Spider sensitivity chart of the Ce, La, and Ne scenario based on the percentiles of the variables, testing range of 

10–90%. Error bars indicate mean standard errors (source: own work).

Figure 7. Spider sensitivity chart of the Ce, La, and Ne median value scenario based on the percentage deviation from the 

base case method, testing range from −10% to +10%, using existing cell values (source: own work).
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chart of the Ce, La, and Ne median-value base case model for input testing ranging from 10 

to 90% that used percentiles of the variables method were presented in Figures 4 and 5, while 

tornado chart and spider chart of the Ce, La, and Ne based on the existing cell-value base case 

model for input testing ranging from −10% to +90% that used percentage deviation from the 
base case method were presented in Figures 6 and 7, respectively. Red bar indicates that the 

value was produced by the downside (lower bound), and a blue bar indicates that the value 

was produced by the upside (upper bound). Error bars indicate mean standard errors. The 

importance of the examined REEs is illustrated by the length of the associated bar. The rest 13 

REE total sum Input

Variable Downside Upside Range Downside Upside Base case

Ce 53.51325061 59.59987966 6.086629053 20.89253168 26.97916073 23.74158736

La 54.90673258 58.01637248 3.109639906 10.67392964 13.78356954 12.12950335

Nd 55.18853356 57.6961431 2.507609539 8.60744285 11.11505239 9.78121558

Table 4. The MC simulation results, using CB for the tornado sensitivity analysis-sensitivity table.

REE total sum

Variable 10.0% 30.0% 50.0% 70.0% 90.0%

Ce 53.51325061 55.15231499 56.36230629 57.63727651 59.59987966

La 54.90673258 55.74412549 56.36230629 57.01368462 58.01637248

Nd 55.18853356 55.8638061 56.36230629 56.88757692 57.6961431

Table 5. The MC simulation results, using CB for the spider sensitivity analysis-sensitivity table.

REE total sum Input

Variable Downside Upside Range Downside Upside Base case

Ce 54.204 58.976 4.772 21.474 26.246 23.86

La 55.371 57.809 2.438 10.971 13.409 12.19

Nd 55.607 57.573 1.966 8.847 10.813 9.83

Table 6. The MC simulation results, using CB for the tornado sensitivity analysis table.

REE total sum

Variable −10.0% −5.0% 0.0% 5.0% 10.0%

Ce 54.204 55.397 56.59 57.783 58.976

La 55.371 55.9805 56.59 57.1995 57.809

Nd 55.607 56.0985 56.59 57.0815 57.573

Table 7. The MC simulation results, using CB for the spider sensitivity analysis-sensitivity table.
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REEs were not included in the process of generating tornado and spider charts as other thirteen 

REEs are not in the field of ENVIRRE project research scope and interest.

Spider chart is obtained by perturbing Ce, La, and Nd median values (input variables) at 

consistent (testing) range from 10 to 90% from the base case, which used percentile of the vari-

ables from the base case method. The vertical y-axis maps the location measure of distribution 

expressed in percentages (percentile of the variables) ranging from 10 to 90% (see Figure 6). 

The variation of each input parameter (Ce, La, and Nd) (e.g., by 10, 50, and 90%) showed how 

much the output (REE Total sum) changes.

Spider chart is obtained by perturbing Ce, La, and Ne median values (input variables) at 

consistent (testing) range from 10 to 90% from the base case, which used percentile of the vari-

ables from the base case method. The vertical y-axis maps the location measure of distribution 

expressed in percentages (percentile of the variables) ranging from 10 to 90% (see Figure 6). 

The horizontal x-axis maps the sum of analyzed REEs (in ppm). As a result, the spider chart 

enables the possibility to simultaneously compare the examined REEs [23, 24].

5. Conclusions

This study refers to uncertainty in the input parameters used to create LCI of REE recovery pro-

cesses from secondary sources performed according to ISO 14040 (2006). The focus of this study 

is defined in the goal and scope and was developed using the primary and secondary data.

Due to uncertainty analysis, a final result is obtained in the form of value range. The results 
from this study suggest that MC simulation is an effective method for quantifying parameter 
uncertainty in LCA studies.

The analyzed parameters are assigned with lognormal distribution. It is concluded that 

uncertainty analysis offers a well-defined procedure for LCI studies; early phase of LCA as 
the deterministic analysis does not include uncertainty in the input data.

The methodological approach regarding databases and boundaries was transparent and fully 

documented. Moreover, the results of this study can help to assess environmental impacts of 

rare earth mining, because production of REEs is associated with considerable environmental 

burdens. Additionally these result inventory data will be available for LCIA and, finally, for 
full LCA analysis. The obtained results may be also useful and interesting for further studies 

of REE recovery and could be used to other domestic and international LCA studies, and the 

study results demonstrate the utility of the MC simulation for a clear interpretation of LCA 

results. Moreover, they can also help scientist gain a cleaner understanding of the stochastic 

modeling in the environmental engineering and could be useful tool for decision support 

methods such as multi-criteria decision analysis.

And finally, consideration of uncertainty in LCA provides additional scientific information 
for decision-making, as discussed in the work of Romero-Gámez et al. [73].
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