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Abstract

Pyrethroids are used to decrease vector-based health concerns and to increase field yield 
against agricultural pests. Their metabolism is a concern to disrupt a cell’s homeostatic 
machinery via reactive oxygen species (ROS) production. They interact with lipid mem-
branes to damage the fine balance between membrane lipids and membrane proteins, espe-
cially mitochondrial substrate transporters and electron carriers. Pyrethroids cause a shift 
in the metabolic energy production strategy, resulting in ROS production and intracellular 
lipid deposition. The change of open/closed conformation of some mitochondrial mem-
brane proteins increases the vulnerability of mitochondria to Ca2+ ions. Membrane lipid flu-
idity change is also a concern because of permeability to the substrates and ions to produce 
energy and other substrates necessary for the cell. Pyrethroids can change the Ca2+ signaling 
and its interaction with ROS signals via disruption of the fine balance between endoplasmic 
reticulum and mitochondria. They can disrupt the mitochondrial DNA (mtDNA) via their 
hydrophobic nature or their ROS production capacity. In conclusion, mitochondria are the 
center of pyrethroid toxicity, and dysfunction of this organelle via pyrethroid toxicity plays 
an important role in the fate of cell. Their lipophilic and pro-oxidative nature together with 
Ca2+ homeostasis plays a synergistic role in this mitochondrial effect.

Keywords: pyrethroids, insecticides, mitochondria, calcium, reactive oxygen species, 
mtDNA

1. Introduction

A pesticide has been described as an agent applied to kill, repel, or mitigate industry-, 
public health- and/or agriculture-related pests. They can also be used as plant growth 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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regulator or nitrogen stabilizer. We use them to reduce the risk of decreased agricultural 

and industrial yield and prevent public health concerns such as vector-borne diseases, 
asthma and allergies, and microbial contamination (for more information: https://www.
epa.gov/pesticides). Pesticides have entered into our lives more than 3000 years ago [1] 

and dried, ground Dalmatian pyrethrum flowers (contain natural pyrethrins) have been 
used against insect pests since ancient China. It has also been used in Europe more than 

200 years ago against cockroaches, bedbugs, flies, and mosquitoes [2]. A pyrethrin-derived 

synthetic pyrethroid allethrin has been synthesized in 1949 and entered the market in 1952 

to use against household pests [3]. To date, there are over 3500 pyrethroid-containing prod-

ucts registered [4].

The primary toxic effect of pyrethroids is on the voltage-gated sodium channels (VGSCs) 
like organochlorines such as DDT. The opening of these channels is extended by pyrethroid 

action and this causes the altered nerve function. According to their effect and chemical 
structure, pyrethroids divided into two types. Type I chemicals (allethrin, bifenthrin, bio-

resmethrin, permethrin, phenothrin, resmethrin, tefluthrin, and tetramethrin) do not contain 
a cyano group and they cause slowing in the closure of VGSCs. Therefore, the observed 
symptoms are tremors and seizures. On the contrary, Type II chemicals (cyfluthrin, cyhalo-

thrin, cypermethrin, cyphenothrin, deltamethrin, fenpropathrin, fenvalerate, flucythrinate, 
flumethrin, fluvalinate, and tralomethrin) are the ones that are predominantly alpha-cyano-
3-phenoxybenzyl alcohol esters and they cause a longer duration in the sodium current. The 

observed symptom is choreoathetosis accompanied by profuse salivation [5, 6]. Permethrin, a 
Type I pyrethroid, has not a disordering effect on polar head groups of phospholipids while 
it localizes within the hydrocarbon core [7]. Because of its cyano group, cypermethrin, a Type 
II, localizes preferentially in the hydrophilic/hydrophobic region of the lipid plasma mem-

brane, shows greater permanence and more fluidic effect on the membrane compared to per-

methrin [8]. Therefore, the permanence of cypermethrin can be connected to the prolonged 
opening of sodium channels. This interaction could also be related to the more reduction of 

lipid-lipid interactions compared to Type Is; therefore, it decreases plasma membrane fluid-

ity that is linked to the affected Na+-K+ ATPase activity to become the plasma membrane more 

permeable to the Na+ cations [8]. Type I pyrethroids have a higher binding affinity to the 
protein of VGSCs [9] while they penetrate more easily into the cell. Although this is another 

issue for a review, the mutations observed on the VGSCs’ protein produce more resistant 
individuals against pyrethroid intoxication (for more information, see Silva et al. [10]). There 

is also a discrimination between these types according to their effects on calcium and chloride 
channels [11]. Table 1 shows the chemical structures of pyrethroids that are mostly discussed 

in the current chapter.

Long-term health effects of pesticides such as their developmental and reproductory, endo-

crine disruption, neurobehavioral, carcinogenic, and immunological ones besides their acute 
impact have been considered by many scientists and regulatory services such as WHO, FAO, 
USEPA, and ECHA for many years. Currently, we experience the pesticides via drinking 
water, soil, food, and air. Directly ingesting of pesticide products can be assessed as a suicide 
action, but millions of acute poisoning cases occur in every year worldwide [12]. Although 
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the pyrethroid insecticides are less persistent in the environment compared to organochlo-

rines, they are highly lipophilic with their high octanol/water partition coefficient (K
ow

) [13]. 

Therefore, dietary exposure to these compounds trigger the safety concerns [14]. Indoor 

application to control household pests is also another path for human exposure.

Significant pyrethroid residues have been found in drinking water, human breast milk, and 
cow milk in a sample location of South Africa where indoor residual spraying was applied 

for malaria control compared to a mountain population [15]. Malaria control or agricultural 

applications have caused pyrethroid accumulation such as cypermethrin, lambda-cyhalo-

thrin, esfenvalerate/fenvalerate, and permethrin in breast milk from Brazil, Colombia, and 
Spain mothers [16]. However, the residues never exceeded the maximum daily intake levels. 
Babina et al. reported that more than one chemical and simultaneous exposure to organo-

phosphate and pyrethroids was common in South Australian preschool children [17]. Barr 

et al. surveyed the U.S. population with 5046 samples between the period of 1999 and 2002 

to detect pyrethroid residues in urine samples, and they concluded that pyrethroid expo-

sure is widespread in the U.S. population and children probably have higher exposure risk 

compared to adolescents and adults [18]. Exposure to pyrethroids in the levels common 

in Canadian children’s urine has been associated with parent-reported behavioral anoma-

lies [19]. A sex-dependent attention-deficit/hyperactivity disorder has been found in U.S. 

Allethrin1

(Type I)

IUPAC name: (2-methyl-4-oxo-3-prop-2-enylcyclopent-2-en-1-yl) 
2,2-dimethyl-3-(2-methylprop-1-enyl) cyclopropane-1-carboxylate

CAS No: 584-79-2

Metofluthrin2

(Type I)

IUPAC name: [2,3,5,6-tetrafluoro-4-(methoxymethyl) phenyl] methyl 
2,2-dimethyl-3-[(E)-prop-1-enyl] cyclopropane-1-carboxylate

CAS No: 240494-70-6

Permethrin3

(Type I)

IUPAC name: (3-phenoxyphenyl) methyl 
3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate

CAS No: 52645-53-1

Pyrethroid Insecticides as the Mitochondrial Dysfunction Inducers
http://dx.doi.org/10.5772/intechopen.80283

295



children associated with detectable levels of pyrethroid metabolites in the urine; therefore, 
abnormalities in the dopamine system that is more threatening for boys may be a result of 

growing use of pesticides, especially pyrethroids [20]. Urinary pyrethroid residues have been 

correlated with increased chronic heart disease in nonoccupational exposed Chinese people 

[21]. Occupational exposure to pyrethroids, for example, in the textile industry, is also an 
important issue throughout the world [22].

2. Reactive oxygen formation and its relation to the 

biotransformation of pyrethroids

Pyrethroids are the esters of acids like chrysanthemic acid, halo-substituted chrysanthe-

mic acid, and 2-(4-chlorophenyl)-3-methyl butyric acid and alcohols like allethrolone and 
3-phenoxybenzyl alcohol and they mostly contain more than one asymmetric carbon atom 

[3]. The stereoisomeric nature plays a significant role in the biotransformation of some pyre-

throids like fenvalerate [23]. This can also contribute to their toxic effect. For example, dif-
ferent stereoisomeric forms of permethrin have caused the increase in intracellular reactive 

Cypermethrin4

(Type II)

IUPAC name: [cyano-(3-phenoxyphenyl) methyl] 
3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate

CAS No: 52315-07-8

Deltamethrin5

(Type II)

IUPAC name: [(S)-cyano-(3-phenoxyphenyl) methyl] 
(1R,3R)-3-(2,2-dibromoethenyl)-2,2-dimethylcyclopropane-1-carboxylate

CAS No: 52918-63-5

1National Center for Biotechnology Information. PubChem Compound Database; CID = 11,442, https://pubchem.ncbi.
nlm.nih.gov/compound/11442 (accessed June 18, 2018).
2National Center for Biotechnology Information. PubChem Compound Database; CID = 5,282,227, https://pubchem.ncbi.
nlm.nih.gov/compound/5282227 (accessed June 18, 2018).
3National Center for Biotechnology Information. PubChem Compound Database; CID = 40,326, https://pubchem.ncbi.
nlm.nih.gov/compound/40326 (accessed June 18, 2018).
4National Center for Biotechnology Information. PubChem Compound Database; CID = 2912, https://pubchem.ncbi.nlm.
nih.gov/compound/2912 (accessed June 18, 2018).
5National Center for Biotechnology Information. PubChem Compound Database; CID = 40,585, https://pubchem.ncbi.
nlm.nih.gov/compound/40585 (accessed June 18, 2018).

Table 1. Chemical structures of the pyrethroids that are mostly discussed in the current chapter.
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oxygen species (ROS) and lipid peroxidation levels and decrease in superoxide dismutase 

(SOD) and catalase (CAT) activities in rat pheochromocytoma cells (PC12); but this effect is 
enantioselective, and the most effective stereoisomer is 1R-trans-permethrin [24].

Pyrethroid biotransformation in mammals including human consists oxidation, ester hydro-

lysis (both are called as Phase I reactions), and conjugation with endogenous molecules 
(Phase II reactions) [3, 25, 26]. Oxidation reactions are catalyzed by isoforms of cytochrome 

P450s (CYP450s), and ester bonds are hydrolyzed by carboxylesterase(s) [26].

The produced metabolites can be more potent endocrine disruptors than parent compound 

for humans [27]. Romero et al. found that CYP450-mediated oxidation products of deltame-

thrin (2’-OH and 4’-OH deltamethrin) are more toxic than the parent compound measured 

with cell viability, lipid peroxidation, and nitric oxide formation on human dopaminergic 
neuroblastoma SH-SY5Y cells [28]. Moreover, abnormal locomotor activity observed in prena-

tal deltamethrin exposure has been associated with increased expression of CYP450 enzymes 

in the offsprings of rats [29]. However, the pyrethroids are commonly used as a replacement 
of organophosphate and organochlorine insecticides because of their low mammalian toxic-

ity at the first time of their popularity. The low toxicity has been attributed to their rapid 
metabolism in mammals [18]. For this reason, their metabolism considered as a detoxification 
because of rapid clearance from the body [25, 30]. Most of the metabolites are highly hydro-

philic, and then rapidly excreted via urine and feces. Some of the metabolites from R-cyano-

3-phenoxybenzyl alcohol derivative pyrethroids, however, shows incomplete excretion and 
have longer bioretention in skin and stomach [25, 26]. Moreover, some of the conjugation 
metabolites are lipophilic and participate in toxicity reactions [25]. The biotransformation to 

hydrophilic compounds may also be a source of their toxicity in mammals as described below.

A single dose of cypermethrin and/or fenvalerate has caused the increase in SOD and CAT 

activities and in lipid peroxidation levels in the erythrocytes of rats [31]. As specified, non-

cyano (Type I)—cyano (Type II) discrimination can also be observed in oxidative stress-induc-

ing potential of these chemicals. For example, permethrin (a Type I) disturbed the antioxidant 
defense more than cypermethrin (a Type II) in the erythrocytes of treated rats [8]. Because of 

its cyano group, cypermethrin shows longer permanence in the membrane, while permethrin 
can pass easily from this lipid bilayer with its lipophilic nature to reach more readily to cellu-

lar subcompartments such as endoplasmic reticulum (ER) membranes that contain CYP450s. 

Although the presence of α-cyano group decreases the hydrolysis rate of ester bond [32], this 
group decomposes to cyanides and aldehydes to produce free radicals [33]. Endogenously 

formed superoxide anion radical is dismutated to hydrogen peroxide (H
2
O

2
) spontaneously 

or a SOD-catalyzed reaction. The formed H
2
O

2
 is degraded to water via CAT in peroxisomes 

and/or glutathione peroxidases (GPx) in the cytosol, mitochondria, nucleus, and also in per-

oxisomes [34, 35]. Although the H
2
O

2
 is not assessed as a ROS, it can act as a substrate for 

hydroxyl radical formation via a metal (it is mostly iron) catalyzed reaction if it cannot con-

vert to water efficiently. Hydroxyl radical is the strongest radical capable of oxidizing DNA, 
cellular membrane lipids, and proteins, and there is no effective agent to escape them in the 
cell [35]. The most important intracellular iron source is the active site of CYP450s because of 

their iron content in the catalytically active center [36–40].
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Pro-oxidant nature of CYP450-mediated pyrethroid metabolism needs further clarification 
because of superoxide and H

2
O

2
 release from CYP450 enzymatic complex by CYP450-inducers 

[35–40]. Pro-oxidative toxicity of pyrethroids has been reported in mammalian studies. Raina 

et al. suggest that the induction of oxidative stress in dermal cypermethrin exposed rats 

should be related to its biotransformation via CYP450-catalysis [41]. Metofluthrin, a known 
carcinogenic agent at high doses, induces mainly CYP2B isoforms and increases oxidative 
stress via the increase of reduced glutathione (GSH) levels (a well-known cellular antioxi-
dant molecule) in rats [42]. Without an induction of apoptosis, the authors conclude that 
the metofluthrin has reversible effects, and it may be noncarcinogenic for a human. On the 
contrary, deltamethrin and permethrin exposure has caused the induction of caspase 3/7 
activities; therefore, it has been concluded that oxidative potentials of pyrethroids can trig-

ger the apoptosis in human HepG2 cells and primary hepatocytes [43]. Deltamethrin and 

permethrin have also caused the stimulation of mRNA transcripts of CYP1A1, CYP3A4, and 
CYP2B6 isoforms and CYP3A4 protein levels. NADPH-dependent microsomal ROS forma-

tion has been observed in the liver of etofenprox exposed rats, and it has been concluded that 
observed lipid peroxidation and DNA oxidation in the liver should be related with CYP2B-

induction by etofenprox exposure [34]. CYP450-mediated cytosolic and/or mitochondrial 

ROS formation [44, 45] might cause cell death [46], and we conclude that CYP450 activa-

tion via pyrethroid exposure might cause mitochondrial damage and cell death. Therefore, 
CYP450 inducers should be evaluated with this type of side effect.

Deltamethrin exposure has caused early ROS formation and subsequent decrease in GSH 
levels, Bcl-2 protein expression, and mitochondrial membrane potential and increase in Bax, 
p38 MAPK expressions, and caspase-3 activity in isolated splenocytes from mice [47]. Similar 

results have also been found in the brain of deltamethrin exposed rats [48]. The number of 

apoptotic cells has been decreased by N-acetylcysteine, a well-known antioxidant agent, 
while buthionine sulfoximine, a GSH depleting agent, worsened the effects [47]. Therefore, 
when redox balance favors the ROS formation, it could be the main curator of mitochondrial 
dysfunction and related cell death. Not only synthetic ones but also natural pyrethrins can 

cause ROS formation and related mitochondrial dysfunction and apoptosis in human hepato-

carcinoma cell line HepG2 [49].

In fact, cells can die because of the ER stress-dependent pathways in pyrethroid intoxica-

tion. For example, Zhao et al. have suggested nonmitochondrial apoptotic pathway with an 
extracellular route [50]. According to their model, fenvalerate acts as an endocrine disruptor 
through the induction of apoptosis of mice germ cells. Fas/FasL-directed caspase-8 activa-

tion has caused the germ cell apoptosis without the change in Bcl-2, Bax, mitochondrial and 
cytosolic cytochrome c, and cleaved procaspase-9 levels.

Interestingly, ER and mitochondria have multiple contact sites called mitochondria-ER associ-
ated membranes with a characteristic set of proteins. From these domains, not only Ca2+ but 

also ROS-mediated signals may be transmitted to the mitochondria after ROS-based ER stress 
(for more details, see [51]). On these domains, inositol-1,4,5-triphosphate receptors interact 
with voltage-dependent anion channels (VDACs) on the outer membrane of mitochondria to 
transfer Ca2+. As an important second messenger, Ca2+ interacts with other signaling systems 
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such as subtoxic levels of ROS. There is a fine balance between these two signaling systems and 
dysfunction in either of these systems can affect another one. Therefore, this situation is harm-

ful or a signal for defense for a cell [52]. As stated in the review of Chirumbolo and Bjørklund 
[53], we believed that pyrethroids can exert their toxicity via the induction of ROS on ER mem-

branes via CYP450 activity and uncontrolled Ca2+ release from ER stores (and/or intracellular 

flux), which are used to conduct a fine balance between the ER and mitochondria deciding the 
autophagy or apoptosis. In this sense, we try to explain the mitochondrial effects of pyrethroids 
considering their oxidative stress-inducing potential and Ca2+ homeostasis of the cell.

3. Cellular Ca2+ stores and pyrethroids

Cellular Ca2+ stores can be a target for pyrethroid action and pyrethroid-mediated intracel-

lular Ca2+ load could be related to mitochondrial changes. For example, early life exposure to 
permethrin increased the intracellular Ca2+ influx in the heart of permethrin exposed rats [54]. 

Pyrethroids can activate the dose-dependent Ca2+-influx in the tetrodotoxin-sensitive pathway 
(a specific inhibitor of VGSCs) with different potencies and efficacies in mouse primary corti-
cal neurons [55]. However, the changes in Ca2+ dynamics could not always be dependent on 

VGSCs, at least for bifenthrin at nanomolar concentrations in mouse primary cortical neurons 
[56]. In fact, pyrethroids can modify voltage-gated Ca2+ channels at concentrations similar to 

VGSCs, and Type IIs are more potent to induce Ca2+ influx according to voltage- and patch-
clamp electrophysiological and in situ functional studies [57]. High intracellular Ca2+ levels 

can cause damage to mitochondria [58, 59], and changes in intracellular Ca2+ levels via release 

from ER stores or via Ca2+ influx triggers the ROS formation and cell death [58, 60].

Deltamethrin can inactivate the VGSCs. Downregulation of gene transcripts of these proteins 
in deltamethrin exposed human SK-N-AS neuroblastoma cells has also been observed with 

an intracellular Ca2+ elevation and calpain activation-mediated pathway [61]. Therefore, 
this situation causes the ER stress-related nonmitochondrial apoptotic pathway in human 

SK-N-AS neuroblastoma cells by deltamethrin [62]. According to this model, deltamethrin-
induced VGSC opening has been caused Ca2+ overload and activation of ER stress pathway 

engaging calpain and caspase-12 without an increase in cytosolic cytochrome c levels (an 

indicator for mitochondrial apoptotic pathway). In this way, resultant sodium influx via 
opening the VGSCs can activate the phosphatidylinositol turnover; the intermediates formed 
via this turnover will activate protein kinase C and the Ca2+ release from internal stores [63]. 

Deltamethrin can activate directly the protein kinase C enzyme at its very low dose [64]. 

According to the authors, “deltamethrin has a direct-action site likely to be on protein kinase C, 

an inositol polyphosphates-independent Ca2+ triggering site (e.g., ryanodine receptor and ER stores), 

and/or phosphoprotein phosphatase.” Interestingly, deltamethrin was able to increase the inositol 
1,4,5-triphosphate levels in rat brain slices in the presence of neomycin or LiCl [64].

Cypermethrin and fenvalerate have rescued the tsBN7 (a temperature sensitive cell type) cells 

from apoptotic death with elevated temperature compared to cyclosporine A, a mitochon-

drial membrane permeability transition pore (mtPTP) inhibitor [65]. According to the authors, 
elevation in cytosolic Ca2+ is at the core of the formation of mtPTP, and these pyrethroids 
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could be effective via their disruptive effect on Ca2+ balance. Ca2+ overload only can contribute 

to the formation of mtPTP; however, oxidative stress measured with excessive ROS formation 
and Ca2+ overload has a synergistic role in the formation of this pore to stimulate mitochon-

drial apoptosis [66].

Voltage-gated Ca2+-channel activation by allethrin has caused the mitochondrial cell death 

in rat Leydig cell tumor derived LC540 cells [67]. Allethrin exposure in these cell lines have 

resulted in the elevation of ROS, lipid peroxidation, intracellular Ca2+, cleaved PARP levels 
(executed by caspase-1), increased p53 gene expression, fluctuated SOD, CAT, GPx enzyme 
activities, and decreased mitochondrial membrane potential, Bcl-2, and pro-caspase-3 protein 
levels. It has been concluded that mitochondrial apoptosis by allethrin could be an important 

factor in decreased male fertility [67]. Similarly, allethrin exposure has caused the significant 
decrease in mitochondrial membrane potential and subsequent release of cytochrome c to the 
cytosol in the human corneal epithelial cell line [68]. Pro-apoptotic Bax expression has been 

increased, while anti-apoptotic Bcl-2 decreased, resulting in caspase-3 activation. Therefore, 
allethrin can trigger the mitochondrial apoptotic pathway in human corneal epithelial cells; 

although, they have not correlated their results with Ca2+ signaling.

An interesting support to these findings has been obtained with an estrogen receptor α and 
β binding studies of pyrethroids [69]. The studied chemicals have weak (fenvalerate) or no 

(permethrin, deltamethrin, and bifenthrin) binding capacity to estrogen receptor α, while per-

methrin has shown high affinity binding to estrogen receptor β. Lower but still strong binding 
to this protein has been observed with deltamethrin and fenvalerate, while bifenthrin has no 
binding capacity to this receptor. In another study, cypermethrin and permethrin exposure 
have increased the estrogen receptor α and β mRNA levels in TM4 mouse Sertoli cells to 
adapt decreased spermatogenic potential under pyrethroid toxicity [70]. Estrogen receptor β 
plays a role in preventing the mitochondrial apoptotic pathway and its suppression causes 

Bax activation, cytochrome c release, caspase 3 activation, and PARP cleavage [71].

Dissipation of mitochondrial membrane potential is an important event of apoptotic and 

necrotic cell deaths. It was observed in deltamethrin exposed rat primary hepatocytes with sub-

sequent elevation of ROS, while programmed necrosis has been measured in these cells [72]. 

A common cell death sign or toxic insult starts a common cell death progression; but the ATP 

presence determines the type of cell death, apoptosis or necrosis [66]. Pro-apoptotic potential 

via the mitochondrial pathway of pyrethroids has been reported in many studies [47, 49, 73]; 

however, necrosis can also be occurred because of the ATP demand as was seen in the kidney of 
permethrin exposed rats [74] or in the heart of cypermethrin exposed frogs (Rana cameroni) [75].

Anti-apoptotic protein Bcl-xL interacts with VDACs to transfer Ca2+ into the mitochondria [76]. 

A continuous supply of Ca2+ into mitochondria via this way is necessary to maintain mitochon-

drial bioenergetics because of pyruvate, 2-oxoglutarate, and the NAD+-dependent isocitrate 

dehydrogenases, and three intramitochondrial tricarboxylic acid cycle (TCA) enzymes are 
stimulated by Ca2+ [77]. Anti-apoptotic members of Bcl-2 proteins (Bcl-2 itself, Bcl-xL, and Mcl-
1) localized on the mitochondrial outer membrane and interact with the inositol-1,4,5-triphos-

phate receptors on the ER membrane to arrange the mitochondrial Ca2+ load during apoptotic 

signals and/or to enhance the mitochondrial metabolism for cellular resistance [76, 78].
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Endoplasmic reticulum-mediated Ca2+ to mitochondria is necessary to adequate supply of 
reducing equivalents for oxidative phosphorylation because of enhanced phosphorylation of 
pyruvate dehydrogenase complex and activated AMPK (AMP-activated protein kinase) in the 

absence of this supply [79]. Giacomello et al. proposed a schema for anti- or pro-apoptotic pro-

teins in ER-mediated Ca2+ supply to mitochondria [80]. Namely, Bax and other pro-apoptotic 
members of Bcl-2 family proteins enhance the ER Ca2+ load, and then mitochondria expose 
higher Ca2+ concentrations, mtPTP opens; while anti-apoptotic members of Bcl-2 cause the bal-
anced Ca2+ concentration from ER stores; then apoptosis is inhibited, and the needed ATP levels 
are supplied enhancing the mitochondrial metabolism. According to Distelhorst and Bootman, 
under autophagy-promoting conditions, a mitochondrial Ca2+ transfer from ER protects the cells 

from death via adequate elimination of energy demands, while the excessive accumulation of 
Ca2+ via apoptosis-inducing chemicals and/or ROS triggers the irreversible apoptosis progres-

sion [81]. In fact, differential stimulation pathway of protein kinase C may result in the desen-

sitization of inositol-1,4,5-triphosphate receptors via their phosphorylation by protein kinase C, 
which translocates to ER membranes in G-protein coupled protein subunit alpha s-cAMP path-

way. In this way, desensitization of receptor to its ligand, inositol 1,4,5-triphosphate results in 
limited Ca2+ release from ER stores [82]. Enan and Matsumura have observed the translocation 

of protein kinase C from the cytosol to the membrane fraction in pyrethroid exposed rat brain 

synaptosomes [64]. Deltamethrin has caused the intracellular Ca2+ elevation, ROS formation, 
and mitochondrial apoptosis in HGB human glioblastoma cells; while these effects have been 
reversed by protein kinase C, ER Ca2+ pump, and inositol 1,4,5 formation inhibitors [83]. On the 

contrary, increased intracellular Ca2+ levels were not dependent on the phosphoinositide path-

way in the effects of different pyrethroids in mouse primary neocortical neuron culture [55]. 

Therefore, tissue specificity and the dose-response curve of pyrethroid action on mitochondrial 
Ca2+ supply from ER and apoptosis induction should be further investigated.

4. Mitochondrial electron transport chain and energy production are 

affected by pyrethroid intoxication

Type I and type II pyrethroids could also be separated according to their toxic effects on 
different parts of the cell including mitochondria. Noncyano pyrethroid pyrethrin and per-

methrin increased the mitochondrial metabolic enzyme activities measured with the WST-1 

method at low doses probably to support the bioenergetics needs of the cell in SH-SY5Y cells 

[84] while there is no or little effect on total ATP content. Mitochondrial enzyme activities and 
total ATP content have been decreased at higher doses. However, the most pronounced effect 
has been seen with an α-cyano compound cypermethrin starting with the low doses [84]. The 

same distinction could be done by their effect on human estrogen regulated breast cancer 
cell line (MCF-7). Coadministration of oestradiol has been potentiated the effects of these 
pyrethroids measured with total ATP and mitochondrial metabolic enzyme activities; but, the 
most pronounced effect has been observed in cypermethrin exposure, also [85].

According to the study of Gassner et al., permethrin and cyhalothrin caused the inhibition of 
complex I of electron transport chain in isolated rat liver mitochondria, and there are more than 
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40 regions of complex I as potential binding sites for pyrethroids because of their hydrophobic 

nature [86]. Inhibition of complex I may be related to ROS formation; but, it should be noted 
that complex I inhibitors can be divided into two groups as ROS producers and ROS production 

inhibitors [87]. Inhibition of complex I activity by permethrin has been caused a reduction in 

superoxide radical formation in striatum submitochondrial particles of rats [88]. Inhibition of 

succinate dehydrogenase activity, which has a role in TCA and in complex II, has been decreased 
after acute and subacute bifenthrin exposure in rat brain [89]. Deltamethrin has a major inhibi-
tion site between complexes II and III because of unaffected NADH dehydrogenase (complex I) 
and cytochrome c oxidase (complex IV) activities in the isolated rat liver mitochondrial prepara-

tion [90]. In this mitochondrial preparation, NADH oxidase, succinate oxidase, succinate dehy-

drogenase (complex II), NADH-cytochrome c reductase, and succinate cytochrome c reductase 
activities have been inhibited. Deltamethrin has also caused an inhibition of ADP-stimulated 

oxygen consumption and impaired the mitochondrial membrane potential [90].

A discrepancy has been found compared to the results presented by Braguini et al. [90]. 

Cytochrome c oxidase activity has decreased within different time series in deltamethrin-
exposed rat brains in vivo [91]. In these in vivo mitochondrial preparations, deltamethrin has 
caused a decrease in mitochondrial cytochrome c levels, mitochondrial membrane perme-

ability transition, and mitochondrial membrane potential. These changes can result in a 
mitochondrial apoptosis and may reveal the neurotoxic action of pyrethroids. However, suc-

cinate cytochrome c reductase activity has not changed, while cytochrome c oxidase activity 
increased in the liver of deltamethrin-intoxicated rats in vivo [92]. In these liver preparations, 
biotransformation enzymes of pyrethroids have also not changed. In addition to their ROS 

inducing by ER-bound CYP450 activities, pyrethroids can disturb the electron transfer on the 
transport chain and can cause the altered ATP levels and ROS formation to induce mitochon-

drial dysfunction and sequential death.

Metabolic shift determined by increased lactate levels are observed in tumor cells although 

they are grown in oxygenic cultures, and this can be a strategy to avoid oxidative stress and 
apoptosis induction [93]. Pyrethroid intoxication causes a metabolic shift through the oxi-

dative phosphorylation to anaerobic glycolysis and altered lipid and protein metabolism in 

vivo. Several pyrethroids have decreased the hepatic protein levels, increased hepatic lactate 
dehydrogenase, blood and plasma urea levels in rats [94, 95]. Authors have concluded that 

pyrethroids are able to stimulate metabolic shift from oxidative phosphorylation to anaerobic 

glycolysis. A support for these observations has been obtained in the muscle and heart of 

cypermethrin exposed rats [96]. It has caused the decreased succinate dehydrogenase while 

increased glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities reflect-
ing the anaerobiosis. Decreased succinate dehydrogenase activity indicates the inadequate 
substrate supply for TCA [96]. A similar metabolic shift due to succinate dehydrogenase and 

malate dehydrogenase inhibition with increased lactate formation and lactate dehydroge-

nase activity has also been observed in cypermethrin-intoxicated fish Labeo rohita [97] or in 

fenvalerate-intoxicated fish Oreochromis niloticus [98].

Hepatic aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase activities, 
total lipids, phospholipids, free fatty acids, and cholesterol levels have increased, while glyco-

gen and total protein levels decreased in beta-cyfluthrin exposed rats [95]. Aminotransferases 

produce oxaloacetate and pyruvate intermediates that are transported into the mitochondrial 
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matrix to maintain TCA or fatty acid production, and accumulation of oxaloacetate has caused 
the inhibition of malate dehydrogenase activity, a part of TCA of mitochondria in cypermethrin 
exposed rats [89].

Metabolomics approach is very effective to understand pyrethroid-induced metabolic 
changes. Reports show the metabolic shift to anaerobic fuel consumption and elevated fuel 

supply via gluconeogenesis to maintain energy levels in pyrethroid-induced stress conditions. 

For example, permethrin exposure increased urine lactate, acetate, 3-D-hydroxybutyrate, 
creatine, glycine, and formate while decreased citrate and 2-oxoglutarate levels in rats [99]. 

Elevated levels of urinary acetate and decreased TCA intermediates show the energy metabo-

lism disorders. Similarly, Liang et al. reported that permethrin and deltamethrin exposure 
can cause the disturbance in energy metabolism via the enhanced rate of anaerobic glycolysis 

and fatty acid β-oxidation, and ketogenesis [100]. They found that these pyrethroids reduced 

the excretion of TCA intermediates and increased lactate, acetate, 3-D-hydroxybutyrate levels 
in treated rats. In another study, serum and urine metabolites levels have been changed by 
deltamethrin exposure, and then it was suggested that decreased utilization of pyruvate in 
TCA and consecutive anaerobiosis in exposed rats [101]. While a shift from aerobic respi-

ration to anaerobiosis was also found in the brain of lambda-cyhalothrin exposed goldfish 
(Carassius auratus), a marked decrease has been observed in brain N-acetyl-aspartate levels, 
because of neuronal mitochondrial membrane damage via the ROS formation [102]. N-acetyl-

aspartate is considered as a marker for mitochondrial dysfunction in neurons [103]. Higher 

levels of malate and alanine in cypermethrin exposed earthworms provide an argument for 

the increased gluconeogenesis and fueling the TCA for energy [104]. These effects have also 
been observed in the former studies [100–102]. However, as an opposite of these results, per-

methrin exposure has caused an increase in TCA intermediates and cellular fatty acids and 
a decrease in glutamate levels in rat neuroblastoma cell line B50 [105]. Increased fatty acid 
β-oxidation should be a response to permethrin toxicity in these cells.

Voltage-dependent anion channels located in the mitochondrial outer membrane is the only 
way to supply TCA intermediates from cytosol to mitochondria, and its closure causes a meta-

bolic shift [106]. However, urea generation is also operated in the mitochondrial matrix, and it 
requires a bulk of substrates such as ornithine, citrulline, adenine nucleotides, respiratory sub-

strates, and other metabolites across the mitochondrial outer membrane in/out of mitochondria, 
possibly via VDACs [107]. The mitochondrial outer membrane is rich in VDACs that opens in 
normal operated mitochondria and mitochondrial hexokinase bounds to VDAC to orchestrate 
respiration, glycolytic pathway, and other metabolic pathways such as the pentose phosphate 
shunt [108]. We think that pyrethroids can be effective on these mitochondrial membrane pro-

teins via their substrate and/or membrane docking interaction(s), finally causing a metabolic 
shift in exposed cells together with their electron transfer disorder effect on transport chain.

5. Lipid metabolism is a target for pyrethroid-induced mitochondrial 

dysfunction

Reactive oxygen species reduces the oxygen consumption and decreases the fatty acid oxi-
dation in adipocytes causing the lipid accumulation [109]. According to Chirumbolo and 
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Bjorklund, mitochondrial ROS formation and dysfunction could play a central role in the 
machinery of lipid accumulation via the interaction with AMPK and peroxisome proliferator-

activated receptor (PPAR) pathways [110]. Stressed cells accumulate lipids and enhance the 

hypoxic stimulus, and this occurs via AMPK-signaling pathways.

Cypermethrin induces the pyruvate kinase, glucose transporter, stearoyl-CoA desaturase-1, acyl-

CoA oxidase, and carnitine palmitoyltransferase 1-α mRNA levels in the liver of mice [111]. 

PPAR-α have also increased with increased pyruvate levels. In this study, hepatic free fatty 
acid transport genes have also been upregulated; then, cypermethrin is able to defect lipid 
metabolism and can cause the lipid accumulation (evidenced by increased lipid droplets in 

histologic sections) in this organ. An interesting situation is the overexpression of stearoyl-CoA 

desaturase-1 gene because its activation is related to mitochondrial ROS generation, caspase-3 
activation, and apoptotic cell death in the heart of rats fed with saturated fatty acid rich diet 
[112]. In this study, AMPK phosphorylation has been decreased with the overexpression 
of stearoyl-CoA desaturase-1 gene. AMPK inactivation results in the activation of acetyl-CoA 

carboxylase. It increases malonyl CoA synthesis, and malonyl CoA reduces carnitine palmi-
toyltransferase activity to transport fatty acids into mitochondria for oxidation. Therefore, 
fatty acid oxidation is decelerated. It is known that mitochondrial fatty acid oxidation is an 
important ROS source [113]. However, mitochondria need fatty acids to maintain AMP/ATP 
ratio and to maintain its functions in physiological levels. Therefore, a subtle balance of fatty 
acid oxidation must be conducted. In this sense, PPAR (including all three forms) agonists 
upregulate the AMPK activity to mediate many physiological functions to protect cells from 

mitochondrial membrane potential change and ROS formation [114].

Carnitine palmitoyltransferase-1 and PPAR-α gene expressions have been upregulated by 

cypermethrin exposure in the liver of zebrafish (Danio rerio) with ROS activation [115]. The 

results reveal the importance of cypermethrin-induced oxidative stress on impaired fatty acid 
β-oxidation and mitochondrial dysfunction. PPAR-α is the most significant orchestrator of 
altered fatty acid metabolism in this process. Relation of pyrethroid-induced lipid accumula-

tion and mitochondrial dysfunction has been conducted with some newer research. While Jin 

et al. [111] has not been found up or downregulated mRNA expression of ppar-γ with cyperme-

thrin intoxication, Moustafa and Hussein [116] reported that lambda-cyhalothrin intoxication 

caused upregulation of ppar-α and ppar-γ transcripts in the liver of rats. Hepatic fat infiltration 
and periportal fatty changes have also been observed with an elevated ROS formation.

Cobalt chloride, a hypoxia mimetic agent, has caused downregulation of PPAR-γ, increased 
lipid accumulation, mitochondrial ROS production, and autophagy in mouse pre-adipocyte 
cells [117]. It is known that elevated levels of TNF-α can be found in dysfunctional neuronal 
cells. The high level exposure of TNF-α to mimic these cells has caused decreased PPAR-γ 
and AMPK proteins, ATP levels, and mitochondrial mass, while ROS levels and caspase-3 (an 
apoptotic executioner enzyme) increased in human neuronal stem cells [118]. Rosiglitazone, 
a PPAR-γ agonist, protected the cells from these adverse effects of TNF-α. Mitochondrial 
complex I activity has decreased in deltamethrin treated human dopaminergic neuroblas-

toma SH-SY5Y cells [73]. These cells had typical mitochondrial apoptotic signals. The authors 

revealed that the mitochondrial apoptosis was antagonized by PPARγ agonist rosiglitazone 
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resulting in the inhibited translocation of PTEN-induced putative kinase 1 (PINK1) to defend 

cells against ROS formation by dysfunctional mitochondria. In mitochondrial damage con-

ditions, PINK1 accumulation in outer membrane results with a selective autophagy [119]. 

Therefore, PINK1-dependent mitophagy is responsible for maintaining a healthy mitochon-

drial population for undesired excessive ROS formation [120, 121]. Exposure to deltamethrin 

has caused the apoptotic and autophagic death in rat pheochromocytoma cell line PC12 [122]. 

Although the autophagy inhibitor, 3-methyladenine exacerbated the deltamethrin toxicity, 
pre-treatment with autophagy inducer rapamycin and antioxidant N-acetylcysteine have 

increased the cell viability via the prevention of apoptosis progression.

However, autophagy itself can be responsible for the ROS formation [123, 124]; therefore com-

plex I-inhibition related cell death could be derived from PINK1-mediated mitophagy because 

of the inhibition of ROS formation and apoptosis via an antioxidant or PPAR-γ agonist treat-
ment during mitochondrial autophagosome formation [124, 125]. Mitochondrial fusion can 

constitute a link between ROS formation and lipid accumulation. Downregulation of Mfn2 

gene in human embryonic kidney cells 293 with siRNA caused triglyceride and ROS accu-

mulation and decreased oxygen consumption [126]. Interestingly, impaired mitochondrial 
dynamics and dysfunctional autophagy can also be a cause in vivo triglyceride accumulation 

in aged rat tissues [126].

Shen et al. [127] reported that mouse pre-adipocyte cells showed increased fat accumulation 

via AMPK/PPAR-γ intersection by deltamethrin exposure. Phosphorylated AMPK/AMPK 
(pAMPK/AMPK) ratio has been decreased, while PPAR-γ protein levels increased in these 
deltamethrin exposed cells. Permethrin has also caused similar changes in these cells with the 

elevation of triglyceride levels and decrement of carnitine palmitoyltransferase 1-α mRNA levels 

[128]. In this study, permethrin exposure decreased protein kinase B (Akt) and increased its 
activated phosphorylated forms (at Ser473 and Thr308) in C2C12 myotubes in the presence 

of insulin. Therefore, permethrin alters lipid metabolism in adipocytes and impaired glu-

cose metabolism in myotubes and then increases the obesity and type-2 diabetes progression 

risks in exposed individuals. Authors discussed that these changes are related to mitochon-

drial Ca2+ and ROS formation. In another study, pAMPK levels have been increased with 
increased autophagosome formation and abnormal autophagy in cypermethrin treated rats 

and SH-SY5Y neuroblastoma cells [129]. Authors indicated that increased phosphorylation 

of AMPK shows the decreased AMP/ATP ratio via mitochondrial dysfunction. Although the 

above authors revealed the mitochondrial dysfunction-related adipogenesis, Xiao et al. [130] 

have defined an intracellular Ca2+- and ER stress-related adipogenesis in permethrin exposed 

mouse pre-adipocyte cells.

Solute carrier family 25 member 25 (Slc25a25) and solute carrier family 2 member 1 (Slc2a1) 

gene expressions have been affected by deltamethrin and cyfluthrin exposure in the corti-
cal samples of rat brain in vivo with many other membrane proteins [131]. Slc25a25 serves 

as a solute carrier for adenine nucleotides in and from the mitochondrial inner membrane, 
while Slc2a1 is a major glucose transporter in the blood-brain barrier. These pyrethroids have 
also affected pyruvate dehydrogenase kinase 4 (pdk4) gene expression, which plays a role in 
glucose metabolism via inhibition of pyruvate dehydrogenase complex by phosphorylation. 
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Therefore, pyrethroids can be effective on cells at different levels of metabolism. In a similar 
manner, permethrin caused a significant elevation of pdk4 and phosphoenolpyruvate carboxylase 

(pepck) gene transcripts in the muscle and liver of mice, respectively [132]. Permethrin expo-

sure displayed similar results [133] that were seen in the study of Kim et al. [128]. In addi-

tion, phosphorylated Akt at Thr308 and glucose transporter 4 (glut4) protein levels have been 
decreased in the muscle; therefore, authors concluded that permethrin can alter the glucose 
and lipid metabolism via an AMPK-dependent pathway and produce insulin resistance and 

obesity risk in exposed groups. In contrast, insulin-stimulated Akt phosphorylation has been 
decreased by permethrin in pAMPK-independent and the ERK-dependent manner in C2C12 

myotubes, and this mechanism could be a reason for insulin resistance development [134]. 

Therefore, the exact mechanism of lipid accumulation in different cell types may use different 
pathways; however, we believed that ER-mitochondria axis and their relation in Ca2+ and ROS 

signaling are the main curators of these effects of pyrethroids.

Affected lipid metabolism by pyrethroids has also been observed in other studies including 
fish and mammals [135, 136].

6. Mitochondrial membrane structures and dynamics in pyrethroid 

intoxication

Another effect of pyrethroids is on the structural integrity and dynamics of mitochondria 
observed in histopathological studies. cis-Permethrin has caused inner membrane disruption, 
and the cristae have been replaced with a denser matrix in Leydig cells of mice testis [137]. 

Therefore, hitching of cholesterol delivery diminished the pregnenolone formation, contribut-
ing to the endocrine disrupting function of pyrethroids. Mitochondrial swelling associated 

with ER cisternae has been observed in the liver of cypermethrin exposed rats [138]. Dilated 

round or ovoid mitochondria with short cristae and clear matrix have also been noticed 

while small damaged mitochondria containing electron dense inclusions occurred in differ-

ent time series. A similar result has also been found from an amphibian study. According 

to Yilmaz et al. [139], severely damaged cristae and loss of mitochondrial matrix have been 
found in the cypermethrin exposed sciatic nerves of Rana ridibunda. Typical tubular appear-

ance loss, perturbed fusion/fission equilibrium favoring the fission, and decreased mitochon-

drial membrane potential have been observed in tefluthrin, deltamethrin, bifenthrin, and 
α-cypermethrin exposed rat cerebral astrocytoma C6 cells with an increase in cell death ratio 
[140]. Obvious mitochondrial hypertrophy with distended membranes has been found in the 

liver of deltamethrin exposed rats [92]. Deltamethrin exposure resulted in irregular contours 

of mitochondria, tiny and few cristae, and cloudy matrix. Mitochondrial morphometry has 
also been affected by deltamethrin exposure. Therefore, mitochondria may be the most vul-
nerable organelle with its structure-function relationship for pyrethroids toxicity.

Pyrethroids can pass and interact with biological membranes because of their lipophilic nature 

[84]. As mitochondrion stand its membranous structures, mitochondrial membranes and 
other proteins in addition to the electron transport proteins are candidate structures for 
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pyrethroid action. For example, fenvalerate has not interacted with mitochondrial membrane 
proteins measured with intrinsic protein fluorescence, mainly by tryptophan fluorescence 
quenching in the isolated mitochondria from Helicoverpa armigera larvae (cotton bollworm) 
[141]. Because of its hydrophobic nature, deltamethrin has increased the mitochondrial 
membrane rigidity in the isolated rat liver mitochondrial preparation and this can cause 

the impaired transport of different ions between cytosol and mitochondrial matrix [90]. 

Permethrin has caused a decrease in mitochondrial membrane fluidity and this could be a 
reason for a bioenergetic crisis in the cell because of irregular energy transduction in striatum 

submitochondrial particles of rats [88]. Mitochondrial membrane fluidity at the hydrophilic-
hydrophobic region of the bilayer has decreased, while fluidity in the hydrophobic core 
increased in the heart of 300-day old rats exposed the permethrin between 6 and 21 days 

of their life [142]. Moreover, decreased cholesterol levels in mitochondrial membranes have 
been observed while it increased in the plasma membrane of heart cells. Therefore, these 
observations and pro-oxidative properties of permethrin could cause the altered cardiac 

ultrastructure and function. This effect of permethrin has also been found in Leydig cells of 
mice testis as discussed above [137]. As an integral membrane protein, VDAC interacts with 
membrane cholesterol [143] and ATP synthesis, ATP/ADP exchange by adenine nucleotide 
translocator (ANT) at the inner membrane, ATP/ADP and metabolite exchange by VDAC can 
be affected by associated membrane composition [93].

Effects of pyrethroids are not limited to mitochondrial membranes because of fluidity decline 
in the hydrophobic core of cypermethrin exposed rat erythrocyte plasma membrane [144]. 

Similar fluidity decline has been observed in deltamethrin exposed common carp (Cyprinus 

carpio) erythrocyte plasma membranes [145]. Phosphatidylethanolamine, phosphoglyceride, 
phosphatidic acids, and cardiolipin levels were decreased, making the membrane more rigid 
and less permeable. Decreasing these components can cause oxidative stress and cell mem-

brane ageing. Interestingly, cardiolipin is an exclusive component of the inner mitochondrial 
membrane, and it plays a significant role in governing the mitochondrial bioenergetics pro-

cesses (interaction with respiratory chain proteins and substrate carriers) and dynamics [146]. 

Cardiolipin reduction has been observed via ROS-induced lipid peroxidation in nerve growth 

factor-deprived rat sympathetic neurons and this has caused the loss of mitochondrial density 

[147]. As a membranous structure, the same finding may be observed with mitochondrial 
preparations, but it is an issue for further studies. It has been concluded that high lipophilic-

ity and pro-oxidative potential of pyrethroids can affect the biological membranes with their 
functional proteins to mediate the dysfunctional mitochondria.

While 18 kDa translocator protein (TSPO; formerly known as peripheral benzodiazepine 

receptor) ligands PK 11195 and Ro5-4864 are anti-apoptotic in the concentrations close to 

their TSPO affinity, they can also be pro-apoptotic agents at higher levels [148, 149]. It has 

been evidenced that pyrethroids can bind and interact with TSPO [150, 151], located on the 
mitochondrial outer membrane and participates to cholesterol transport as a cholesterol chan-

nel into mitochondria collectively with VDAC and ANT [152, 153]. Many type I and type II 

pyrethroids can bind this protein on rat brain membranes, while fluvalinate and fenvalerate 
have poor potency [154]. Furthermore, cis-permethrin has decreased the mRNA levels of tspo 

in mice testis [137]. In the study of Vadhana et al. [142], mitochondrial cholesterol levels have 
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been decreased, while cellular and plasma cholesterol levels increased in the heart of per-

methrin exposed rats. The pyrethroids may interact with TSPO protein with high affinity to 
affect its interaction with VDAC [93] to decrease cholesterol levels in mitochondria. Because 

mitochondrial function mostly depends on its membranous structures, a decrease in mem-

branous and inner mitochondrial cholesterol levels could be effective on ROS production and 
abnormal autophagy as is exemplified above sections. Increased TSPO to VDAC ratio has 
been correlated with increased ROS production, decreased mitophagy, and accumulation of 
damaged mitochondria [155, 156]. Therefore, oxidative-stress inducing and apoptotic poten-

tial of pyrethroids could also be originated with this capability. TSPO attends to the ROS 
formation via mitochondrial membrane potential transition [148]. Produced ROS affect the 
bonding form of cytochrome c to cardiolipin through the tightly to loosely conformation and 

results in the release of it [157] to induce mitochondrial apoptotic pathway. Interestingly, in 
the events of VDAC closure and blockage of TSPO function cause a permeability increase of 
VDAC to Ca2+ and this can accelerate the mtPTP opening [158].

7. Mitochondrial DNA and pyrethroids

There are very few studies on the mitochondrial DNA (mtDNA) alterations induced by 

pyrethroids in vertebrates. According to the results of Wang and Zhao [159] study, mtDNA 
somatic mutation frequency has been increased in the lung tissue of pesticide exposed 
(including pyrethroids) fruit growers. They have concluded that the increased frequency of 
mtDNA mutations may result from ROS formation, and the frequency has somewhat like can-

cer patients’ tissues. Because of the adjacency of mtDNA to possible ROS formation centers 
in mitochondria [160], pyrethroid-induced mtDNA mutations could be linked to their ROS 
inducing potentials. In cypermethrin exposed zebrafish larvae, ROS induction has been aug-

mented, while ogg1 (8-oxoguanine DNA glycosylase) mRNA levels decreased [161]. This gene 

is responsible for the excision of 8-oxoguanine bases occurred via ROS action on DNA. This 

enzyme has many alternative splicing variants, all of them are targeted to the mitochondria 
for localization (PUBMED Gene ID:4968; https://www.ncbi.nlm.nih.gov/gene/4968, last 
access: January 7, 2018). According to the study of Sampath et al. [162], Ogg−/− mice exhibited a 

preference to carbohydrate metabolism over fatty acid oxidation via downregulated key fatty 
acid oxidation genes’ and TCA genes’ mRNAs. Then, they are susceptible to adiposity and 
hepatic steatosis. Therefore, pyrethroids might able to change the cellular substrate metabo-

lism, and mtDNA mutations are probably involved in this process.

Pyrethroids bifenthrin, cypermethrin, and deltamethrin have increased ρ-mutation frequency 
in Saccharomyces cerevisiae culture in a dose-dependent manner [163]. This type of mutation 

occurs mainly on mtDNA by large deletions [164], and mitochondrial protein synthesis 
and electron transport are blocked [163–165]. Interestingly, there are some studies related 
to the binding of pyrethroids to DNA macromolecule via different bonding mechanisms 
[166–169]. For example, permethrin can intercalate with DNA, and it is prone to bind G-C 
base pairs [167]. On the other hand, a complexation driven mechanism mainly by hydrogen-
bond and van der Waals forces has been observed between DNA and tau-fluvalinate and 
fluvalinate molecules [169]. AT-rich sequences are more susceptible sites for this complexation. 
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We believed that pyrethroids can interact with mtDNA as seen in their electron transport 

complex bonding potential; therefore, can create mutations on mtDNA. However, further 
mechanistic research is needed.

8. Conclusion

In conclusion, pyrethroids can perform their toxic action via their oxidative potentials including 
unbalanced Ca2+ flux in/out of the organelles and cells. Mitochondria might be the most vulner-

able organelle for pyrethroid toxicity. Pyrethroids probably can change the interaction of mito-

chondrion and ER to create an imbalance between the fine equilibrium of ROS and Ca2+ signals. 

This affects the form of cellular metabolic energy production, accumulation of lipids and other 
metabolites, and cell death type. Pyrethroids can also change the mitochondrial membrane 
structures to affect their ability for metabolism and ROS production capacity. These effects may 
be related to the endocrine disruption, diabetic, dopaminergic, and obesity-induction potential 
of pyrethroids that are observed in exposed individuals as exemplified in the above sections 
such as altered lipid metabolism and cholesterol delivery into the mitochondria. However, 
there are many gaps that must be solved, such as, interaction with mitochondrial membrane 
proteins, specific mutagenesis caused by pyrethroid molecule and mtDNA interaction, etc.
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